1
|
Samant RS, Batista S, Larance M, Ozer B, Milton CI, Bludau I, Wu E, Biggins L, Andrews S, Hervieu A, Johnston HE, Al-Lazikhani B, Lamond AI, Clarke PA, Workman P. Native Size-Exclusion Chromatography-Based Mass Spectrometry Reveals New Components of the Early Heat Shock Protein 90 Inhibition Response Among Limited Global Changes. Mol Cell Proteomics 2023; 22:100485. [PMID: 36549590 PMCID: PMC9898794 DOI: 10.1016/j.mcpro.2022.100485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/16/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
The molecular chaperone heat shock protein 90 (HSP90) works in concert with co-chaperones to stabilize its client proteins, which include multiple drivers of oncogenesis and malignant progression. Pharmacologic inhibitors of HSP90 have been observed to exert a wide range of effects on the proteome, including depletion of client proteins, induction of heat shock proteins, dissociation of co-chaperones from HSP90, disruption of client protein signaling networks, and recruitment of the protein ubiquitylation and degradation machinery-suggesting widespread remodeling of cellular protein complexes. However, proteomics studies to date have focused on inhibitor-induced changes in total protein levels, often overlooking protein complex alterations. Here, we use size-exclusion chromatography in combination with mass spectrometry (SEC-MS) to characterize the early changes in native protein complexes following treatment with the HSP90 inhibitor tanespimycin (17-AAG) for 8 h in the HT29 colon adenocarcinoma cell line. After confirming the signature cellular response to HSP90 inhibition (e.g., induction of heat shock proteins, decreased total levels of client proteins), we were surprised to find only modest perturbations to the global distribution of protein elution profiles in inhibitor-treated HT29 cells at this relatively early time-point. Similarly, co-chaperones that co-eluted with HSP90 displayed no clear difference between control and treated conditions. However, two distinct analysis strategies identified multiple inhibitor-induced changes, including known and unknown components of the HSP90-dependent proteome. We validate two of these-the actin-binding protein Anillin and the mitochondrial isocitrate dehydrogenase 3 complex-as novel HSP90 inhibitor-modulated proteins. We present this dataset as a resource for the HSP90, proteostasis, and cancer communities (https://www.bioinformatics.babraham.ac.uk/shiny/HSP90/SEC-MS/), laying the groundwork for future mechanistic and therapeutic studies related to HSP90 pharmacology. Data are available via ProteomeXchange with identifier PXD033459.
Collapse
Affiliation(s)
- Rahul S Samant
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, United Kingdom; Signalling Programme, The Babraham Institute, Cambridge, United Kingdom.
| | - Silvia Batista
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, United Kingdom
| | - Mark Larance
- Centre for Gene Regulation & Expression, University of Dundee, Dundee, United Kingdom
| | - Bugra Ozer
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, United Kingdom
| | - Christopher I Milton
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, United Kingdom
| | - Isabell Bludau
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Estelle Wu
- Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Laura Biggins
- Bioinformatics Group, The Babraham Institute, Cambridge, United Kingdom
| | - Simon Andrews
- Bioinformatics Group, The Babraham Institute, Cambridge, United Kingdom
| | - Alexia Hervieu
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, United Kingdom
| | - Harvey E Johnston
- Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Bissan Al-Lazikhani
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, United Kingdom; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Angus I Lamond
- Centre for Gene Regulation & Expression, University of Dundee, Dundee, United Kingdom
| | - Paul A Clarke
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, United Kingdom
| | - Paul Workman
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
2
|
Akhter MS, Uddin MA, Kubra KT, Barabutis N. Elucidation of the Molecular Pathways Involved in the Protective Effects of AUY-922 in LPS-Induced Inflammation in Mouse Lungs. Pharmaceuticals (Basel) 2021; 14:ph14060522. [PMID: 34072430 PMCID: PMC8226636 DOI: 10.3390/ph14060522] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) cause thousands of deaths every year and are associated with high mortality rates (~40%) due to the lack of efficient therapies. Understanding the molecular mechanisms associated with those diseases will most probably lead to novel therapeutics. In the present study, we investigated the effects of the Hsp90 inhibitor AUY-922 in the major inflammatory pathways of mouse lungs. Mice were treated with LPS (1.6 mg/kg) via intratracheal instillation for 24 h and were then post-treated intraperitoneally with AUY-922 (10 mg/kg). The animals were examined 48 h after AUY-922 injection. LPS activated the TLR4-mediated signaling pathways, which in turn induced the release of different inflammatory cytokines and chemokines. AUY-922 suppressed the LPS-induced inflammation by inhibiting major pro-inflammatory pathways (e.g., JAK2/STAT3, MAPKs), and downregulated the IL-1β, IL-6, MCP-1 and TNFα. The expression levels of the redox regulator APE1/Ref1, as well as the DNA-damage inducible kinases ATM and ATR, were also increased after LPS treatment. Those effects were counteracted by AUY-922. Interestingly, this Hsp90 inhibitor abolished the LPS-induced pIRE1α suppression, a major component of the unfolded protein response. Our study elucidates the molecular pathways involved in the progression of murine inflammation and supports our efforts on the development of new therapeutics against lung inflammatory diseases and sepsis.
