1
|
Jiang B, Zhang Y, Li G, Quan Y, Shu J, Feng H, He Y. Research Progress on Immune Evasion of Mycoplasma hyopneumoniae. Microorganisms 2024; 12:1439. [PMID: 39065207 PMCID: PMC11279058 DOI: 10.3390/microorganisms12071439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/07/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
As the main pathogen associated with enzootic pneumonia (EP), Mycoplasma hyopneumoniae (Mhp) is globally prevalent and inflicts huge financial losses on the worldwide swine industry each year. However, the pathogenicity of Mhp has not been fully explained to date. Mhp invasion usually leads to long-term chronic infection and persistent lung colonization, suggesting that Mhp has developed effective immune evasion strategies. In this review, we offer more detailed information than was previously available about its immune evasion mechanisms through a systematic summary of the extant findings. Genetic mutation and post-translational protein processing confer Mhp the ability to alter its surface antigens. With the help of adhesins, Mhp can achieve cell invasion. And Mhp can modulate the host immune system through the induction of inflammation, incomplete autophagy, apoptosis, and the suppression of immune cell or immune effector activity. Furthermore, we offer the latest views on how we may treat Mhp infections and develop novel vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yulong He
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (B.J.); (Y.Z.); (G.L.); (Y.Q.); (J.S.); (H.F.)
| |
Collapse
|
2
|
Souza dos Santos P, Paes JA, Del Prá Netto Machado L, Paludo GP, Zaha A, Ferreira HB. Differential domains and endoproteolytic processing in dominant surface proteins of unknown function from Mycoplasma hyopneumoniae and Mycoplasma flocculare. Heliyon 2023; 9:e16141. [PMID: 37251846 PMCID: PMC10213202 DOI: 10.1016/j.heliyon.2023.e16141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/31/2023] Open
Abstract
Mycoplasma hyopneumoniae causes porcine enzootic pneumonia (PEP), a chronic respiratory disease that leads to severe economic losses in the pig industry. Swine infection and PEP development depend on the adhesion of the pathogen to the swine respiratory tract and the host immune response, but these and other disease determinants are not fully understood. For instance, M. hyopneumoniae has a large repertoire of proteins of unknown function (PUFs) and some of them are abundant in the cell surface, where they likely mediate so far unknown pathogen-host interactions. Moreover, these surface PUFs may undergo endoproteolytic processing to generate larger repertoires of proteoforms to further complicate this scenario. Here, we investigated the five PUFs more represented on the surface of M. hyopneumoniae pathogenic strain 7448 in comparison with their orthologs from the nonpathogenic M. hyopneumoniae J strain and the closely related commensal species Mycoplasma flocculare. Comparative in silico analyses of deduced amino acid sequences and proteomic data identified differential domains, disordered regions and repeated motifs. We also provide evidence of differential endoproteolytic processing and antigenicity. Phylogenetic analyses were also performed with ortholog sequences, showing higher conservation of three of the assessed PUFs among Mycoplasma species related to respiratory diseases. Overall, our data point out to M. hyopneumoniae surface-dominant PUFs likely associated with pathogenicity.
Collapse
Affiliation(s)
- Priscila Souza dos Santos
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Jéssica Andrade Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Lais Del Prá Netto Machado
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Gabriela Prado Paludo
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Arnaldo Zaha
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil
| |
Collapse
|
3
|
Development of a Multi-Epitope Vaccine for Mycoplasma hyopneumoniae and Evaluation of Its Immune Responses in Mice and Piglets. Int J Mol Sci 2022; 23:ijms23147899. [PMID: 35887246 PMCID: PMC9318870 DOI: 10.3390/ijms23147899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 11/17/2022] Open
Abstract
Mycoplasma hyopneumoniae (Mhp), the primary pathogen causing Mycoplasma pneumonia of swine (MPS), brings massive economic losses worldwide. Genomic variability and post-translational protein modification can enhance the immune evasion of Mhp, which makes MPS prone to recurrent outbreaks on farms, even with vaccination or other treatments. The reverse vaccinology pipeline has been developed as an attractive potential method for vaccine development due to its high efficiency and applicability. In this study, a multi-epitope vaccine for Mhp was developed, and its immune responses were evaluated in mice and piglets. Genomic core proteins of Mhp were retrieved through pan-genome analysis, and four immunodominant antigens were screened by host homologous protein removal, membrane protein screening, and virulence factor identification. One immunodominant antigen, AAV27984.1 (membrane nuclease), was expressed by E. coli and named rMhp597. For epitope prioritization, 35 B-cell-derived epitopes were identified from the four immunodominant antigens, and 10 MHC-I and 6 MHC-II binding epitopes were further identified. The MHC-I/II binding epitopes were merged and combined to produce recombinant proteins MhpMEV and MhpMEVC6His, which were used for animal immunization and structural analysis, respectively. Immunization of mice and piglets demonstrated that MhpMEV could induce humoral and cellular immune responses. The mouse serum antibodies could detect all 11 synthetic epitopes, and the piglet antiserum suppressed the nuclease activity of rMhp597. Moreover, piglet serum antibodies could also detect cultured Mhp strain 168. In summary, this study provides immunoassay results for a multi-epitope vaccine derived from the reverse vaccinology pipeline, and offers an alternative vaccine for MPS.
Collapse
|
4
|
Abstract
Mycoplasma hyopneumoniae: is the etiological agent of porcine enzootic pneumonia (EP), a disease that impacts the swine industry worldwide. Pathogen-induced damage, as well as the elicited host-response, contribute to disease. Here, we provide an overview of EP epidemiology, control and prevention, and a more in-depth review of M. hyopneumoniae pathogenicity determinants, highlighting some molecular mechanisms of pathogen-host interactions relevant for pathogenesis. Based on recent functional, immunological, and comparative “omics” results, we discuss the roles of many known or putative M. hyopneumoniae virulence factors, along with host molecules involved in EP. Moreover, the known molecular bases of pathogenicity mechanisms, including M. hyopneumoniae adhesion to host respiratory epithelium, protein secretion, cell damage, host microbicidal response and its modulation, and maintenance of M. hyopneumoniae homeostasis during infection are described. Recent findings regarding M. hyopneumoniae pathogenicity determinants also contribute to the development of novel diagnostic tests, vaccines, and treatments for EP.
Collapse
Affiliation(s)
- Fernanda M A Leal Zimmer
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil
| | - Jéssica Andrade Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil
| | - Arnaldo Zaha
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS , Porto Alegre, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS , Porto Alegre, Brazil
| |
Collapse
|
5
|
Clampitt JM, Madsen ML, Minion FC. Construction of Mycoplasma hyopneumoniae P97 Null Mutants. Front Microbiol 2021; 12:518791. [PMID: 33967967 PMCID: PMC8101707 DOI: 10.3389/fmicb.2021.518791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/01/2021] [Indexed: 11/25/2022] Open
Abstract
Mycoplasma hyopneumoniae is the causative agent of enzootic pneumonia, a world-wide problem in the pig industry. This disease is characterized by a dry, non-productive cough, labored breathing, and pneumonia. Despite years of research, vaccines are marginally effective, and none fully protect pigs in a production environment. A better understanding of the host-pathogen interactions of the M. hyopneumoniae-pig disease, which are complex and involve both host and pathogen components, is required. Among the surface proteins involved in virulence are members of two gene families called P97 and P102. These proteins are the adhesins directing attachment of the organism to the swine respiratory epithelium. P97 is the major ciliary binding adhesin and has been studied extensively. Monoclonal antibodies that block its binding to swine cilia have contributed extensively to its characterization. In this study we use recombination to construct null mutants of P97 in M. hyopneumoniae and characterize the resulting mutants in terms of loss of protein by immunoblot using monoclonal antibodies, ability to bind purified swine cilia, and adherence to PK15 cells. Various approaches to recombination with this fastidious mycoplasma were tested including intact plasmid DNA, single-stranded DNA, and linear DNA with and without a heterologous RecA protein. Our results indicate that recombination can be used to generate site-specific mutants in M. hyopneumoniae. P97 mutants are deficient in cilia binding and PK15 cell adherence, and lack the characteristic banding pattern seen in immunoblots developed with the anti-P97 monoclonal antibody.
