1
|
Sriram S, Carstens K, Dewing W, Fiacco TA. Astrocyte regulation of extracellular space parameters across the sleep-wake cycle. Front Cell Neurosci 2024; 18:1401698. [PMID: 38988660 PMCID: PMC11233815 DOI: 10.3389/fncel.2024.1401698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
Multiple subfields of neuroscience research are beginning to incorporate astrocytes into current frameworks of understanding overall brain physiology, neuronal circuitry, and disease etiology that underlie sleep and sleep-related disorders. Astrocytes have emerged as a dynamic regulator of neuronal activity through control of extracellular space (ECS) volume and composition, both of which can vary dramatically during different levels of sleep and arousal. Astrocytes are also an attractive target of sleep research due to their prominent role in the glymphatic system, a method by which toxic metabolites generated during wakefulness are cleared away. In this review we assess the literature surrounding glial influences on fluctuations in ECS volume and composition across the sleep-wake cycle. We also examine mechanisms of astrocyte volume regulation in glymphatic solute clearance and their role in sleep and wake states. Overall, findings highlight the importance of astrocytes in sleep and sleep research.
Collapse
Affiliation(s)
- Sandhya Sriram
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, United States
- Department of Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, United States
| | - Kaira Carstens
- Department of Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, United States
| | - Wayne Dewing
- Undergraduate Major in Neuroscience, University of California, Riverside, Riverside, CA, United States
| | - Todd A Fiacco
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, United States
- Department of Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
2
|
Ingiosi AM, Hayworth CR, Frank MG. Activation of Basal Forebrain Astrocytes Induces Wakefulness without Compensatory Changes in Sleep Drive. J Neurosci 2023; 43:5792-5809. [PMID: 37487739 PMCID: PMC10423050 DOI: 10.1523/jneurosci.0163-23.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023] Open
Abstract
Mammalian sleep is regulated by a homeostatic process that increases sleep drive and intensity as a function of prior wake time. Sleep homeostasis has traditionally been thought to be a product of neurons, but recent findings demonstrate that this process is also modulated by glial astrocytes. The precise role of astrocytes in the accumulation and discharge of sleep drive is unknown. We investigated this question by selectively activating basal forebrain (BF) astrocytes using designer receptors exclusively activated by designer drugs (DREADDs) in male and female mice. DREADD activation of the Gq-protein-coupled pathway in BF astrocytes produced long and continuous periods of wakefulness that paradoxically did not cause the expected homeostatic response to sleep loss (e.g., increases in sleep time or intensity). Further investigations showed that this was not because of indirect effects of the ligand that activated DREADDs. These findings suggest that the need for sleep is not only driven by wakefulness per se, but also by specific neuronal-glial circuits that are differentially activated in wakefulness.SIGNIFICANCE STATEMENT Sleep drive is controlled by a homeostatic process that increases sleep duration and intensity based on prior time spent awake. Non-neuronal brain cells (e.g., glial astrocytes) influence this homeostatic process, but their precise role is unclear. We used a genetic technique to activate astrocytes in the basal forebrain (BF) of mice, a brain region important for sleep and wake expression and sleep homeostasis. Astroglial activation induced prolonged wakefulness without the expected homeostatic increase in sleep drive (i.e., sleep duration and intensity). These findings indicate that our need to sleep is also driven by non-neuronal cells, and not only by time spent awake.