Collapse
|
3
|
Song D, Guo M, Xu S, Song X, Bai B, Li Z, Chen J, An Y, Nie Y, Wu K, Wang S, Zhao Q. HSP90-dependent PUS7 overexpression facilitates the metastasis of colorectal cancer cells by regulating LASP1 abundance. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:170. [PMID: 33990203 PMCID: PMC8120699 DOI: 10.1186/s13046-021-01951-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/15/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND Pseudouridine synthase (PUS) 7 is a member of the PUS family that catalyses pseudouridine formation. It has been shown to be involved in intellectual development and haematological malignancies. Nevertheless, the role and the underlying molecular mechanisms of PUS7 in solid tumours, such as colorectal cancer (CRC), remain unexplored. This study elucidated, for the first time, the role of PUS7 in CRC cell metastasis and the underlying mechanisms. METHODS We conducted immunohistochemistry, qPCR, and western blotting to quantify the expression of PUS7 in CRC tissues as well as cell lines. Besides, diverse in vivo and in vitro functional tests were employed to establish the function of PUS7 in CRC. RNA-seq and proteome profiling analysis were also applied to identify the targets of PUS7. PUS7-interacting proteins were further uncovered using immunoprecipitation and mass spectrometry. RESULTS Overexpression of PUS7 was observed in CRC tissues and was linked to advanced clinical stages and shorter overall survival. PUS7 silencing effectively repressed CRC cell metastasis, while its upregulation promoted metastasis, independently of the PUS7 catalytic activity. LASP1 was identified as a downstream effector of PUS7. Forced LASP1 expression abolished the metastasis suppression triggered by PUS7 silencing. Furthermore, HSP90 was identified as a client protein of PUS7, associated with the increased PUS7 abundance in CRC. NMS-E973, a specific HSP90 inhibitor, also showed higher anti-metastatic activity when combined with PUS7 repression. Importantly, in line with these results, in human CRC tissues, the expression of PUS7 was positively linked to the expression of HSP90 and LASP1, and patients co-expressing HSP90/PUS7/LASP1 showed a worse prognosis. CONCLUSIONS The HSP90-dependent PUS7 upregulation promotes CRC cell metastasis via the regulation of LASP1. Thus, targeting the HSP90/PUS7/LASP1 axis may be a novel approach for the treatment of CRC.
Collapse
Affiliation(s)
- Dan Song
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Ming Guo
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Shuai Xu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Xiaotian Song
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Bin Bai
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Zhengyan Li
- Department of General Surgery, Center for Minimally Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, No. 30 Gao Tan Yan Road, Chongqing, 400038, China
| | - Jie Chen
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Yanxin An
- Department of General Surgery, the First Affiliated Hospital of Xi 'an Medical University, No. 48 Fenghao West Road, Lianhu District, Xi'an, 710077, Shaanxi Province, China
| | - Yongzhan Nie
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Kaichun Wu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Shiqi Wang
- Department of Gastrointestinal Surgery, Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Qingchuan Zhao
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China.
| |
Collapse
|
4
|
Upstream Regulator Analysis of Wooden Breast Myopathy Proteomics in Commercial Broilers and Comparison to Feed Efficiency Proteomics in Pedigree Male Broilers. Foods 2021; 10:foods10010104. [PMID: 33419207 PMCID: PMC7825620 DOI: 10.3390/foods10010104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
In an effort to understand the apparent trade-off between the continual push for growth performance and the recent emergence of muscle pathologies, shotgun proteomics was conducted on breast muscle obtained at ~8 weeks from commercial broilers with wooden breast (WB) myopathy and compared with that in pedigree male (PedM) broilers exhibiting high feed efficiency (FE). Comparison of the two proteomic datasets was facilitated using the overlay function of Ingenuity Pathway Analysis (IPA) (Qiagen, CA, USA). We focused on upstream regulator analysis and disease-function analysis that provides predictions of activation or inhibition of molecules based on (a) expression of downstream target molecules, (b) the IPA scientific citation database. Angiopoeitin 2 (ANGPT2) exhibited the highest predicted activation Z-score of all molecules in the WB dataset, suggesting that the proteomic landscape of WB myopathy would promote vascularization. Overlaying the FE proteomics data on the WB ANGPT2 upstream regulator network presented no commonality of protein expression and no prediction of ANGPT2 activation. Peroxisome proliferator coactivator 1 alpha (PGC1α) was predicted to be inhibited, suggesting that mitochondrial biogenesis was suppressed in WB. PGC1α was predicted to be activated in high FE pedigree male broilers. Whereas RICTOR (rapamycin independent companion of mammalian target of rapamycin) was predicted to be inhibited in both WB and FE datasets, the predictions were based on different downstream molecules. Other transcription factors predicted to be activated in WB muscle included epidermal growth factor (EGFR), X box binding protein (XBP1), transforming growth factor beta 1 (TGFB1) and nuclear factor (erythroid-derived 2)-like 2 (NFE2L2). Inhibitions of aryl hydrocarbon receptor (AHR), AHR nuclear translocator (ARNT) and estrogen related receptor gamma (ESRRG) were also predicted in the WB muscle. These findings indicate that there are considerable differences in upstream regulators based on downstream protein expression observed in WB myopathy and in high FE PedM broilers that may provide additional insight into the etiology of WB myopathy.