Collapse
Affiliation(s)
- Jeannett M Clampitt
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Melissa L Madsen
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - F Chris Minion
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
6
|
Protein cleavage influences surface protein presentation in Mycoplasma pneumoniae. Sci Rep 2021; 11:6743. [PMID: 33762641 PMCID: PMC7990945 DOI: 10.1038/s41598-021-86217-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/23/2021] [Indexed: 01/31/2023] Open
Abstract
Mycoplasma pneumoniae is a significant cause of pneumonia and post infection sequelae affecting organ sites distant to the respiratory tract are common. It is also a model organism where extensive 'omics' studies have been conducted to gain insight into how minimal genome self-replicating organisms function. An N-terminome study undertaken here identified 4898 unique N-terminal peptides that mapped to 391 (56%) predicted M. pneumoniae proteins. True N-terminal sequences beginning with the initiating methionine (iMet) residue from the predicted Open Reading Frame (ORF) were identified for 163 proteins. Notably, almost half (317; 46%) of the ORFS derived from M. pneumoniae strain M129 are post-translationally modified, presumably by proteolytic processing, because dimethyl labelled neo-N-termini were characterised that mapped beyond the predicted N-terminus. An analysis of the N-terminome describes endoproteolytic processing events predominately targeting tryptic-like sites, though cleavages at negatively charged residues in P1' (D and E) with lysine or serine/alanine in P2' and P3' positions also occurred frequently. Surfaceome studies identified 160 proteins (23% of the proteome) to be exposed on the extracellular surface of M. pneumoniae. The two orthogonal methodologies used to characterise the surfaceome each identified the same 116 proteins, a 72% (116/160) overlap. Apart from lipoproteins, transporters, and adhesins, 93/160 (58%) of the surface proteins lack signal peptides and have well characterised, canonical functions in the cell. Of the 160 surface proteins identified, 134 were also targets of endo-proteolytic processing. These processing events are likely to have profound implications for how the host immune system recognises and responds to M. pneumoniae.
Collapse
|
7
|
Yiwen C, Yueyue W, Lianmei Q, Cuiming Z, Xiaoxing Y. Infection strategies of mycoplasmas: Unraveling the panoply of virulence factors. Virulence 2021; 12:788-817. [PMID: 33704021 PMCID: PMC7954426 DOI: 10.1080/21505594.2021.1889813] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mycoplasmas, the smallest bacteria lacking a cell wall, can cause various diseases in both humans and animals. Mycoplasmas harbor a variety of virulence factors that enable them to overcome numerous barriers of entry into the host; using accessory proteins, mycoplasma adhesins can bind to the receptors or extracellular matrix of the host cell. Although the host immune system can eradicate the invading mycoplasma in most cases, a few sagacious mycoplasmas employ a series of invasion and immune escape strategies to ensure their continued survival within their hosts. For instance, capsular polysaccharides are crucial for anti-phagocytosis and immunomodulation. Invasive enzymes degrade reactive oxygen species, neutrophil extracellular traps, and immunoglobulins. Biofilm formation is important for establishing a persistent infection. During proliferation, successfully surviving mycoplasmas generate numerous metabolites, including hydrogen peroxide, ammonia and hydrogen sulfide; or secrete various exotoxins, such as community-acquired respiratory distress syndrome toxin, and hemolysins; and express various pathogenic enzymes, all of which have potent toxic effects on host cells. Furthermore, some inherent components of mycoplasmas, such as lipids, membrane lipoproteins, and even mycoplasma-generated superantigens, can exert a significant pathogenic impact on the host cells or the immune system. In this review, we describe the proposed virulence factors in the toolkit of notorious mycoplasmas to better understand the pathogenic features of these bacteria, along with their pathogenic mechanisms.
Collapse
Affiliation(s)
- Chen Yiwen
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Wu Yueyue
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Qin Lianmei
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Zhu Cuiming
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - You Xiaoxing
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| |
Collapse
|
8
|
Li G, Obeng E, Shu J, Shu J, Chen J, Wu Y, He Y. Genomic Variability and Post-translational Protein Processing Enhance the Immune Evasion of Mycoplasma hyopneumoniae and Its Interaction With the Porcine Immune System. Front Immunol 2020; 11:510943. [PMID: 33117335 PMCID: PMC7575705 DOI: 10.3389/fimmu.2020.510943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 08/27/2020] [Indexed: 11/23/2022] Open
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae, Mhp) is a geographically widespread and economically devastating pathogen that colonizes ciliated epithelium; the infection of Mhp can damnify the mucociliary functions as well as leading to Mycoplasma pneumonia of swine (MPS). MPS is a chronic respiratory infectious disease with high infectivity, and the mortality can be increased by secondary infections as the host immunity gets down-regulated during Mhp infection. The host immune responses are regarded as the main driving force for the disease development, while MPS is prone to attack repeatedly in farms even with vaccination or other treatments. As one of the smallest microorganisms with limited genome scale and metabolic pathways, Mhp can use several mechanisms to achieve immune evasion effect and derive enough nutrients from its host, indicating that there is a strong interaction between Mhp and porcine organism. In this review, we summarized the immune evasion mechanisms from genomic variability and post-translational protein processing. Besides, Mhp can induce the immune cells apoptosis by reactive oxygen species production, excessive nitric oxide (NO) release and caspase activation, and stimulate the release of cytokines to regulate inflammation. This article seeks to provide some new points to reveal the complicated interaction between the pathogen and host immune system with Mhp as a typical example, further providing some new strategies for the vaccine development against Mhp infection.
Collapse
Affiliation(s)
- Gaojian Li
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Enoch Obeng
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jinqi Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jianhong Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang Hom-Sun Biosciences Co., Ltd., Shaoxing, China
| | - Jian Chen
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuehong Wu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yulong He
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
9
|
Widjaja M, Berry IJ, Jarocki VM, Padula MP, Dumke R, Djordjevic SP. Cell surface processing of the P1 adhesin of Mycoplasma pneumoniae identifies novel domains that bind host molecules. Sci Rep 2020; 10:6384. [PMID: 32286369 PMCID: PMC7156367 DOI: 10.1038/s41598-020-63136-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Abstract
Mycoplasma pneumoniae is a genome reduced pathogen and causative agent of community acquired pneumonia. The major cellular adhesin, P1, localises to the tip of the attachment organelle forming a complex with P40 and P90, two cleavage fragments derived by processing Mpn142, and other molecules with adhesive and mobility functions. LC-MS/MS analysis of M. pneumoniae M129 proteins derived from whole cell lysates and eluents from affinity matrices coupled with chemically diverse host molecules identified 22 proteoforms of P1. Terminomics was used to characterise 17 cleavage events many of which were independently verified by the identification of semi-tryptic peptides in our proteome studies and by immunoblotting. One cleavage event released 1597TSAAKPGAPRPPVPPKPGAPKPPVQPPKKPA1627 from the C-terminus of P1 and this peptide was shown to bind to a range of host molecules. A smaller synthetic peptide comprising the C-terminal 15 amino acids, 1613PGAPKPPVQPPKKPA1627, selectively bound cytoskeletal intermediate filament proteins cytokeratin 7, cytokeratin 8, cytokeratin 18, and vimentin from a native A549 cell lysate. Collectively, our data suggests that ectodomain shedding occurs on the surface of M. pneumoniae where it may alter the functional diversity of P1, Mpn142 and other surface proteins such as elongation factor Tu via a mechanism similar to that described in Mycoplasma hyopneumoniae.