Collapse
Affiliation(s)
- Ashley M Ingiosi
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington 99202
| | - Christopher R Hayworth
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington 99202
| | - Marcos G Frank
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington 99202
- Gleason Institute for Neuroscience, Washington State University, Spokane, Washington 99202
- Sleep Performance and Research Center, Washington State University, Spokane, Washington, 99202
| |
Collapse
|
3
|
Chen P, Ban W, Wang W, You Y, Yang Z. The Devastating Effects of Sleep Deprivation on Memory: Lessons from Rodent Models. Clocks Sleep 2023; 5:276-294. [PMID: 37218868 DOI: 10.3390/clockssleep5020022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
In this narrative review article, we discuss the role of sleep deprivation (SD) in memory processing in rodent models. Numerous studies have examined the effects of SD on memory, with the majority showing that sleep disorders negatively affect memory. Currently, a consensus has not been established on which damage mechanism is the most appropriate. This critical issue in the neuroscience of sleep remains largely unknown. This review article aims to elucidate the mechanisms that underlie the damaging effects of SD on memory. It also proposes a scientific solution that might explain some findings. We have chosen to summarize literature that is both representative and comprehensive, as well as innovative in its approach. We examined the effects of SD on memory, including synaptic plasticity, neuritis, oxidative stress, and neurotransmitters. Results provide valuable insights into the mechanisms by which SD impairs memory function.
Collapse
Affiliation(s)
- Pinqiu Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Weikang Ban
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Wenyan Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yuyang You
- School of Automation, Beijing Institute of Technology, Beijing 100081, China
| | - Zhihong Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
4
|
Wu R, Tripathy S, Menon V, Yu L, Buchman AS, Bennett DA, De Jager PL, Lim ASP. Fragmentation of rest periods, astrocyte activation, and cognitive decline in older adults with and without Alzheimer's disease. Alzheimers Dement 2023; 19:1888-1900. [PMID: 36335579 PMCID: PMC10697074 DOI: 10.1002/alz.12817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Sleep disruption is associated with astrocyte activation and impaired cognition in model organisms. However, the relationship among sleep, astrocyte activation, and cognition in humans is uncertain. METHODS We used RNA-seq to quantify the prefrontal cortex expression of a panel of human activated astrocyte marker genes in 1076 older adults in the Religious Orders Study and Rush Memory and Aging Project, 411 of whom had multi-day actigraphy prior to death. We related this to rest fragmentation, a proxy for sleep fragmentation, and to longitudinal cognitive function. RESULTS Fragmentation of rest periods was associated with higher expression of activated astrocyte marker genes, which was associated with a lower level and faster decline of cognitive function. DISCUSSION Astrocyte activation and fragmented rest are associated with each other and with accelerated cognitive decline. If experimental studies confirm a causal relationship, targeting sleep fragmentation and astrocyte activation may benefit cognition in older adults. HIGHLIGHTS Greater fragmentation of rest periods, a proxy for sleep fragmentation, is associated with higher composite expression of a panel of genes characteristic of activated astrocytes. Increased expression of genes characteristic of activated astrocytes was associated with a lower level and more rapid decline of cognitive function, beyond that accounted for by the burden of amyloid and neurofibrillary tangle pathology. Longitudinal and experimental studies are needed to delineate the causal relationships among sleep, astrocyte activation, and cognition.
Collapse
Affiliation(s)
- Rebecca Wu
- Division of Neurology, Department of Medicine, Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Shreejoy Tripathy
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Vilas Menon
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, New York, USA
| | - Lei Yu
- Rush Alzheimer Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University, Chicago, Illinois, USA
| | - Aron S Buchman
- Rush Alzheimer Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University, Chicago, Illinois, USA
| | - David A Bennett
- Rush Alzheimer Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University, Chicago, Illinois, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, New York, USA
| | - Andrew S P Lim
- Division of Neurology, Department of Medicine, Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Disturbance of REM sleep exacerbates microglial activation in APP/PS1 mice. Neurobiol Learn Mem 2023; 200:107737. [PMID: 36813079 DOI: 10.1016/j.nlm.2023.107737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/17/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
Although both nonrapid eye movement (NREM) sleep loss and rapid eye movement (REM) sleep loss exacerbate Alzheimer's disease (AD) progression, they exert different effects. Microglial activation can be beneficial or detrimental to AD patients under different conditions. However, few studies have investigated which sleep stage is the main regulator of microglial activation or the downstream effects of this activation. We aimed to explore the roles of different sleep phases in microglial activation and to investigate the possible effect of microglial activation on AD pathology. In this study, thirty-six 6-month-old APP/PS1 mice were equally divided into 3 groups: the stress control (SC), total sleep deprivation (TSD), and REM deprivation (RD) groups. All mice underwent a 48-hour intervention before their spatial memory was assessed using a Morris water maze (MWM). Then, microglial morphology, activation- and synapse-related protein expression, and inflammatory cytokine and amyloid β (Aβ) levels in hippocampal tissues were measured. We found that the RD and TSD groups exhibited worse spatial memory in the MWM tests. In addition, the RD and TSD groups showed greater microglial activation, higher inflammatory cytokine levels, lower synapse-related protein expression and more severe Aβ accumulation than the SC group, but there were no significant differences between the RD and TSD groups. This study demonstrates that disturbance of REM sleep may activate microglia in APP/PS1 mice. These activated microglia may promote neuroinflammation and engulf synapses but show a weakened ability to clear plaques.