Collapse
|
5
|
Campolo A, Frantz MW, de Laat MA, Hartson SD, Furr MO, Lacombe VA. Differential Proteomic Expression of Equine Cardiac and Lamellar Tissue During Insulin-Induced Laminitis. Front Vet Sci 2020; 7:308. [PMID: 32596266 PMCID: PMC7303262 DOI: 10.3389/fvets.2020.00308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/05/2020] [Indexed: 12/22/2022] Open
Abstract
Endocrinopathic laminitis is pathologically similar to the multi-organ dysfunction and peripheral neuropathy found in human patients with metabolic syndrome. Similarly, endocrinopathic laminitis has been shown to partially result from vascular dysfunction. However, despite extensive research, the pathogenesis of this disease is not well elucidated and laminitis remains without an effective treatment. Here, we sought to identify novel proteins and pathways underlying the development of equine endocrinopathic laminitis. Healthy Standardbred horses (n = 4/group) were either given an electrolyte infusion, or a 48-h euglycemic-hyperinsulinemic clamp. Cardiac and lamellar tissues were analyzed by mass spectrometry (FDR = 0.05). All hyperinsulinemic horses developed laminitis despite being previously healthy. We identified 514 and 709 unique proteins in the cardiac and lamellar proteomes, respectively. In the lamellar tissue, we identified 14 proteins for which their abundance was significantly increased and 13 proteins which were significantly decreased in the hyperinsulinemic group as compared to controls. These results were confirmed via real-time reverse-transcriptase PCR. A STRING analysis of protein-protein interactions revealed that these increased proteins were primarily involved in coagulation and complement cascades, platelet activity, and ribosomal function, while decreased proteins were involved in focal adhesions, spliceosomes, and cell-cell matrices. Novel significant differentially expressed proteins associated with hyperinsulinemia-induced laminitis include talin−1, vinculin, cadherin-13, fibrinogen, alpha-2-macroglobulin, and heat shock protein 90. In contrast, no proteins were found to be significantly differentially expressed in the heart of hyperinsulinemic horses compared to controls. Together, these data indicate that while hyperinsulinemia induced, in part, microvascular damage, complement activation, and ribosomal dysfunction in the lamellae, a similar effect was not seen in the heart. In brief, this proteomic investigation of a unique equine model of hyperinsulinemia identified novel proteins and signaling pathways, which may lead to the discovery of molecular biomarkers and/or therapeutic targets for endocrinopathic laminitis.
Collapse
Affiliation(s)
- Allison Campolo
- Department of Biochemistry and Molecular Biology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Matthew W Frantz
- Department of Biochemistry and Molecular Biology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Melody A de Laat
- Department of Biochemistry and Molecular Biology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States.,Biosciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Steven D Hartson
- Department of Biochemistry and Molecular Biology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Martin O Furr
- Department of Biochemistry and Molecular Biology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Véronique A Lacombe
- Department of Biochemistry and Molecular Biology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
6
|
Xu G, Ma X, Chen F, Wu D, Miao J, Fan Y. 17-DMAG disrupted the autophagy flux leading to the apoptosis of acute lymphoblastic leukemia cells by inducing heat shock cognate protein 70. Life Sci 2020; 249:117532. [PMID: 32151689 DOI: 10.1016/j.lfs.2020.117532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/26/2020] [Accepted: 03/05/2020] [Indexed: 11/24/2022]
Abstract
AIMS B-lineage acute lymphoblastic leukemia (B-ALL) is most common in children. We had reported heat shock protein 90 (Hsp90) over-expressed in high risk B-ALL children. 17-DMAG is a water soluble Hsp90 inhibitor, which was proved to be effective for advanced solid tumors and hematological malignancy. However, there is little research on its application in newly diagnosed B-ALL. And the detailed mechanism is seldom discussed. MAIN METHODS Primary blast cells from 24 newly diagnosed B-ALL pediatric patients and two B-ALL cell lines were used in this study. Cell viability was measured by MTS assay. Apoptosis was evaluated by flow cytometry after annexin V-PI double staining. Protein expression was detected by immunoblotting analysis and immunofluorescence imaging. Cyto-ID autophagy detection assay was performed to show the autophagosomes and LysoTracker labeling to show the lysosomes. Gene knockdown was performed by RNA interference, and mRNA expression was measured by RT-qPCR. KEY FINDINGS We showed 17-DMAG induced apoptosis in newly diagnosed B-ALL blasts and cell lines effectively. 17-DMAG induced heat shock cognate protein 70 (Hsc70) expression significantly. High expressed Hsc70 inhibited cathepsin D post-transcriptionally to impede the autophagic flux, which lead to the cell death. SIGNIFICANCE Our work added new information towards understanding the molecular pharmacology of 17-DMAG, and suggested the newly diagnosed B-ALL pediatric patients might be benefited from 17-DMAG. Furthermore, we proved Hsc70 participated in the mechanism of cell death 17-DMAG leading in B-ALL.
Collapse
Affiliation(s)
- Gang Xu
- Department of Pediatric, Shengjing Hospital, China Medical University, Shenyang 110004, PR China
| | - Xiujuan Ma
- Division of Pathology and Laboratory Medicine, Yanda Daopei Hospital, Langfang 065201, PR China
| | - Fang Chen
- Department of Hematology Laboratory, Shengjing Hospital, China Medical University, Shenyang 110004, PR China
| | - Di Wu
- Medical Research Center, Shengjing Hospital, China Medical University, Shenyang 110004, PR China; Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Disease, Liaoning Province, Shenyang 110004, PR China
| | - Jianing Miao
- Medical Research Center, Shengjing Hospital, China Medical University, Shenyang 110004, PR China; Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Disease, Liaoning Province, Shenyang 110004, PR China
| | - Yang Fan
- Medical Research Center, Shengjing Hospital, China Medical University, Shenyang 110004, PR China; Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Disease, Liaoning Province, Shenyang 110004, PR China.