Collapse
Affiliation(s)
- Michael Widjaja
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Iain James Berry
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Veronica Maria Jarocki
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Matthew Paul Padula
- Proteomics Core Facility and School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Roger Dumke
- Technische Universität Dresden, Medizinische Fakultät Carl Gustav Carus, Institut für Medizinische Mikrobiologie und Hygiene, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Steven Philip Djordjevic
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia. .,Proteomics Core Facility and School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.
| |
Collapse
|
10
|
Machado LDPN, Paes JA, Souza Dos Santos P, Ferreira HB. Evidences of differential endoproteolytic processing on the surfaces of Mycoplasma hyopneumoniae and Mycoplasma flocculare. Microb Pathog 2020; 140:103958. [PMID: 31899326 DOI: 10.1016/j.micpath.2019.103958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/05/2019] [Accepted: 12/28/2019] [Indexed: 01/22/2023]
Abstract
Mycoplasma hyopneumoniae and Mycoplasma flocculare are genetic similar bacteria that colonize the swine respiratory tract. However, while M. hyopneumoniae is a pathogen that causes porcine enzootic pneumonia, M. flocculare is a commensal. Adhesion to the respiratory epithelium is mediated by surface-displayed adhesins, and at least some M. hyopneumoniae adhesins are post-translational proteolytically processed, producing differential proteoforms with differential adhesion properties. Based on LC-MS/MS data, we assessed differential proteolytic processing among orthologs of the five most abundant adhesins (p97 and p216) or adhesion-related surface proteins (DnaK, p46, and ABC transporter xylose-binding lipoprotein) from M. hyopneumoniae strains 7448 (pathogenic) and J (non-pathogenic), and M. flocculare. Both surface and cytoplasmic non-tryptic cleavage events were mapped and compared, and antigenicity predictions were performed for the resulting proteoforms. It was demonstrated that not only bona fide adhesins, but also adhesion-related proteins undergo proteolytical processing. Moreover, most of the detected cleavage events were differential among M. hyopneumoniae strains and M. flocculare, and also between cell surface and cytoplasm. Overall, our data provided evidences of a complex scenario of multiple antigenic proteoforms of adhesion-related proteins, that is differential among M. hyopneumoniae strains and M. flocculare, altering the surface architecture and likely contributing to virulence and pathogenicity.
Collapse
Affiliation(s)
- Lais Del Prá Netto Machado
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jéssica Andrade Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil
| | - Priscila Souza Dos Santos
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
11
|
Niedermaier S, Huesgen PF. Positional proteomics for identification of secreted proteoforms released by site-specific processing of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:140138. [DOI: 10.1016/j.bbapap.2018.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/31/2018] [Accepted: 09/13/2018] [Indexed: 02/06/2023]
|
12
|
Proteases as Secreted Exoproteins in Mycoplasmas from Ruminant Lungs and Their Impact on Surface-Exposed Proteins. Appl Environ Microbiol 2019; 85:AEM.01439-19. [PMID: 31540994 DOI: 10.1128/aem.01439-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/10/2019] [Indexed: 12/29/2022] Open
Abstract
Many mycoplasma species are isolated from the ruminant lungs as either saprophytes or true pathogens. These wall-less bacteria possess a minimal genome and reduced metabolic capabilities. Accordingly, they rely heavily on their hosts for the supply of essential metabolites and, notably, peptides. Seven of 13 ruminant lung-associated Mycoplasma (sub)species were shown to possess caseinolytic activity when grown in rich media and assessed with a quantitative fluorescence test. For some species, this activity was detected in spent medium, an indication that proteases were secreted outside the mycoplasma cells. To identify these proteases, we incubated concentrated washed cell pellets in a defined medium and analyzed the supernatants by tandem mass spectrometry. Secreted-protease activity was detected mostly in the species belonging to the Mycoplasma mycoides cluster (MMC) and, to a lesser extent, in Mycoplasma bovirhinis Analyzing a Mycoplasma mycoides subsp. capri strain, chosen as a model, we identified 35 expressed proteases among 55 predicted coding genes, of which 5 were preferentially found in the supernatant. Serine protease S41, acquired by horizontal gene transfer, was responsible for the caseinolytic activity, as demonstrated by zymography and mutant analysis. In an M. capricolum mutant, inactivation of the S41 protease resulted in marked modification of the expression or secretion of 17 predicted surface-exposed proteins. This is an indication that the S41 protease could have a role in posttranslational cleavage of surface-exposed proteins and ectodomain shedding, whose physiological impacts still need to be explored.IMPORTANCE Few studies pertaining to proteases in ruminant mycoplasmas have been reported. Here, we focus on proteases that are secreted outside the mycoplasma cell using a mass spectrometry approach. The most striking result is the identification, within the Mycoplasma mycoides cluster, of a serine protease that is exclusively detected outside the mycoplasma cells and is responsible for casein digestion. This protease may also be involved in the posttranslational processing of surface proteins, as suggested by analysis of mutants showing a marked reduction in the secretion of extracellular proteins. By analogy, this finding may help increase understanding of the mechanisms underlying this ectodomain shedding in other mycoplasma species. The gene encoding this protease is likely to have been acquired via horizontal gene transfer from Gram-positive bacteria and sortase-associated surface proteases. Whether this protease and the associated ectodomain shedding are related to virulence has yet to be ascertained.
Collapse
|
13
|
Betlach AM, Maes D, Garza-Moreno L, Tamiozzo P, Sibila M, Haesebrouck F, Segalés J, Pieters M. Mycoplasma hyopneumoniae variability: Current trends and proposed terminology for genomic classification. Transbound Emerg Dis 2019; 66:1840-1854. [PMID: 31099490 DOI: 10.1111/tbed.13233] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/04/2019] [Accepted: 05/13/2019] [Indexed: 01/02/2023]
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae) is the aetiologic agent of enzootic pneumonia in swine, a prevalent chronic respiratory disease worldwide. Mycoplasma hyopneumoniae is a small, self-replicating microorganism that possesses several characteristics allowing for limited biosynthetic abilities, resulting in the fastidious, host-specific growth and unique pathogenic properties of this microorganism. Variation across several isolates of M. hyopneumoniae has been described at antigenic, proteomic, transcriptomic, pathogenic and genomic levels. The microorganism possesses a minimal number of genes that regulate the transcription process. Post-translational modifications (PTM) occur frequently in a wide range of functional proteins. The PTM by which M. hyopneumoniae regulates its surface topography could play key roles in cell adhesion, evasion and/or modulation of the host immune system. The clinical outcome of M. hyopneumoniae infections is determined by different factors, such as housing conditions, management practices, co-infections and also by virulence differences among M. hyopneumoniae isolates. Factors contributing to adherence and colonization as well as the capacity to modulate inflammatory and immune responses might be crucial. Different components of the cell membrane (i.e. proteins, glycoproteins and lipoproteins) may serve as adhesins and/or be toxic for the respiratory tract cells. Mechanisms leading to virulence are complex and more research is needed to identify markers for virulence. The utilization of typing methods and complete or partial-gene sequencing for M. hyopneumoniae characterization has increased in diagnostic laboratories as control and elimination strategies for this microorganism are attempted worldwide. A commonly employed molecular typing method for M. hyopneumoniae is Multiple-Locus Variable number tandem repeat Analysis (MLVA). The agreement of a shared terminology and classification for the various techniques, specifically MLVA, has not been described, which makes inferences across the literature unsuitable. Therefore, molecular trends for M. hyopneumoniae have been outlined and a common terminology and classification based on Variable Number Tandem Repeats (VNTR) types has been proposed.
Collapse
Affiliation(s)
- Alyssa M Betlach
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota.,Swine Vet Center, St. Peter, Minnesota
| | - Dominiek Maes
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Unit Porcine Health Management, Ghent University, Merelbeke, Belgium
| | - Laura Garza-Moreno
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autonoma de Barcelona, Bellaterra, Spain
| | - Pablo Tamiozzo
- Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Marina Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autonoma de Barcelona, Bellaterra, Spain
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Joaquim Segalés
- Department de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra, Spain.,UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autónoma de Barcelona, Bellaterra, Spain
| | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| |
Collapse
|
14
|
Paes JA, Machado LDPN, Dos Anjos Leal FM, De Moraes SN, Moura H, Barr JR, Ferreira HB. Comparative proteomics of two Mycoplasma hyopneumoniae strains and Mycoplasma flocculare identified potential porcine enzootic pneumonia determinants. Virulence 2019; 9:1230-1246. [PMID: 30027802 PMCID: PMC6104684 DOI: 10.1080/21505594.2018.1499379] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mycoplasma hyopneumoniae and Mycoplasma flocculare are genetically similar bacteria, which coinhabit the porcine respiratory tract. These mycoplasmas share most of the known virulence factors, but, while M. hyopneumoniae causes porcine enzootic pneumonia (PEP), M. flocculare is a commensal species. To identify potential PEP determinants and provide novel insights on mycoplasma-host interactions, the whole cell proteomes of two M. hyopneumoniae strains, one pathogenic (7448) and other non-pathogenic (J), and M. flocculare were compared. A cell fractioning approach combined with mass spectrometry (LC-MS/MS) proteomics was used to analyze cytoplasmic and surface-enriched protein fractions. Average detection of ~ 50% of the predicted proteomes of M. hyopneumoniae 7448 and J, and M. flocculare was achieved. Many of the identified proteins were differentially represented in M. hyopneumoniae 7448 in comparison to M. hyopneumoniae J and M. flocculare, including potential PEP determinants, such as adhesins, proteases, and redox-balancing proteins, among others. The LC-MS/MS data also provided experimental validation for several genes previously regarded as hypothetical for all analyzed mycoplasmas, including some coding for proteins bearing virulence-related functional domains. The comprehensive proteome profiling of two M. hyopneumoniae strains and M. flocculare provided tens of novel candidates to PEP determinants or virulence factors, beyond those classically described.