Collapse
|
6
|
Sleep-Disturbance-Induced Microglial Activation Involves CRH-Mediated Galectin 3 and Autophagy Dysregulation. Cells 2022; 12:cells12010160. [PMID: 36611953 PMCID: PMC9818437 DOI: 10.3390/cells12010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Chronic sleep disturbances (CSDs) including insomnia, insufficient sleep time, and poor sleep quality are major public health concerns around the world, especially in developed countries. CSDs are major health risk factors linked to multiple neurodegenerative and neuropsychological diseases. It has been suggested that CSDs could activate microglia (Mg) leading to increased neuroinflammation levels, which ultimately lead to neuronal dysfunction. However, the detailed mechanisms underlying CSD-mediated microglial activation remain mostly unexplored. In this study, we used mice with three-weeks of sleep fragmentation (SF) to explore the underlying pathways responsible for Mg activation. Our results revealed that SF activates Mg in the hippocampus (HP) but not in the striatum and prefrontal cortex (PFc). SF increased the levels of corticotropin-releasing hormone (CRH) in the HP. In vitro mechanism studies revealed that CRH activation of Mg involves galectin 3 (Gal3) upregulation and autophagy dysregulation. CRH could disrupt lysosome membrane integrity resulting in lysosomal cathepsins leakage. CRHR2 blockage mitigated CRH-mediated effects on microglia in vitro. SF mice also show increased Gal3 levels and autophagy dysregulation in the HP compared to controls. Taken together, our results show that SF-mediated hippocampal Mg activation involves CRH mediated galectin 3 and autophagy dysregulation. These findings suggest that targeting the hippocampal CRH system might be a novel therapeutic approach to ameliorate CSD-mediated neuroinflammation and neurodegenerative diseases.
Collapse
|
7
|
Cable J, Schernhammer E, Hanlon EC, Vetter C, Cedernaes J, Makarem N, Dashti HS, Shechter A, Depner C, Ingiosi A, Blume C, Tan X, Gottlieb E, Benedict C, Van Cauter E, St-Onge MP. Sleep and circadian rhythms: pillars of health-a Keystone Symposia report. Ann N Y Acad Sci 2021; 1506:18-34. [PMID: 34341993 PMCID: PMC8688158 DOI: 10.1111/nyas.14661] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022]
Abstract
The human circadian system consists of the master clock in the suprachiasmatic nuclei of the hypothalamus as well as in peripheral molecular clocks located in organs throughout the body. This system plays a major role in the temporal organization of biological and physiological processes, such as body temperature, blood pressure, hormone secretion, gene expression, and immune functions, which all manifest consistent diurnal patterns. Many facets of modern life, such as work schedules, travel, and social activities, can lead to sleep/wake and eating schedules that are misaligned relative to the biological clock. This misalignment can disrupt and impair physiological and psychological parameters that may ultimately put people at higher risk for chronic diseases like cancer, cardiovascular disease, and other metabolic disorders. Understanding the mechanisms that regulate sleep circadian rhythms may ultimately lead to insights on behavioral interventions that can lower the risk of these diseases. On February 25, 2021, experts in sleep, circadian rhythms, and chronobiology met virtually for the Keystone eSymposium "Sleep & Circadian Rhythms: Pillars of Health" to discuss the latest research for understanding the bidirectional relationships between sleep, circadian rhythms, and health and disease.