| |
Collapse
|
7
|
Torres NJ, Hartson SD, Rogers J, Gustafson JE. Proteomic and Metabolomic Analyses of a Tea-Tree Oil-Selected Staphylococcus aureus Small Colony Variant. Antibiotics (Basel) 2019; 8:antibiotics8040248. [PMID: 31816949 PMCID: PMC6963719 DOI: 10.3390/antibiotics8040248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 11/16/2022] Open
Abstract
Tea tree oil (TTO) is hypothesized to kill bacteria by indiscriminately denaturing membrane and protein structures. A Staphylococcus aureus small colony variant (SCV) selected with TTO (SH1000-TTORS-1) demonstrated slowed growth, reduced susceptibility to TTO, a diminutive cell size, and a thinned cell wall. Utilizing a proteomics and metabolomics approach, we have now revealed that the TTO-selected SCV mutant demonstrated defective fatty acid synthesis, an alteration in the expression of genes and metabolites associated with central metabolism, the induction of a general stress response, and a reduction of proteins critical for active growth and translation. SH1000-TTORS-1 also demonstrated an increase in amino acid accumulation and a decrease in sugar content. The reduction in glycolytic pathway proteins and sugar levels indicated that carbon flow through glycolysis and gluconeogenesis is reduced in SH1000-TTORS-1. The increase in amino acid accumulation coincides with the reduced production of translation-specific proteins and the induction of proteins associated with the stringent response. The decrease in sugar content likely deactivates catabolite repression and the increased amino acid pool observed in SH1000-TTORS-1 represents a potential energy and carbon source which could maintain carbon flow though the tricarboxylic acid (TCA) cycle. It is noteworthy that processes that contribute to the production of the TTO targets (proteins and membrane) are reduced in SH1000-TTORS-1. This is one of a few studies describing a mechanism that bacteria utilize to withstand the action of an antiseptic which is thought to inactivate multiple cellular targets.
Collapse
|
8
|
Kiyimba F, Belem TS, Nair MN, Rogers J, Hartson SD, Mafi GG, VanOverbeke DL, Ramanathan R. Effects of Oxygen Partial Pressure on 4-Hydroxy-2-Nonenal Induced Oxymyoglobin Oxidation. MEAT AND MUSCLE BIOLOGY 2019. [DOI: 10.22175/mmb2019.07.0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
4-hydroxyl-2-nonenal (HNE) is a lipid oxidation product that can increase oxymyoglobin oxidation. However, limited research has evaluated the role of oxygen partial pressure in HNE-induced metmyoglobin formation. Therefore, the objective of was to compare the effects of atmospheric and high-oxygen partial pressure on HNE-induced oxymyoglobin oxidation in vitro. Oxymyoglobin was incubated with or without HNE at atmospheric (20% O2) or high-oxygen (80% O2) partial pressure. Metmyoglobin formation was measured after 0, 48, and 96 h of incubation at 4°C, and mass spectrometry was utilized to characterize the covalent binding of HNE to myoglobin. High-oxygen condition (80% O2) increased (P < 0.05) HNE-induced oxymyoglobin oxidation compared with the atmospheric partial pressure condition (20% O2). However, HNE was bound to myoglobin at both high-oxygen and atmospheric partial pressure conditions, with no differences (P > 0.05) in the extent of adduct formation. These results suggest that high-oxygen conditions had no effect on extent of HNE-binding, but can increase oxymyoglobin oxidation.
Collapse
Affiliation(s)
- Frank Kiyimba
- Oklahoma State University Department of Animal and Food Sciences
| | - Thiago S. Belem
- Oklahoma State University Department of Animal and Food Sciences
| | | | - Janet Rogers
- Oklahoma State University Department of Biochemistry and Molecular Biology
| | - Steven D. Hartson
- Oklahoma State University Department of Biochemistry and Molecular Biology
| | - Gretchen G. Mafi
- Oklahoma State University Department of Animal and Food Sciences
| | | | | |
Collapse
|
9
|
Kuburich NA, Adhikari N, Hadwiger JA. Multiple phosphorylation sites on the RegA phosphodiesterase regulate Dictyostelium development. Cell Signal 2019; 57:65-75. [PMID: 30790701 DOI: 10.1016/j.cellsig.2019.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/13/2019] [Accepted: 02/17/2019] [Indexed: 11/30/2022]
Abstract
In Dictyostelium, the intracellular cAMP-specific phosphodiesterase RegA is a negative regulator of cAMP-dependent protein kinase (PKA), a key determinant in the timing of developmental morphogenesis and spore formation. To assess the role of protein kinases in the regulation of RegA function, this study identified phosphorylation sites on RegA and characterized the role of these modifications through the analysis of phospho-mimetic and phospho-ablative mutations. Mutations affecting residue T676 of RegA, a presumed target of the atypical MAP kinase Erk2, altered the rate of development and impacted cell distribution in chimeric organisms suggesting that phosphorylation of this residue reduces RegA function and regulates cell localization during multicellular development. Mutations affecting the residue S142 of RegA also impacted the rate developmental morphogenesis but in a manner opposite of changes at T676 suggesting the phosphorylation of the S142 residue increases RegA function. Mutations affecting residue S413 residue altered aggregate sizes and delayed developmental progression suggesting that PKA operates in a negative feedback mechanism to increase RegA function. These results suggest that the phosphorylation of different residues on RegA can lead to increased or decreased RegA function and therefore in turn regulate developmental processes such as aggregate formation, cell distribution, and the kinetics of developmental morphogenesis.
Collapse
Affiliation(s)
- Nick A Kuburich
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, United States
| | - Nirakar Adhikari
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, United States
| | - Jeffrey A Hadwiger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, United States.
| |
Collapse
|
10
|
Voruganti S, Kline JT, Balch MJ, Rogers J, Matts RL, Hartson SD. Proteomic Profiling of Hsp90 Inhibitors. Methods Mol Biol 2018; 1709:139-162. [PMID: 29177657 DOI: 10.1007/978-1-4939-7477-1_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Mass spectrometry assays demonstrate that Hsp90 inhibitors alter the expression of approximately one-quarter of the assayable proteome in mammalian cells. These changes are extraordinarily robust and reproducible, making "proteomics profiling" the gold standard for validating the effects of new Hsp90 inhibitors on cultured cells. Proteomics assays can also suggest novel hypotheses regarding drug mechanisms. To assist investigators in adopting this approach, this Chapter provides detailed protocols for conducting simple proteomics assays of Hsp90 inhibition. The protocols present a robust label-free approach that utilizes pre-fractionation of protein samples by SDS-PAGE, thereby providing reasonably good penetration into the proteome while addressing common issues with sample quality. The actual programming and operation of liquid chromatography-tandem mass spectrometers is not covered, but expectations for achievable performance are discussed, as are alternative approaches, common challenges, and software for data analysis.