Collapse
Affiliation(s)
- Jéssica Andrade Paes
- a Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Lais Del Prá Netto Machado
- a Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Fernanda Munhoz Dos Anjos Leal
- a Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Sofia Nóbrega De Moraes
- a Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Hercules Moura
- b Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences , National Center for Environmental Health, Centers for Disease Control and Prevention , Atlanta , GA , USA
| | - John R Barr
- b Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences , National Center for Environmental Health, Centers for Disease Control and Prevention , Atlanta , GA , USA
| | - Henrique Bunselmeyer Ferreira
- a Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| |
Collapse
|
15
|
Hurtado Silva M, Berry IJ, Strange N, Djordjevic SP, Padula MP. Terminomics Methodologies and the Completeness of Reductive Dimethylation: A Meta-Analysis of Publicly Available Datasets. Proteomes 2019; 7:proteomes7020011. [PMID: 30934878 PMCID: PMC6631386 DOI: 10.3390/proteomes7020011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 12/30/2022] Open
Abstract
Methods for analyzing the terminal sequences of proteins have been refined over the previous decade; however, few studies have evaluated the quality of the data that have been produced from those methodologies. While performing global N-terminal labelling on bacteria, we observed that the labelling was not complete and investigated whether this was a common occurrence. We assessed the completeness of labelling in a selection of existing, publicly available N-terminomics datasets and empirically determined that amine-based labelling chemistry does not achieve complete labelling and potentially has issues with labelling amine groups at sequence-specific residues. This finding led us to conduct a thorough review of the historical literature that showed that this is not an unexpected finding, with numerous publications reporting incomplete labelling. These findings have implications for the quantitation of N-terminal peptides and the biological interpretations of these data.
Collapse
Affiliation(s)
- Mariella Hurtado Silva
- Proteomics Core Facility and School of Life Sciences, Faculty of Science, University of Technology Sydney, Broadway NSW 2007, Australia.
| | - Iain J Berry
- Proteomics Core Facility and School of Life Sciences, Faculty of Science, University of Technology Sydney, Broadway NSW 2007, Australia.
- The ithree Institute, Faculty of Science, University of Technology Sydney, Broadway NSW 2007, Australia.
| | - Natalie Strange
- Proteomics Core Facility and School of Life Sciences, Faculty of Science, University of Technology Sydney, Broadway NSW 2007, Australia.
| | - Steven P Djordjevic
- The ithree Institute, Faculty of Science, University of Technology Sydney, Broadway NSW 2007, Australia.
| | - Matthew P Padula
- Proteomics Core Facility and School of Life Sciences, Faculty of Science, University of Technology Sydney, Broadway NSW 2007, Australia.
| |
Collapse
|
16
|
Mycoplasma hyopneumoniae resides intracellularly within porcine epithelial cells. Sci Rep 2018; 8:17697. [PMID: 30523267 PMCID: PMC6283846 DOI: 10.1038/s41598-018-36054-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022] Open
Abstract
Enzootic pneumonia incurs major economic losses to pork production globally. The primary pathogen and causative agent, Mycoplasma hyopneumoniae, colonises ciliated epithelium and disrupts mucociliary function predisposing the upper respiratory tract to secondary pathogens. Alleviation of disease is reliant on antibiotics, vaccination, and sound animal husbandry, but none are effective at eliminating M. hyopneumoniae from large production systems. Sustainable pork production systems strive to lower reliance on antibiotics but lack of a detailed understanding of the pathobiology of M. hyopneumoniae has curtailed efforts to develop effective mitigation strategies. M. hyopneumoniae is considered an extracellular pathogen. Here we show that M. hyopneumoniae associates with integrin β1 on the surface of epithelial cells via interactions with surface-bound fibronectin and initiates signalling events that stimulate pathogen uptake into clathrin-coated vesicles (CCVs) and caveosomes. These early events allow M. hyopneumoniae to exploit an intracellular lifestyle by commandeering the endosomal pathway. Specifically, we show: (i) using a modified gentamicin protection assay that approximately 8% of M. hyopneumoniae cells reside intracellularly; (ii) integrin β1 expression specifically co-localises with the deposition of fibronectin precisely where M. hyopneumoniae cells assemble extracellularly; (iii) anti-integrin β1 antibodies block entry of M. hyopneumoniae into porcine cells; and (iv) M. hyopneumoniae survives phagolysosomal fusion, and resides within recycling endosomes that are trafficked to the cell membrane. Our data creates a paradigm shift by challenging the long-held view that M. hyopneumoniae is a strict extracellular pathogen and calls for in vivo studies to determine if M. hyopneumoniae can traffic to extrapulmonary sites in commercially-reared pigs.
Collapse
|
17
|
Raymond BBA, Jenkins C, Turnbull L, Whitchurch CB, Djordjevic SP. Extracellular DNA release from the genome-reduced pathogen Mycoplasma hyopneumoniae is essential for biofilm formation on abiotic surfaces. Sci Rep 2018; 8:10373. [PMID: 29991767 PMCID: PMC6039474 DOI: 10.1038/s41598-018-28678-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/22/2018] [Indexed: 01/16/2023] Open
Abstract
Mycoplasma hyopneumoniae is an economically devastating, globally disseminated pathogen that can maintain a chronic infectious state within its host, swine. Here, we depict the events underpinning M. hyopneumoniae biofilm formation on an abiotic surface and demonstrate for the first time, biofilms forming on porcine epithelial cell monolayers and in the lungs of pigs, experimentally infected with M. hyopneumoniae. Nuclease treatment prevents biofilms forming on glass but not on porcine epithelial cells indicating that extracellular DNA (eDNA), which localises at the base of biofilms, is critical in the formation of these structures on abiotic surfaces. Subpopulations of M. hyopneumoniae cells, denoted by their ability to take up the dye TOTO-1 and release eDNA, were identified. A visually distinct sub-population of pleomorphic cells, that we refer to here as large cell variants (LCVs), rapidly transition from phase dark to translucent "ghost" cells. The translucent cells accumulate the membrane-impermeable dye TOTO-1, forming readily discernible membrane breaches immediately prior to lysis and the possible release of eDNA and other intracellular content (public goods) into the extracellular environment. Our novel observations expand knowledge of the lifestyles adopted by this wall-less, genome-reduced pathogen and provide further insights to its survival within farm environments and swine.