Collapse
Affiliation(s)
| | - Eva Schernhammer
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, Vienna, Austria
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Erin C Hanlon
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, Illinois
| | - Céline Vetter
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, Colorado
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Jonathan Cedernaes
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Nour Makarem
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, New York
| | - Hassan S Dashti
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, Colorado
- Center for Genomic Medicine, Massachusetts General Hospital, and Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ari Shechter
- Department of Medicine and Sleep Center of Excellence, Columbia University Irving Medical Center, New York, New York
| | - Christopher Depner
- Department of Health and Kinesiology, University of Utah, Salt Lake City, Utah
| | - Ashley Ingiosi
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington
| | - Christine Blume
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, and Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Xiao Tan
- Department of Neuroscience (Sleep Science, BMC), Uppsala University, Uppsala, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Elie Gottlieb
- The Florey Institute of Neuroscience and Mental Health, and University of Melbourne, Melbourne, Victoria, Australia
| | - Christian Benedict
- Department of Neuroscience (Sleep Science, BMC), Uppsala University, Uppsala, Sweden
| | - Eve Van Cauter
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, Illinois
| | - Marie-Pierre St-Onge
- Sleep Center of Excellence, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
8
|
Cheng Y, Kim WK, Wellman LL, Sanford LD, Guo ML. Short-Term Sleep Fragmentation Dysregulates Autophagy in a Brain Region-Specific Manner. Life (Basel) 2021; 11:life11101098. [PMID: 34685469 PMCID: PMC8538758 DOI: 10.3390/life11101098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 01/17/2023] Open
Abstract
In this study, we investigated autophagy, glial activation status, and corticotropin releasing factor (CRF) signaling in the brains of mice after 5 days of sleep fragmentation (SF). Three different brain regions including the striatum, hippocampus, and frontal cortex were selected for examination based on roles in sleep regulation and sensitivity to sleep disruption. For autophagy, we monitored the levels of various autophagic induction markers including beclin1, LC3II, and p62 as well as the levels of lysosomal associated membrane protein 1 and 2 (LAMP1/2) and the transcription factor EB (TFEB) which are critical for lysosome function and autophagy maturation stage. For the status of microglia and astrocytes, we determined the levels of Iba1 and GFAP in these brain regions. We also measured the levels of CRF and its cognate receptors 1 and 2 (CRFR1/2). Our results showed that 5 days of SF dysregulated autophagy in the striatum and hippocampus but not in the frontal cortex. Additionally, 5 days of SF activated microglia in the striatum but not in the hippocampus or frontal cortex. In the striatum, CRFR2 but not CRFR1 was significantly increased in SF-experienced mice. CRF did not alter its mRNA levels in any of the three brain regions assessed. Our findings revealed that autophagy processes are sensitive to short-term SF in a region-specific manner and suggest that autophagy dysregulation may be a primary initiator for brain changes and functional impairments in the context of sleep disturbances and disorders.
Collapse
Affiliation(s)
- Yan Cheng
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (Y.C.); (W.-K.K.); (L.L.W.); (L.D.S.)
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Drug Addiction Laboratory, Department Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Woong-Ki Kim
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (Y.C.); (W.-K.K.); (L.L.W.); (L.D.S.)
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Laurie L. Wellman
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (Y.C.); (W.-K.K.); (L.L.W.); (L.D.S.)
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Larry D. Sanford
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (Y.C.); (W.-K.K.); (L.L.W.); (L.D.S.)
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Ming-Lei Guo
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (Y.C.); (W.-K.K.); (L.L.W.); (L.D.S.)