Collapse
Affiliation(s)
- Sudhakar Voruganti
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA.,Bristol-Myers Squibb, Pennington, NJ, USA
| | - Jake T Kline
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Maurie J Balch
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Janet Rogers
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Robert L Matts
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Steven D Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
11
|
Nguyen EV, Centenera MM, Moldovan M, Das R, Irani S, Vincent AD, Chan H, Horvath LG, Lynn DJ, Daly RJ, Butler LM. Identification of Novel Response and Predictive Biomarkers to Hsp90 Inhibitors Through Proteomic Profiling of Patient-derived Prostate Tumor Explants. Mol Cell Proteomics 2018; 17:1470-1486. [PMID: 29632047 DOI: 10.1074/mcp.ra118.000633] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/26/2018] [Indexed: 12/16/2022] Open
Abstract
Inhibition of the heat shock protein 90 (Hsp90) chaperone is a promising therapeutic strategy to target expression of the androgen receptor (AR) and other oncogenic drivers in prostate cancer cells. However, identification of clinically-relevant responses and predictive biomarkers is essential to maximize efficacy and treatment personalization. Here, we combined mass spectrometry (MS)-based proteomic analyses with a unique patient-derived explant (PDE) model that retains the complex microenvironment of primary prostate tumors. Independent discovery and validation cohorts of PDEs (n = 16 and 30, respectively) were cultured in the absence or presence of Hsp90 inhibitors AUY922 or 17-AAG. PDEs were analyzed by LC-MS/MS with a hyper-reaction monitoring data independent acquisition (HRM-DIA) workflow, and differentially expressed proteins identified using repeated measure analysis of variance (ANOVA; raw p value <0.01). Using gene set enrichment, we found striking conservation of the most significantly AUY922-altered gene pathways between the discovery and validation cohorts, indicating that our experimental and analysis workflows were robust. Eight proteins were selectively altered across both cohorts by the most potent inhibitor, AUY922, including TIMP1, SERPINA3 and CYP51A (adjusted p < 0.01). The AUY922-mediated decrease in secretory TIMP1 was validated by ELISA of the PDE culture medium. We next exploited the heterogeneous response of PDEs to 17-AAG in order to detect predictive biomarkers of response and identified PCBP3 as a marker with increased expression in PDEs that had no response or increased in proliferation. Also, 17-AAG treatment led to increased expression of DNAJA1 in PDEs that exhibited a cytostatic response, revealing potential drug resistance mechanisms. This selective regulation of DNAJA1 was validated by Western blot analysis. Our study establishes "proof-of-principle" that proteomic profiling of drug-treated PDEs represents an effective and clinically-relevant strategy for identification of biomarkers that associate with certain tumor-specific responses.
Collapse
Affiliation(s)
- Elizabeth V Nguyen
- From the ‡Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,§Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Margaret M Centenera
- ¶Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, South Australia 5005, Australia.,‖South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia
| | - Max Moldovan
- ‖South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia
| | - Rajdeep Das
- ¶Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Swati Irani
- ¶Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, South Australia 5005, Australia.,‖South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia
| | - Andrew D Vincent
- ¶Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Howard Chan
- From the ‡Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,§Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Lisa G Horvath
- **Cancer Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.,‡‡Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Australia.,§§Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales 2050, Australia
| | - David J Lynn
- ‖South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia.,¶¶School of Medicine, Flinders University, Bedford Park, SA 5042, Australia
| | - Roger J Daly
- From the ‡Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; .,§Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Lisa M Butler
- ¶Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, South Australia 5005, Australia.,‖South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia
| |
Collapse
|
12
|
Kuttappan VA, Bottje W, Ramnathan R, Hartson SD, Coon CN, Kong BW, Owens CM, Vazquez-Añon M, Hargis BM. Proteomic analysis reveals changes in carbohydrate and protein metabolism associated with broiler breast myopathy. Poult Sci 2017; 96:2992-2999. [DOI: 10.3382/ps/pex069] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/16/2017] [Indexed: 12/16/2022] Open
|
13
|
Ayalew S, Confer AW, Hartson SD, Canaan PJ, Payton M, Couger B. Proteomic and bioinformatic analyses of putative Mannheimia haemolytica secretome by liquid chromatography and tandem mass spectrometry. Vet Microbiol 2017; 203:73-80. [DOI: 10.1016/j.vetmic.2017.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 01/17/2017] [Accepted: 02/22/2017] [Indexed: 10/20/2022]
|
14
|
Hsp90 inhibition destabilizes Ezh2 protein in alloreactive T cells and reduces graft-versus-host disease in mice. Blood 2017; 129:2737-2748. [PMID: 28246193 DOI: 10.1182/blood-2016-08-735886] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 02/17/2017] [Indexed: 01/02/2023] Open
Abstract
Modulating T-cell alloreactivity has been a main strategy to reduce graft-versus-host disease (GVHD), a life-threatening complication after allogeneic hematopoietic stem-cell transplantation (HSCT). Genetic deletion of T-cell Ezh2, which catalyzes trimethylation of histone H3 at lysine 27 (H3K27me3), inhibits GVHD. Therefore, reducing Ezh2-mediated H3K27me3 is thought to be essential for inhibiting GVHD. We tested this hypothesis in mouse GVHD models. Unexpectedly, administration of the Ezh2 inhibitor GSK126, which specifically decreases H3K27me3 without affecting Ezh2 protein, failed to prevent the disease. In contrast, destabilizing T-cell Ezh2 protein by inhibiting Hsp90 using its specific inhibitor AUY922 reduced GVHD in mice undergoing allogeneic HSCT. In vivo administration of AUY922 selectively induced apoptosis of activated T cells and decreased the production of effector cells producing interferon γ and tumor necrosis factor α, similar to genetic deletion of Ezh2. Introduction of Ezh2 into alloreactive T cells restored their expansion and production of effector cytokines upon AUY922 treatment, suggesting that impaired T-cell alloreactivity by inhibiting Hsp90 is achieved mainly through depleting Ezh2. Mechanistic analysis revealed that the enzymatic SET domain of Ezh2 directly interacted with Hsp90 to prevent Ezh2 from rapid degradation in activated T cells. Importantly, pharmacological inhibition of Hsp90 preserved antileukemia activity of donor T cells, leading to improved overall survival of recipient mice after allogeneic HSCT. Our findings identify the Ezh2-Hsp90 interaction as a previously unrecognized mechanism essential for T-cell responses and an effective target for controlling GVHD.