Collapse
Affiliation(s)
- Benjamin B A Raymond
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Cheryl Jenkins
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, PMB 8, Camden, NSW, Australia
| | - Lynne Turnbull
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Cynthia B Whitchurch
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Steven P Djordjevic
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
18
|
Raymond BBA, Madhkoor R, Schleicher I, Uphoff CC, Turnbull L, Whitchurch CB, Rohde M, Padula MP, Djordjevic SP. Extracellular Actin Is a Receptor for Mycoplasma hyopneumoniae. Front Cell Infect Microbiol 2018. [PMID: 29535975 PMCID: PMC5835332 DOI: 10.3389/fcimb.2018.00054] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mycoplasma hyopneumoniae, an agriculturally important porcine pathogen, disrupts the mucociliary escalator causing ciliostasis, loss of cilial function, and epithelial cell death within the porcine lung. Losses to swine production due to growth rate retardation and reduced feed conversion efficiency are severe, and antibiotics are used heavily to control mycoplasmal pneumonia. Notably, little is known about the repertoire of host receptors that M. hyopneumoniae targets to facilitate colonization. Here we show, for the first time, that actin exists extracellularly on porcine epithelial monolayers (PK-15) using surface biotinylation and 3D-Structured Illumination Microscopy (3D-SIM), and that M. hyopneumoniae binds to the extracellular β-actin exposed on the surface of these cells. Consistent with this hypothesis we show: (i) monoclonal antibodies that target β-actin significantly block the ability of M. hyopneumoniae to adhere and colonize PK-15 cells; (ii) microtiter plate binding assays show that M. hyopneumoniae cells bind to monomeric G-actin in a dose dependent manner; (iii) more than 100 M. hyopneumoniae proteins were recovered from affinity-chromatography experiments using immobilized actin as bait; and (iv) biotinylated monomeric actin binds directly to M. hyopneumoniae proteins in ligand blotting studies. Specifically, we show that the P97 cilium adhesin possesses at least two distinct actin-binding regions, and binds monomeric actin with nanomolar affinity. Taken together, these observations suggest that actin may be an important receptor for M. hyopneumoniae within the swine lung and will aid in the future development of intervention strategies against this devastating pathogen. Furthermore, our observations have wider implications for extracellular actin as an important bacterial receptor.
Collapse
Affiliation(s)
- Benjamin B A Raymond
- The ithree Institute, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Ranya Madhkoor
- The ithree Institute, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Ina Schleicher
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Cord C Uphoff
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Lynne Turnbull
- The ithree Institute, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Cynthia B Whitchurch
- The ithree Institute, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Matthew P Padula
- The ithree Institute, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia.,Proteomics Core Facility, University of Technology, Sydney, NSW, Australia
| | - Steven P Djordjevic
- The ithree Institute, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia.,Proteomics Core Facility, University of Technology, Sydney, NSW, Australia
| |
Collapse
|
19
|
Elongation factor Tu is a multifunctional and processed moonlighting protein. Sci Rep 2017; 7:11227. [PMID: 28894125 PMCID: PMC5593925 DOI: 10.1038/s41598-017-10644-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/10/2017] [Indexed: 01/10/2023] Open
Abstract
Many bacterial moonlighting proteins were originally described in medically, agriculturally, and commercially important members of the low G + C Firmicutes. We show Elongation factor Tu (Ef-Tu) moonlights on the surface of the human pathogens Staphylococcus aureus (SaEf-Tu) and Mycoplasma pneumoniae (MpnEf-Tu), and the porcine pathogen Mycoplasma hyopneumoniae (MhpEf-Tu). Ef-Tu is also a target of multiple processing events on the cell surface and these were characterised using an N-terminomics pipeline. Recombinant MpnEf-Tu bound strongly to a diverse range of host molecules, and when bound to plasminogen, was able to convert plasminogen to plasmin in the presence of plasminogen activators. Fragments of Ef-Tu retain binding capabilities to host proteins. Bioinformatics and structural modelling studies indicate that the accumulation of positively charged amino acids in short linear motifs (SLiMs), and protein processing promote multifunctional behaviour. Codon bias engendered by an A + T rich genome may influence how positively-charged residues accumulate in SLiMs.
Collapse
|
20
|
Berry IJ, Jarocki VM, Tacchi JL, Raymond BBA, Widjaja M, Padula MP, Djordjevic SP. N-terminomics identifies widespread endoproteolysis and novel methionine excision in a genome-reduced bacterial pathogen. Sci Rep 2017; 7:11063. [PMID: 28894154 PMCID: PMC5593965 DOI: 10.1038/s41598-017-11296-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/21/2017] [Indexed: 12/12/2022] Open
Abstract
Proteolytic processing alters protein function. Here we present the first systems-wide analysis of endoproteolysis in the genome-reduced pathogen Mycoplasma hyopneumoniae. 669 N-terminal peptides from 164 proteins were identified, demonstrating that functionally diverse proteins are processed, more than half of which 75 (53%) were accessible on the cell surface. Multiple cleavage sites were characterised, but cleavage with arginine in P1 predominated. Putative functions for a subset of cleaved fragments were assigned by affinity chromatography using heparin, actin, plasminogen and fibronectin as bait. Binding affinity was correlated with the number of cleavages in a protein, indicating that novel binding motifs are exposed, and protein disorder increases, after a cleavage event. Glyceraldehyde 3-phosphate dehydrogenase was used as a model protein to demonstrate this. We define the rules governing methionine excision, show that several aminopeptidases are involved, and propose that through processing, genome-reduced organisms can expand protein function.
Collapse
Affiliation(s)
- Iain J Berry
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.,Proteomics Core Facility, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Veronica M Jarocki
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.,Proteomics Core Facility, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Jessica L Tacchi
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.,Proteomics Core Facility, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Benjamin B A Raymond
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.,Proteomics Core Facility, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Michael Widjaja
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.,Proteomics Core Facility, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Matthew P Padula
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.,Proteomics Core Facility, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Steven P Djordjevic
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia. .,Proteomics Core Facility, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.
| |
Collapse
|
21
|
Dubrana MP, Guéguéniat J, Bertin C, Duret S, Arricau-Bouvery N, Claverol S, Lartigue C, Blanchard A, Renaudin J, Béven L. Proteolytic Post-Translational Processing of Adhesins in a Pathogenic Bacterium. J Mol Biol 2017; 429:1889-1902. [PMID: 28501585 DOI: 10.1016/j.jmb.2017.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/25/2017] [Accepted: 05/04/2017] [Indexed: 11/29/2022]
Abstract
Mollicutes, including mycoplasmas and spiroplasmas, have been considered as good representatives of the « minimal cell » concept: these wall-less bacteria are small in size and possess a minimal genome and restricted metabolic capacities. However, the recent discovery of the presence of post-translational modifications unknown so far, such as the targeted processing of membrane proteins of mycoplasma pathogens for human and swine, revealed a part of the hidden complexity of these microorganisms. In this study, we show that in the phytopathogen, insect-vectored Spiroplasma citri GII-3 adhesion-related protein (ScARP) adhesins are post-translationally processed through an ATP-dependent targeted cleavage. The cleavage efficiency could be enhanced in vitro when decreasing the extracellular pH or upon the addition of polyclonal antibodies directed against ScARP repeated units, suggesting that modification of the surface charge and/or ScARP conformational changes could initiate the cleavage. The two major sites for primary cleavage are localized within predicted disordered regions and do not fit any previously reported cleavage motif; in addition, the inhibition profile and the metal ion requirements indicate that this post-translational modification involves at least one non-conventional protease. Such a proteolytic process may play a role in S. citri colonization of cells of the host insect. Furthermore, our work indicates that post-translational cleavage of adhesins represents a common feature to mollicutes colonizing distinct hosts and that processing of surface antigens could represent a way to make the most out of a minimal genome.
Collapse
Affiliation(s)
| | - Julia Guéguéniat
- UMR BFP 1332, Univ. Bordeaux, INRA, Villenave d'Ornon, 33882 France
| | - Clothilde Bertin
- UMR BFP 1332, Univ. Bordeaux, INRA, Villenave d'Ornon, 33882 France
| | - Sybille Duret
- UMR BFP 1332, Univ. Bordeaux, INRA, Villenave d'Ornon, 33882 France
| | | | | | - Carole Lartigue
- UMR BFP 1332, Univ. Bordeaux, INRA, Villenave d'Ornon, 33882 France
| | - Alain Blanchard
- UMR BFP 1332, Univ. Bordeaux, INRA, Villenave d'Ornon, 33882 France
| | - Joël Renaudin
- UMR BFP 1332, Univ. Bordeaux, INRA, Villenave d'Ornon, 33882 France
| | - Laure Béven
- UMR BFP 1332, Univ. Bordeaux, INRA, Villenave d'Ornon, 33882 France.
| |
Collapse
|
22
|
A Comprehensive Guide for Performing Sample Preparation and Top-Down Protein Analysis. Proteomes 2017; 5:proteomes5020011. [PMID: 28387712 PMCID: PMC5489772 DOI: 10.3390/proteomes5020011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 04/04/2017] [Accepted: 04/04/2017] [Indexed: 12/21/2022] Open
Abstract
Methodologies for the global analysis of proteins in a sample, or proteome analysis, have been available since 1975 when Patrick O′Farrell published the first paper describing two-dimensional gel electrophoresis (2D-PAGE). This technique allowed the resolution of single protein isoforms, or proteoforms, into single ‘spots’ in a polyacrylamide gel, allowing the quantitation of changes in a proteoform′s abundance to ascertain changes in an organism′s phenotype when conditions change. In pursuit of the comprehensive profiling of the proteome, significant advances in technology have made the identification and quantitation of intact proteoforms from complex mixtures of proteins more routine, allowing analysis of the proteome from the ‘Top-Down’. However, the number of proteoforms detected by Top-Down methodologies such as 2D-PAGE or mass spectrometry has not significantly increased since O’Farrell’s paper when compared to Bottom-Up, peptide-centric techniques. This article explores and explains the numerous methodologies and technologies available to analyse the proteome from the Top-Down with a strong emphasis on the necessity to analyse intact proteoforms as a better indicator of changes in biology and phenotype. We arrive at the conclusion that the complete and comprehensive profiling of an organism′s proteome is still, at present, beyond our reach but the continuing evolution of protein fractionation techniques and mass spectrometry brings comprehensive Top-Down proteome profiling closer.