- Drug Addiction Laboratory, Department Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Correspondence: ; Tel.: +1-757-446-5891
| |
Collapse
|
9
|
Bjørkum AA, Carrasco Duran A, Frode B, Sinha Roy D, Rosendahl K, Birkeland E, Stuhr L. Human blood serum proteome changes after 6 hours of sleep deprivation at night. SLEEP SCIENCE AND PRACTICE 2021. [DOI: 10.1186/s41606-021-00066-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Abstract
Background
The aim of this study was to discover significantly changed proteins in human blood serum after loss of 6 h sleep at night. Furthermore, to reveal affected biological process- and molecular function categories that might be clinically relevant, by exploring systems biological databases.
Methods
Eight females were recruited by volunteer request. Peripheral venous whole blood was sampled at 04:00 am, after 6 h of sleep and after 6 h of sleep deprivation. We used within-subjects design (all subjects were their own control). Blood serum from each subject was depleted before protein digestion by trypsin and iTRAQ labeling. Labled peptides were analyzed by mass spectrometry (LTQ OritrapVelos Elite) connected to a LC system (Dionex Ultimate NCR-3000RS).
Results
We identified 725 proteins in human blood serum. 34 proteins were significantly differentially expressed after 6 h of sleep deprivation at night. Out of 34 proteins, 14 proteins were up-regulated, and 20 proteins were down-regulated. We emphasized the functionality of the 16 proteins commonly differentiated in all 8 subjects and the relation to pathological conditions. In addition, we discussed Histone H4 (H4) and protein S100-A6/Calcyclin (S10A6) that were upregulated more than 1.5-fold. Finally, we discussed affected biological process- and molecular function categories.
Conclusions
Overall, our study suggest that acute sleep deprivation, at least in females, affects several known biological processes- and molecular function categories and associates to proteins that also are changed under pathological conditions like impaired coagulation, oxidative stress, immune suppression, neurodegenerative related disorder, and cancer. Data are available via ProteomeXchange with identifier PXD021004.
Collapse
|
10
|
Mielnicka A, Michaluk P. Exocytosis in Astrocytes. Biomolecules 2021; 11:1367. [PMID: 34572580 PMCID: PMC8471187 DOI: 10.3390/biom11091367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022] Open
Abstract
Until recently, astrocytes were thought to be a part of a simple "brain glue" providing only a supporting role for neurons. However, the discoveries of the last two decades have proven astrocytes to be dynamic partners participating in brain metabolism and actively influencing communication between neurons. The means of astrocyte-neuron communication are diverse, although regulated exocytosis has received the most attention but also caused the most debate. Similar to most of eukaryotic cells, astrocytes have a complex range of vesicular organelles which can undergo exocytosis as well as intricate molecular mechanisms that regulate this process. In this review, we focus on the components needed for regulated exocytosis to occur and summarise the knowledge about experimental evidence showing its presence in astrocytes.
Collapse
Affiliation(s)
| | - Piotr Michaluk
- BRAINCITY, Laboratory of Neurobiology, The Nencki Institute of Experimental Biology, PAS, 02-093 Warsaw, Poland;
| |
Collapse
|
11
|
Broadhead MJ, Miles GB. A common role for astrocytes in rhythmic behaviours? Prog Neurobiol 2021; 202:102052. [PMID: 33894330 DOI: 10.1016/j.pneurobio.2021.102052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/03/2021] [Accepted: 04/13/2021] [Indexed: 01/16/2023]
Abstract
Astrocytes are a functionally diverse form of glial cell involved in various aspects of nervous system infrastructure, from the metabolic and structural support of neurons to direct neuromodulation of synaptic activity. Investigating how astrocytes behave in functionally related circuits may help us understand whether there is any conserved logic to the role of astrocytes within neuronal networks. Astrocytes are implicated as key neuromodulatory cells within neural circuits that control a number of rhythmic behaviours such as breathing, locomotion and circadian sleep-wake cycles. In this review, we examine the evidence that astrocytes are directly involved in the regulation of the neural circuits underlying six different rhythmic behaviours: locomotion, breathing, chewing, gastrointestinal motility, circadian sleep-wake cycles and oscillatory feeding behaviour. We discuss how astrocytes are integrated into the neuronal networks that regulate these behaviours, and identify the potential gliotransmission signalling mechanisms involved. From reviewing the evidence of astrocytic involvement in a range of rhythmic behaviours, we reveal a heterogenous array of gliotransmission mechanisms, which help to regulate neuronal networks. However, we also observe an intriguing thread of commonality, in the form of purinergic gliotransmission, which is frequently utilised to facilitate feedback inhibition within rhythmic networks to constrain a given behaviour within its operational range.