Collapse
|
15
|
Wu L, Guo X, Hartson SD, Davis MA, He H, Medeiros DM, Wang W, Clarke SL, Lucas EA, Smith BJ, von Lintig J, Lin D. Lack of β, β-carotene-9', 10'-oxygenase 2 leads to hepatic mitochondrial dysfunction and cellular oxidative stress in mice. Mol Nutr Food Res 2017; 61. [PMID: 27991717 DOI: 10.1002/mnfr.201600576] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/27/2016] [Accepted: 12/05/2016] [Indexed: 12/17/2022]
Abstract
SCOPE β,β-Carotene-9',10'-dioxygenase 2 (BCO2) is a carotenoid cleavage enzyme localized to the inner mitochondrial membrane in mammals. This study was aimed to assess the impact of genetic ablation of BCO2 on hepatic oxidative stress through mitochondrial function in mice. METHODS AND RESULTS Liver samples from 6-wk-old male BCO2-/- knockout (KO) and isogenic wild-type (WT) mice were subjected to proteomics and functional activity assays. Compared to the WT, KO mice consumed more food (by 18%) yet displayed significantly lower body weight (by 12%). Mitochondrial proteomic results demonstrated that loss of BCO2 was associated with quantitative changes of the mitochondrial proteome mainly shown by suppressed expression of enzymes and/or proteins involved in fatty acid β-oxidation, the tricarboxylic acid cycle, and the electron transport chain. The mitochondrial basal respiratory rate, proton leak, and electron transport chain complex II capacity were significantly elevated in the livers of KO compared to WT mice. Moreover, elevated reactive oxygen species and increased mitochondrial protein carbonylation were also demonstrated in liver of KO mice. CONCLUSIONS Loss of BCO2 induces mitochondrial hyperactivation, mitochondrial stress, and changes of the mitochondrial proteome, leading to mitochondrial energy insufficiency. BCO2 appears to be critical for proper hepatic mitochondrial function.
Collapse
Affiliation(s)
- Lei Wu
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Xin Guo
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Steven D Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - Mary Abby Davis
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Hui He
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Denis M Medeiros
- Graduate School, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Weiqun Wang
- Department of Food, Nutrition, Dietetics, and Health, Kansas State University, Manhattan, KS, USA
| | - Stephen L Clarke
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Edralin A Lucas
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Johannes von Lintig
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Dingbo Lin
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
16
|
Bloyet LM, Welsch J, Enchery F, Mathieu C, de Breyne S, Horvat B, Grigorov B, Gerlier D. HSP90 Chaperoning in Addition to Phosphoprotein Required for Folding but Not for Supporting Enzymatic Activities of Measles and Nipah Virus L Polymerases. J Virol 2016; 90:6642-6656. [PMID: 27170753 PMCID: PMC4944277 DOI: 10.1128/jvi.00602-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/03/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Nonsegmented negative-stranded RNA viruses, or members of the order Mononegavirales, share a conserved gene order and the use of elaborate transcription and replication machinery made up of at least four molecular partners. These partners have coevolved with the acquisition of the permanent encapsidation of the entire genome by the nucleoprotein (N) and the use of this N-RNA complex as a template for the viral polymerase composed of the phosphoprotein (P) and the large enzymatic protein (L). Not only is P required for polymerase function, but it also stabilizes the L protein through an unknown underlying molecular mechanism. By using NVP-AUY922 and/or 17-dimethylaminoethylamino-17-demethoxygeldanamycin as specific inhibitors of cellular heat shock protein 90 (HSP90), we found that efficient chaperoning of L by HSP90 requires P in the measles, Nipah, and vesicular stomatitis viruses. While the production of P remains unchanged in the presence of HSP90 inhibitors, the production of soluble and functional L requires both P and HSP90 activity. Measles virus P can bind the N terminus of L in the absence of HSP90 activity. Both HSP90 and P are required for the folding of L, as evidenced by a luciferase reporter insert fused within measles virus L. HSP90 acts as a true chaperon; its activity is transient and dispensable for the activity of measles and Nipah virus polymerases of virion origin. That the cellular chaperoning of a viral polymerase into a soluble functional enzyme requires the assistance of another viral protein constitutes a new paradigm that seems to be conserved within the Mononegavirales order. IMPORTANCE Viruses are obligate intracellular parasites that require a cellular environment for their replication. Some viruses particularly depend on the cellular chaperoning apparatus. We report here that for measles virus, successful chaperoning of the viral L polymerase mediated by heat shock protein 90 (HSP90) requires the presence of the viral phosphoprotein (P). Indeed, while P protein binds to the N terminus of L independently of HSP90 activity, both HSP90 and P are required to produce stable, soluble, folded, and functional L proteins. Once formed, the mature P+L complex no longer requires HSP90 to exert its polymerase functions. Such a new paradigm for the maturation of a viral polymerase appears to be conserved in several members of the Mononegavirales order, including the Nipah and vesicular stomatitis viruses.