Collapse
|
23
|
Paes JA, Lorenzatto KR, de Moraes SN, Moura H, Barr JR, Ferreira HB. Secretomes of Mycoplasma hyopneumoniae and Mycoplasma flocculare reveal differences associated to pathogenesis. J Proteomics 2017; 154:69-77. [DOI: 10.1016/j.jprot.2016.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/18/2016] [Accepted: 12/07/2016] [Indexed: 02/07/2023]
|
24
|
Paes JA, Virginio VG, Cancela M, Leal FMA, Borges TJ, Jaeger N, Bonorino C, Schrank IS, Ferreira HB. Pro-apoptotic effect of a Mycoplasma hyopneumoniae putative type I signal peptidase on PK(15) swine cells. Vet Microbiol 2017; 201:170-176. [PMID: 28284605 DOI: 10.1016/j.vetmic.2017.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 12/08/2016] [Accepted: 01/18/2017] [Indexed: 10/20/2022]
Abstract
Mycoplasma hyopneumoniae is an economically significant swine pathogen that causes porcine enzootic pneumonia (PEP). Important processes for swine infection by M. hyopneumoniae depend on cell surface proteins, many of which are secreted by secretion pathways not completely elucidated so far. A putative type I signal peptidase (SPase I), a possible component of a putative Sec-dependent pathway, was annotated as a product of the sipS gene in the pathogenic M. hyopneumoniae 7448 genome. This M. hyopneumoniae putative SPase I (MhSPase I) displays only 14% and 23% of sequence identity/similarity to Escherichia coli bona fide SPase I, and, in complementation assays performed with a conditional E. coli SPase I mutant, only a partial restoration of growth was achieved with the heterologous expression of a recombinant MhSPase I (rMhSPase I). Considering the putative surface location of MhSPase I and its previously demonstrated capacity to induce a strong humoral response, we then assessed its potential to elicit a cellular and possible immunomodulatory response. In assays for immunogenicity assessment, rMhSPase I unexpectedly showed a cytotoxic effect on murine splenocytes. This cytotoxic effect was further confirmed using the swine epithelial PK(15) cell line in MTT and annexin V-flow cytometry assays, which showed that rMhSPase I induces apoptosis in a dose dependent-way. It was also demonstrated that this pro-apoptotic effect of rMhSPase I involves activation of a caspase-3 cascade. The potential relevance of the rMhSPase I pro-apoptotic effect for M. hyopneumoniae-host interactions in the context of PEP is discussed.
Collapse
Affiliation(s)
- Jéssica A Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Brazil
| | - Veridiana G Virginio
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Brazil
| | - Martín Cancela
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Brazil
| | - Fernanda M A Leal
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Brazil
| | - Thiago J Borges
- Laboratório de Imunologia Celular, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Brazil
| | - Natália Jaeger
- Laboratório de Imunologia Celular, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Brazil
| | - Cristina Bonorino
- Laboratório de Imunologia Celular, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Brazil
| | - Irene S Schrank
- Laboratório de Microrganismos Diazotróficos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Brazil
| | - Henrique B Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Brazil.
| |
Collapse
|
25
|
Tacchi JL, Raymond BBA, Haynes PA, Berry IJ, Widjaja M, Bogema DR, Woolley LK, Jenkins C, Minion FC, Padula MP, Djordjevic SP. Post-translational processing targets functionally diverse proteins in Mycoplasma hyopneumoniae. Open Biol 2016; 6:150210. [PMID: 26865024 PMCID: PMC4772806 DOI: 10.1098/rsob.150210] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma hyopneumoniae is a genome-reduced, cell wall-less, bacterial pathogen with a predicted coding capacity of less than 700 proteins and is one of the smallest self-replicating pathogens. The cell surface of M. hyopneumoniae is extensively modified by processing events that target the P97 and P102 adhesin families. Here, we present analyses of the proteome of M. hyopneumoniae-type strain J using protein-centric approaches (one- and two-dimensional GeLC–MS/MS) that enabled us to focus on global processing events in this species. While these approaches only identified 52% of the predicted proteome (347 proteins), our analyses identified 35 surface-associated proteins with widely divergent functions that were targets of unusual endoproteolytic processing events, including cell adhesins, lipoproteins and proteins with canonical functions in the cytosol that moonlight on the cell surface. Affinity chromatography assays that separately used heparin, fibronectin, actin and host epithelial cell surface proteins as bait recovered cleavage products derived from these processed proteins, suggesting these fragments interact directly with the bait proteins and display previously unrecognized adhesive functions. We hypothesize that protein processing is underestimated as a post-translational modification in genome-reduced bacteria and prokaryotes more broadly, and represents an important mechanism for creating cell surface protein diversity.
Collapse
Affiliation(s)
- Jessica L Tacchi
- The ithree Institute, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Benjamin B A Raymond
- The ithree Institute, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Paul A Haynes
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Iain J Berry
- The ithree Institute, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Michael Widjaja
- The ithree Institute, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Daniel R Bogema
- The ithree Institute, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales 2568, Australia
| | - Lauren K Woolley
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales 2568, Australia School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Cheryl Jenkins
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales 2568, Australia
| | - F Chris Minion
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA 50011, USA
| | - Matthew P Padula
- The ithree Institute, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia Proteomics Core Facility, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Steven P Djordjevic
- The ithree Institute, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia Proteomics Core Facility, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| |
Collapse
|
26
|
P40 and P90 from Mpn142 are Targets of Multiple Processing Events on the Surface of Mycoplasma pneumoniae. Proteomes 2015; 3:512-537. [PMID: 28248283 PMCID: PMC5217387 DOI: 10.3390/proteomes3040512] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 12/02/2015] [Accepted: 12/07/2015] [Indexed: 12/18/2022] Open
Abstract
Mycoplasma pneumoniae is a significant cause of community acquired pneumonia globally. Despite having a genome less than 1 Mb in size, M. pneumoniae presents a structurally sophisticated attachment organelle that (i) provides cell polarity, (ii) directs adherence to receptors presented on respiratory epithelium, and (iii) plays a major role in cell motility. The major adhesins, P1 (Mpn141) and P30 (Mpn453), are localised to the tip of the attachment organelle by the surface accessible cleavage fragments P90 and P40 derived from Mpn142. Two events play a defining role in the formation of P90 and P40; removal of a leader peptide at position 26 (23SLA↓NTY28) during secretion to the cell surface and cleavage at amino acid 455 (452GPL↓RAG457) generating P40 and P90. Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) analysis of tryptic peptides generated by digesting size-fractionated cell lysates of M. pneumoniae identified 15 cleavage fragments of Mpn142 ranging in mass from 9–84 kDa. Further evidence for the existence of cleavage fragments of Mpn142 was generated by mapping tryptic peptides to proteins recovered from size fractionated eluents from affinity columns loaded with heparin, fibronectin, fetuin, actin, plasminogen and A549 surface proteins as bait. To define the sites of cleavage in Mpn142, neo-N-termini in cell lysates of M. pneumoniae were dimethyl-labelled and characterised by LC-MS/MS. Our data suggests that Mpn142 is cleaved to generate adhesins that are auxiliary to P1 and P30.