Collapse
Affiliation(s)
- Matthew J Broadhead
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK.
| | - Gareth B Miles
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| |
Collapse
|
12
|
Pandey A, Oliver R, Kar SK. Differential Gene Expression in Brain and Liver Tissue of Wistar Rats after Rapid Eye Movement Sleep Deprivation. Clocks Sleep 2020; 2:442-465. [PMID: 33114225 PMCID: PMC7711450 DOI: 10.3390/clockssleep2040033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Sleep is essential for the survival of most living beings. Numerous researchers have identified a series of genes that are thought to regulate "sleep-state" or the "deprived state". As sleep has a significant effect on physiology, we believe that lack of total sleep, or particularly rapid eye movement (REM) sleep, for a prolonged period would have a profound impact on various body tissues. Therefore, using the microarray method, we sought to determine which genes and processes are affected in the brain and liver of rats following nine days of REM sleep deprivation. Our findings showed that REM sleep deprivation affected a total of 652 genes in the brain and 426 genes in the liver. Only 23 genes were affected commonly, 10 oppositely, and 13 similarly across brain and liver tissue. Our results suggest that nine-day REM sleep deprivation differentially affects genes and processes in the brain and liver of rats.
Collapse
Affiliation(s)
- Atul Pandey
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Ryan Oliver
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Santosh K Kar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
- Nano Herb Research Laboratory, Kalinga Institute of Industrial Technology (KIIT) Technology Bio Incubator, Campus-11, KIIT Deemed to be University, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
13
|
Yoon SJ, Long NP, Jung KH, Kim HM, Hong YJ, Fang Z, Kim SJ, Kim TJ, Anh NH, Hong SS, Kwon SW. Systemic and Local Metabolic Alterations in Sleep-Deprivation-Induced Stress: A Multiplatform Mass-Spectrometry-Based Lipidomics and Metabolomics Approach. J Proteome Res 2019; 18:3295-3304. [PMID: 31313932 DOI: 10.1021/acs.jproteome.9b00234] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sleep deprivation (SD) is known to be associated with metabolic disorders and chronic diseases. Complex metabolic alterations induced by SD at omics scale and the associated biomarker candidates have been proposed. However, in vivo systemic and local metabolic shift patterns of the metabolome and lipidome in acute and chronic partial SD models remain to be elucidated. In the present study, the serum, hypothalamus, and hippocampus CA1 of sleep-deprived rats (SD rats) from acute and chronic sleep restriction models were analyzed using three different omics platforms for the discovery and mechanistic assessment of systemic and local SD-induced dysregulated metabolites. We found a similar pattern of systemic metabolome alterations between two models, for which the area under the curve (AUC) of receiver operating characteristic curves was AUC = 0.847 and 0.930 with the pseudotargeted and untargeted metabolomics approach, respectively. However, SD-induced systemic lipidome alterations were significantly different and appeared to be model-dependent (AUC = 0.374). Comprehensive pathway analysis of the altered lipidome and metabolome in the hypothalamus indicated the abnormal behavior of eight metabolic and lipid metabolic pathways. The metabolic alterations of the hippocampus CA1 was subtle in two SD models. Collectively, these results extend our understanding of the quality of sleep and suggest metabolic targets in developing diagnostic biomarkers for better SD control.