Collapse
Affiliation(s)
- Louis-Marie Bloyet
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- CNRS, UMR5308, Lyon, France
- Université Claude Bernard Lyon 1; Centre International de Recherche en Infectiologie, Lyon, France
- ENS Lyon, Lyon, France
| | - Jérémy Welsch
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- CNRS, UMR5308, Lyon, France
- Université Claude Bernard Lyon 1; Centre International de Recherche en Infectiologie, Lyon, France
- ENS Lyon, Lyon, France
- Laboratoire d'Excellence Ecofect, Lyon, France
| | - François Enchery
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- CNRS, UMR5308, Lyon, France
- Université Claude Bernard Lyon 1; Centre International de Recherche en Infectiologie, Lyon, France
- ENS Lyon, Lyon, France
| | - Cyrille Mathieu
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- CNRS, UMR5308, Lyon, France
- Université Claude Bernard Lyon 1; Centre International de Recherche en Infectiologie, Lyon, France
- ENS Lyon, Lyon, France
- Laboratoire d'Excellence Ecofect, Lyon, France
| | - Sylvain de Breyne
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- CNRS, UMR5308, Lyon, France
- Université Claude Bernard Lyon 1; Centre International de Recherche en Infectiologie, Lyon, France
- ENS Lyon, Lyon, France
| | - Branka Horvat
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- CNRS, UMR5308, Lyon, France
- Université Claude Bernard Lyon 1; Centre International de Recherche en Infectiologie, Lyon, France
- ENS Lyon, Lyon, France
- Laboratoire d'Excellence Ecofect, Lyon, France
| | - Boyan Grigorov
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- CNRS, UMR5308, Lyon, France
- Université Claude Bernard Lyon 1; Centre International de Recherche en Infectiologie, Lyon, France
- ENS Lyon, Lyon, France
- Cancer Research Center of Lyon (CRCL), INSERM, U1052, Université Claude Bernard Lyon 1, Lyon, France
| | - Denis Gerlier
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- CNRS, UMR5308, Lyon, France
- Université Claude Bernard Lyon 1; Centre International de Recherche en Infectiologie, Lyon, France
- ENS Lyon, Lyon, France
- Laboratoire d'Excellence Ecofect, Lyon, France
| |
Collapse
|
17
|
Tiong HK, Hartson SD, Muriana PM. Comparison of Surface Proteomes of Adherence Variants of Listeria Monocytogenes Using LC-MS/MS for Identification of Potential Surface Adhesins. Pathogens 2016; 5:E40. [PMID: 27196934 PMCID: PMC4931391 DOI: 10.3390/pathogens5020040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/19/2016] [Accepted: 05/11/2016] [Indexed: 12/19/2022] Open
Abstract
The ability of Listeria monocytogenes to adhere and form biofilms leads to persistence in food processing plants and food-associated listeriosis. The role of specific surface proteins as adhesins to attach Listeria cells to various contact surfaces has not been well characterized to date. In prior research comparing different methods for surface protein extraction, the Ghost urea method revealed cleaner protein content as verified by the least cytoplasmic protein detected in surface extracts using LC-MS/MS. The same technique was utilized to extract and detect surface proteins among two surface-adherent phenotypic strains of L. monocytogenes (i.e., strongly and weakly adherent). Of 640 total proteins detected among planktonic and sessile cells, 21 protein members were exclusively detected in the sessile cells. Relative LC-MS/MS detection and quantification of surface-extracted proteins from the planktonic weakly adherent (CW35) and strongly adherent strains (99-38) were examined by protein mass normalization of proteins. We found that L. monocytogenes 99-38 exhibited a total of 22 surface proteins that were over-expressed: 11 proteins were detected in surface extracts of both sessile and planktonic 99-38 that were ≥5-fold over-expressed while another 11 proteins were detected only in planktonic 99-38 cells that were ≥10-fold over-expressed. Our results suggest that these protein members are worthy of further investigation for their involvement as surface adhesins.
Collapse
Affiliation(s)
- Hung King Tiong
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA.
- Robert M. Kerr Food & Agricultural Products Centre, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Steven D Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Peter M Muriana
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA.
- Robert M. Kerr Food & Agricultural Products Centre, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
18
|
Hsp90 Co-chaperones as Drug Targets in Cancer: Current Perspectives. TOPICS IN MEDICINAL CHEMISTRY 2016. [DOI: 10.1007/7355_2015_99] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Su YH, Tang WC, Cheng YW, Sia P, Huang CC, Lee YC, Jiang HY, Wu MH, Lai IL, Lee JW, Lee KH. Targeting of multiple oncogenic signaling pathways by Hsp90 inhibitor alone or in combination with berberine for treatment of colorectal cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2261-72. [PMID: 25982393 DOI: 10.1016/j.bbamcr.2015.05.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 04/24/2015] [Accepted: 05/08/2015] [Indexed: 12/24/2022]
Abstract
There is a wide range of drugs and combinations under investigation and/or approved over the last decade to treat colorectal cancer (CRC), but the 5-year survival rate remains poor at stages II-IV. Therefore, new, more-efficient drugs still need to be developed that will hopefully be included in first-line therapy or overcome resistance when it appears, as part of second- or third-line treatments in the near future. In this study, we revealed that heat shock protein 90 (Hsp90) inhibitors have high therapeutic potential in CRC according to combinative analysis of NCBI's Gene Expression Omnibus (GEO) repository and chemical genomic database of Connectivity Map (CMap). We found that second generation Hsp90 inhibitor, NVP-AUY922, significantly downregulated the activities of a broad spectrum of kinases involved in regulating cell growth arrest and death of NVP-AUY922-sensitive CRC cells. To overcome NVP-AUY922-induced upregulation of survivin expression which causes drug insensitivity, we found that combining berberine (BBR), a herbal medicine with potency in inhibiting survivin expression, with NVP-AUY922 resulted in synergistic antiproliferative effects for NVP-AUY922-sensitive and -insensitive CRC cells. Furthermore, we demonstrated that treatment of NVP-AUY922-insensitive CRC cells with the combination of NVP-AUY922 and BBR caused cell growth arrest through inhibiting CDK4 expression and induction of microRNA-296-5p (miR-296-5p)-mediated suppression of Pin1-β-catenin-cyclin D1 signaling pathway. Finally, we found that the expression level of Hsp90 in tumor tissues of CRC was positively correlated with CDK4 and Pin1 expression levels. Taken together, these results indicate that combination of NVP-AUY922 and BBR therapy can inhibit multiple oncogenic signaling pathways of CRC.