Collapse
|
27
|
Berry IJ, Steele JR, Padula MP, Djordjevic SP. The application of terminomics for the identification of protein start sites and proteoforms in bacteria. Proteomics 2015; 16:257-72. [DOI: 10.1002/pmic.201500319] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/21/2015] [Accepted: 09/30/2015] [Indexed: 01/11/2023]
Affiliation(s)
- Iain J. Berry
- The ithree Institute; University of Technology Sydney; Broadway NSW Australia
- Proteomics Core Facility; University of Technology Sydney; Broadway NSW Australia
| | - Joel R. Steele
- Proteomics Core Facility; University of Technology Sydney; Broadway NSW Australia
| | - Matthew P. Padula
- The ithree Institute; University of Technology Sydney; Broadway NSW Australia
- Proteomics Core Facility; University of Technology Sydney; Broadway NSW Australia
| | - Steven P. Djordjevic
- The ithree Institute; University of Technology Sydney; Broadway NSW Australia
- Proteomics Core Facility; University of Technology Sydney; Broadway NSW Australia
| |
Collapse
|
28
|
Jarocki VM, Santos J, Tacchi JL, Raymond BBA, Deutscher AT, Jenkins C, Padula MP, Djordjevic SP. MHJ_0461 is a multifunctional leucine aminopeptidase on the surface of Mycoplasma hyopneumoniae. Open Biol 2015; 5:140175. [PMID: 25589579 PMCID: PMC4313372 DOI: 10.1098/rsob.140175] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aminopeptidases are part of the arsenal of virulence factors produced by bacterial pathogens that inactivate host immune peptides. Mycoplasma hyopneumoniae is a genome-reduced pathogen of swine that lacks the genetic repertoire to synthesize amino acids and relies on the host for availability of amino acids for growth. M. hyopneumoniae recruits plasmin(ogen) onto its cell surface via the P97 and P102 adhesins and the glutamyl aminopeptidase MHJ_0125. Plasmin plays an important role in regulating the inflammatory response in the lungs of pigs infected with M. hyopneumoniae. We show that recombinant MHJ_0461 (rMHJ_0461) functions as a leucine aminopeptidase (LAP) with broad substrate specificity for leucine, alanine, phenylalanine, methionine and arginine and that MHJ_0461 resides on the surface of M. hyopneumoniae. rMHJ_0461 also binds heparin, plasminogen and foreign DNA. Plasminogen bound to rMHJ_0461 was readily converted to plasmin in the presence of tPA. Computational modelling identified putative DNA and heparin-binding motifs on solvent-exposed sites around a large pore on the LAP hexamer. We conclude that MHJ_0461 is a LAP that moonlights as a multifunctional adhesin on the cell surface of M. hyopneumoniae.
Collapse
Affiliation(s)
- Veronica M Jarocki
- The ithree institute, University of Technology, Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Jerran Santos
- The ithree institute, University of Technology, Sydney, PO Box 123, Broadway, New South Wales 2007, Australia Proteomics Core Facility, University of Technology, Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Jessica L Tacchi
- The ithree institute, University of Technology, Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Benjamin B A Raymond
- The ithree institute, University of Technology, Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Ania T Deutscher
- NSW Department of Primary Industries, Private Bag 4008, Narellan, New South Wales 2567, Australia
| | - Cheryl Jenkins
- NSW Department of Primary Industries, Private Bag 4008, Narellan, New South Wales 2567, Australia
| | - Matthew P Padula
- The ithree institute, University of Technology, Sydney, PO Box 123, Broadway, New South Wales 2007, Australia Proteomics Core Facility, University of Technology, Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Steven P Djordjevic
- The ithree institute, University of Technology, Sydney, PO Box 123, Broadway, New South Wales 2007, Australia Proteomics Core Facility, University of Technology, Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| |
Collapse
|
29
|
Raynel S, Padula MP, Marks DC, Johnson L. Cryopreservation alters the membrane and cytoskeletal protein profile of platelet microparticles. Transfusion 2015; 55:2422-32. [PMID: 26046916 DOI: 10.1111/trf.13165] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cryopreservation of platelets (PLTs) in dimethyl sulfoxide (DMSO) and storage at -80 °C extends the PLT shelf life to at least 2 years, allowing greater accessibility in military and rural environments. While cryopreserved PLTs have been extensively characterized, the microparticles formed as a result of cryopreservation are yet to be fully described. STUDY DESIGN AND METHODS Apheresis PLTs were cryopreserved at -80 °C with 5% DMSO and sampled before freezing and after thawing. Microparticle number, size, surface receptor phenotype, and function were assessed by microscopy, flow cytometry, dynamic light scattering, and thrombin-generating capacity. Proteomic changes were examined using two-dimensional gel electrophoresis and Western blotting. RESULTS PLT cryopreservation resulted in a 15-fold increase in the number of microparticles compared to fresh PLTs. The surface receptor phenotype of these microparticles differed to microparticles from fresh PLTs, with more microparticles expressing glycoprotein (GP)IV, GPIIb, and the GPIb-V-IX complex. Cryopreservation drastically altered the abundance of many cytoskeletal proteins in the PLT microparticles, including actin, filamin, gelsolin, and tropomyosin. Despite these changes, PLT microparticles were functional and contributed to phosphatidylserine- and tissue factor- induced thrombin generation. CONCLUSION This study demonstrates that PLT microparticles formed by cryopreservation are phenotypically distinct from those present before freezing. These differences may be associated with the procoagulant properties of cryopreserved PLTs.
Collapse
Affiliation(s)
- Sarah Raynel
- Research & Development, Australian Red Cross Blood Service, Alexandria, NSW, Australia.,Proteomics Core Facility, University of Technology Sydney, Sydney, NSW, Australia
| | - Matthew P Padula
- Proteomics Core Facility, University of Technology Sydney, Sydney, NSW, Australia
| | - Denese C Marks
- Research & Development, Australian Red Cross Blood Service, Alexandria, NSW, Australia
| | - Lacey Johnson
- Research & Development, Australian Red Cross Blood Service, Alexandria, NSW, Australia
| |
Collapse
|
30
|
Raymond BBA, Djordjevic S. Exploitation of plasmin(ogen) by bacterial pathogens of veterinary significance. Vet Microbiol 2015; 178:1-13. [PMID: 25937317 DOI: 10.1016/j.vetmic.2015.04.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 01/31/2023]
Abstract
The plasminogen (Plg) system plays an important homeostatic role in the degradation of fibrin clots, extracellular matrices and tissue barriers important for cellular migration, as well as the promotion of neurotransmitter release. Plg circulates in plasma at physiologically high concentrations (150-200μg ml(-1)) as an inactive proenzyme. Proteins enriched in lysine and other positively charged residues (histidine and arginine) as well as glycosaminoglycans and gangliosides bind Plg. The binding interaction initiates a structural adjustment to the bound Plg that facilitates cleavage by proteases (plasminogen activators tPA and uPA) that activate Plg to the active serine protease plasmin. Both pathogenic and commensal bacteria capture Plg onto their cell surface and promote its conversion to plasmin. Many microbial Plg-binding proteins have been described underpinning the importance this process plays in how bacteria interact with their hosts. Bacteria exploit the proteolytic capabilities of plasmin by (i) targeting the mammalian fibrinolytic system and degrading fibrin clots, (ii) remodeling the extracellular matrix and generating bioactive cleavage fragments of the ECM that influence signaling pathways, (iii) activating matrix metalloproteinases that assist in the destruction of tissue barriers and promote microbial metastasis and (iv) destroying immune effector molecules. There has been little focus on the exploitation of the fibrinolytic system by veterinary pathogens. Here we describe several pathogens of veterinary significance that possess adhesins that bind plasmin(ogen) onto their cell surface and promote its activation to plasmin. Cumulative data suggests that these attributes provide pathogenic and commensal bacteria with a means to colonize and persist within the host environment.