Collapse
Affiliation(s)
- Yen-Hao Su
- Department of Surgery, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Wan-Chun Tang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ya-Wen Cheng
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Peik Sia
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chi-Chen Huang
- The PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chao Lee
- The PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Yi Jiang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ming-Heng Wu
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - I-Lu Lai
- Division of Medicinal Chemistry, College of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Jun-Wei Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Kuen-Haur Lee
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
20
|
Sheikh MO, Xu Y, van der Wel H, Walden P, Hartson SD, West CM. Glycosylation of Skp1 promotes formation of Skp1-cullin-1-F-box protein complexes in dictyostelium. Mol Cell Proteomics 2014; 14:66-80. [PMID: 25341530 DOI: 10.1074/mcp.m114.044560] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
O(2) sensing in diverse protozoa depends on the prolyl 4 hydroxylation of Skp1 and modification of the resulting hydroxyproline with a series of five sugars. In yeast, plants, and animals, Skp1 is associated with F-box proteins. The Skp1-F-box protein heterodimer can, for many F-box proteins, dock onto cullin-1 en route to assembly of the Skp1-cullin-1-F-box protein-Rbx1 subcomplex of E3(SCF)Ub ligases. E3(SCF)Ub ligases conjugate Lys48-polyubiquitin chains onto targets bound to the substrate receptor domains of F-box proteins, preparing them for recognition by the 26S proteasome. In the social amoeba Dictyostelium, we found that O(2) availability was rate-limiting for the hydroxylation of newly synthesized Skp1. To investigate the effect of reduced hydroxylation, we analyzed knockout mutants of the Skp1 prolyl hydroxylase and each of the Skp1 glycosyltransferases. Proteomic analysis of co-immunoprecipitates showed that wild-type cells able to fully glycosylate Skp1 had a greater abundance of an SCF complex containing the cullin-1 homolog CulE and FbxD, a newly described WD40-type F-box protein, than the complexes that predominate in cells defective in Skp1 hydroxylation or glycosylation. Similarly, the previously described FbxA-Skp1CulA complex was also more abundant in glycosylation-competent cells. The CulE interactome also included higher levels of proteasomal regulatory particles when Skp1 was glycosylated, suggesting increased activity consistent with greater association with F-box proteins. Finally, the interactome of FLAG-FbxD was modified when it harbored an F-box mutation that compromised Skp1 binding, consistent with an effect on the abundance of potential substrate proteins. We propose that O(2)-dependent posttranslational glycosylation of Skp1 promotes association with F-box proteins and their engagement in functional E3(SCF)Ub ligases that regulate O(2)-dependent developmental progression.
Collapse
Affiliation(s)
- M Osman Sheikh
- From the ‡Department of Biochemistry & Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Yuechi Xu
- From the ‡Department of Biochemistry & Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Hanke van der Wel
- From the ‡Department of Biochemistry & Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Paul Walden
- From the ‡Department of Biochemistry & Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Steven D Hartson
- §Department of Biochemistry & Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Christopher M West
- From the ‡Department of Biochemistry & Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
21
|
Arhodomonas sp. strain Seminole and its genetic potential to degrade aromatic compounds under high-salinity conditions. Appl Environ Microbiol 2014; 80:6664-76. [PMID: 25149520 DOI: 10.1128/aem.01509-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Arhodomonas sp. strain Seminole was isolated from a crude oil-impacted brine soil and shown to degrade benzene, toluene, phenol, 4-hydroxybenzoic acid (4-HBA), protocatechuic acid (PCA), and phenylacetic acid (PAA) as the sole sources of carbon at high salinity. Seminole is a member of the genus Arhodomonas in the class Gammaproteobacteria, sharing 96% 16S rRNA gene sequence similarity with Arhodomonas aquaeolei HA-1. Analysis of the genome predicted a number of catabolic genes for the metabolism of benzene, toluene, 4-HBA, and PAA. The predicted pathways were corroborated by identification of enzymes present in the cytosolic proteomes of cells grown on aromatic compounds using liquid chromatography-mass spectrometry. Genome analysis predicted a cluster of 19 genes necessary for the breakdown of benzene or toluene to acetyl coenzyme A (acetyl-CoA) and pyruvate. Of these, 12 enzymes were identified in the proteome of toluene-grown cells compared to lactate-grown cells. Genomic analysis predicted 11 genes required for 4-HBA degradation to form the tricarboxylic acid (TCA) cycle intermediates. Of these, proteomic analysis of 4-HBA-grown cells identified 6 key enzymes involved in the 4-HBA degradation pathway. Similarly, 15 genes needed for the degradation of PAA to the TCA cycle intermediates were predicted. Of these, 9 enzymes of the PAA degradation pathway were identified only in PAA-grown cells and not in lactate-grown cells. Overall, we were able to reconstruct catabolic steps for the breakdown of a variety of aromatic compounds in an extreme halophile, strain Seminole. Such knowledge is important for understanding the role of Arhodomonas spp. in the natural attenuation of hydrocarbon-impacted hypersaline environments.
Collapse
|