Collapse
Affiliation(s)
- Benjamin B A Raymond
- The ithree Institute, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Steven Djordjevic
- The ithree Institute, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia.
| |
Collapse
|
31
|
Jarocki VM, Tacchi JL, Djordjevic SP. Non-proteolytic functions of microbial proteases increase pathological complexity. Proteomics 2015; 15:1075-88. [PMID: 25492846 PMCID: PMC7167786 DOI: 10.1002/pmic.201400386] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/26/2014] [Accepted: 12/05/2014] [Indexed: 12/26/2022]
Abstract
Proteases are enzymes that catalyse hydrolysis of peptide bonds thereby controlling the shape, size, function, composition, turnover and degradation of other proteins. In microbes, proteases are often identified as important virulence factors and as such have been targets for novel drug design. It is emerging that some proteases possess additional non‐proteolytic functions that play important roles in host epithelia adhesion, tissue invasion and in modulating immune responses. These additional “moonlighting” functions have the potential to obfuscate data interpretation and have implications for therapeutic design. Moonlighting enzymes comprise a subcategory of multifunctional proteins that possess at least two distinct biological functions on a single polypeptide chain. Presently, identifying moonlighting proteins relies heavily on serendipitous empirical data with clues arising from proteins lacking signal peptides that are localised to the cell surface. Here, we describe examples of microbial proteases with additional non‐proteolytic functions, including streptococcal pyrogenic exotoxin B, PepO and C5a peptidases, mycoplasmal aminopeptidases, mycobacterial chaperones and viral papain‐like proteases. We explore how these non‐proteolytic functions contribute to host cell adhesion, modulate the coagulation pathway, assist in non‐covalent folding of proteins, participate in cell signalling, and increase substrate repertoire. We conclude by describing how proteomics has aided in moonlighting protein discovery, focusing attention on potential moonlighters in microbial exoproteomes.
Collapse
Affiliation(s)
- Veronica M. Jarocki
- The ithree instituteProteomics Core Facility, University of TechnologySydneyNSWAustralia
| | - Jessica L. Tacchi
- The ithree instituteProteomics Core Facility, University of TechnologySydneyNSWAustralia
| | - Steven P. Djordjevic
- The ithree instituteProteomics Core Facility, University of TechnologySydneyNSWAustralia
- Proteomics Core FacilityUniversity of TechnologySydneyNSWAustralia
| |
Collapse
|
32
|
Raymond BBA, Jenkins C, Seymour LM, Tacchi JL, Widjaja M, Jarocki VM, Deutscher AT, Turnbull L, Whitchurch CB, Padula MP, Djordjevic SP. Proteolytic processing of the cilium adhesin MHJ_0194 (P123J ) in Mycoplasma hyopneumoniae generates a functionally diverse array of cleavage fragments that bind multiple host molecules. Cell Microbiol 2014; 17:425-44. [PMID: 25293691 DOI: 10.1111/cmi.12377] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/02/2014] [Accepted: 10/03/2014] [Indexed: 12/17/2022]
Abstract
Mycoplasma hyopneumoniae, the aetiological agent of porcine enzootic pneumonia, regulates the presentation of proteins on its cell surface via endoproteolysis, including those of the cilial adhesin P123 (MHJ_0194). These proteolytic cleavage events create functional adhesins that bind to proteoglycans and glycoproteins on the surface of ciliated and non-ciliated epithelial cells and to the circulatory host molecule plasminogen. Two dominant cleavage events of the P123 preprotein have been previously characterized; however, immunoblotting studies suggest that more complex processing events occur. These extensive processing events are characterized here. The functional significance of the P97 cleavage fragments is also poorly understood. Affinity chromatography using heparin, fibronectin and plasminogen as bait and peptide arrays were used to expand our knowledge of the adhesive capabilities of P123 cleavage fragments and characterize a novel binding motif in the C-terminus of P123. Further, we use immunohistochemistry to examine in vivo, the biological significance of interactions between M. hyopneumoniae and fibronectin and show that M. hyopneumoniae induces fibronectin deposition at the site of infection on the ciliated epithelium. Our data supports the hypothesis that M. hyopneumoniae possesses the molecular machinery to influence key molecular communication pathways in host cells.
Collapse
|
33
|
Reolon LA, Martello CL, Schrank IS, Ferreira HB. Survey of surface proteins from the pathogenic Mycoplasma hyopneumoniae strain 7448 using a biotin cell surface labeling approach. PLoS One 2014; 9:e112596. [PMID: 25386928 PMCID: PMC4227723 DOI: 10.1371/journal.pone.0112596] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/09/2014] [Indexed: 12/15/2022] Open
Abstract
The characterization of the repertoire of proteins exposed on the cell surface by Mycoplasma hyopneumoniae (M. hyopneumoniae), the etiological agent of enzootic pneumonia in pigs, is critical to understand physiological processes associated with bacterial infection capacity, survival and pathogenesis. Previous in silico studies predicted that about a third of the genes in the M. hyopneumoniae genome code for surface proteins, but so far, just a few of them have experimental confirmation of their expression and surface localization. In this work, M. hyopneumoniae surface proteins were labeled in intact cells with biotin, and affinity-captured biotin-labeled proteins were identified by a gel-based liquid chromatography-tandem mass spectrometry approach. A total of 20 gel slices were separately analyzed by mass spectrometry, resulting in 165 protein identifications corresponding to 59 different protein species. The identified surface exposed proteins better defined the set of M. hyopneumoniae proteins exposed to the host and added confidence to in silico predictions. Several proteins potentially related to pathogenesis, were identified, including known adhesins and also hypothetical proteins with adhesin-like topologies, consisting of a transmembrane helix and a large tail exposed at the cell surface. The results provided a better picture of the M. hyopneumoniae cell surface that will help in the understanding of processes important for bacterial pathogenesis. Considering the experimental demonstration of surface exposure, adhesion-like topology predictions and absence of orthologs in the closely related, non-pathogenic species Mycoplasma flocculare, several proteins could be proposed as potential targets for the development of drugs, vaccines and/or immunodiagnostic tests for enzootic pneumonia.
Collapse
Affiliation(s)
- Luciano Antonio Reolon
- Laboratório de microrganismos diazotróficos, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Carolina Lumertz Martello
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Irene Silveira Schrank
- Laboratório de microrganismos diazotróficos, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, RS, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, RS, Brazil
- * E-mail:
| |
Collapse
|
34
|
Siqueira FM, Gerber AL, Guedes RLM, Almeida LG, Schrank IS, Vasconcelos ATR, Zaha A. Unravelling the transcriptome profile of the Swine respiratory tract mycoplasmas. PLoS One 2014; 9:e110327. [PMID: 25333523 PMCID: PMC4198240 DOI: 10.1371/journal.pone.0110327] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/11/2014] [Indexed: 11/18/2022] Open
Abstract
The swine respiratory ciliary epithelium is mainly colonized by Mycoplasma hyopneumoniae, Mycoplasma flocculare and Mycoplasma hyorhinis. While colonization by M. flocculare is virtually asymptomatic, M. hyopneumoniae and M. hyorhinis infections may cause respiratory disease. Information regarding transcript structure and gene abundance provides valuable insight into gene function and regulation, which has not yet been analyzed on a genome-wide scale in these Mycoplasma species. In this study, we report the construction of transcriptome maps for M. hyopneumoniae, M. flocculare and M. hyorhinis, which represent data for conducting comparative studies on the transcriptional repertory. For each species, three cDNA libraries were generated, yielding averages of 415,265, 695,313 and 93,578 reads for M. hyopneumoniae, M. flocculare and M. hyorhinis, respectively, with an average read length of 274 bp. The reads mapping showed that 92%, 98% and 96% of the predicted genes were transcribed in the M. hyopneumoniae, M. flocculare and M. hyorhinis genomes, respectively. Moreover, we showed that the majority of the genes are co-expressed, confirming the previously predicted transcription units. Finally, our data defined the RNA populations in detail, with the map transcript boundaries and transcription unit structures on a genome-wide scale.
Collapse
Affiliation(s)
- Franciele Maboni Siqueira
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas – Bioquímica, UFRGS, Porto Alegre, Brazil
| | - Alexandra Lehmkuhl Gerber
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica (LNCC), Petrópolis, Rio de Janeiro, Brazil
| | - Rafael Lucas Muniz Guedes
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica (LNCC), Petrópolis, Rio de Janeiro, Brazil
| | - Luiz Gonzaga Almeida
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica (LNCC), Petrópolis, Rio de Janeiro, Brazil
| | - Irene Silveira Schrank
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil
| | | | - Arnaldo Zaha
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil
- * E-mail:
| |
Collapse
|