Collapse
Affiliation(s)
- Sang Jun Yoon
- College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Nguyen Phuoc Long
- College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Kyung-Hee Jung
- Department of Biomedical Sciences, College of Medicine , Inha University , Incheon 22212 , Republic of Korea
| | - Hyung Min Kim
- College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Yu Jin Hong
- College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Zhenghuan Fang
- Department of Biomedical Sciences, College of Medicine , Inha University , Incheon 22212 , Republic of Korea
| | - Sun Jo Kim
- College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Tae Joon Kim
- College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Nguyen Hoang Anh
- College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine , Inha University , Incheon 22212 , Republic of Korea
| | - Sung Won Kwon
- College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| |
Collapse
|
14
|
Ma B, Chen J, Mu Y, Xue B, Zhao A, Wang D, Chang D, Pan Y, Liu J. Proteomic analysis of rat serum revealed the effects of chronic sleep deprivation on metabolic, cardiovascular and nervous system. PLoS One 2018; 13:e0199237. [PMID: 30235220 PMCID: PMC6147403 DOI: 10.1371/journal.pone.0199237] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022] Open
Abstract
Sleep is an essential and fundamental physiological process that plays crucial roles in the balance of psychological and physical health. Sleep disorder may lead to adverse health outcomes. The effects of sleep deprivation were extensively studied, but its mechanism is still not fully understood. The present study aimed to identify the alterations of serum proteins associated with chronic sleep deprivation, and to seek for potential biomarkers of sleep disorder mediated diseases. A label-free quantitative proteomics technology was used to survey the global changes of serum proteins between normal rats and chronic sleep deprivation rats. A total of 309 proteins were detected in the serum samples and among them, 117 proteins showed more than 1.8-folds abundance alterations between the two groups. Functional enrichment and network analyses of the differential proteins revealed a close relationship between chronic sleep deprivation and several biological processes including energy metabolism, cardiovascular function and nervous function. And four proteins including pyruvate kinase M1, clusterin, kininogen1 and profilin-1were identified as potential biomarkers for chronic sleep deprivation. The four candidates were validated via parallel reaction monitoring (PRM) based targeted proteomics. In addition, protein expression alteration of the four proteins was confirmed in myocardium and brain of rat model. In summary, the comprehensive proteomic study revealed the biological impacts of chronic sleep deprivation and discovered several potential biomarkers. This study provides further insight into the pathological and molecular mechanisms underlying sleep disorders at protein level.
Collapse
Affiliation(s)
- Bo Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jincheng Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongying Mu
- Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing, China
| | - Bingjie Xue
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aimei Zhao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Daoping Wang
- Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing, China
| | - Dennis Chang
- National Institute of Complementary Medicine, Western Sydney University, Penrith, Australia
| | - Yinghong Pan
- Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing, China
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Science, Beijing, China
- * E-mail: (JL); (YP)
| | - Jianxun Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Institute of Complementary Medicine, Western Sydney University, Penrith, Australia
- * E-mail: (JL); (YP)
| |
Collapse
|
15
|
Bourdon AK, Spano GM, Marshall W, Bellesi M, Tononi G, Serra PA, Baghdoyan HA, Lydic R, Campagna SR, Cirelli C. Metabolomic analysis of mouse prefrontal cortex reveals upregulated analytes during wakefulness compared to sleep. Sci Rep 2018; 8:11225. [PMID: 30046159 PMCID: PMC6060152 DOI: 10.1038/s41598-018-29511-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/03/2018] [Indexed: 12/18/2022] Open
Abstract
By identifying endogenous molecules in brain extracellular fluid metabolomics can provide insight into the regulatory mechanisms and functions of sleep. Here we studied how the cortical metabolome changes during sleep, sleep deprivation and spontaneous wakefulness. Mice were implanted with electrodes for chronic sleep/wake recording and with microdialysis probes targeting prefrontal and primary motor cortex. Metabolites were measured using ultra performance liquid chromatography-high resolution mass spectrometry. Sleep/wake changes in metabolites were evaluated using partial least squares discriminant analysis, linear mixed effects model analysis of variance, and machine-learning algorithms. More than 30 known metabolites were reliably detected in most samples. When used by a logistic regression classifier, the profile of these metabolites across sleep, spontaneous wake, and enforced wake was sufficient to assign mice to their correct experimental group (pair-wise) in 80-100% of cases. Eleven of these metabolites showed significantly higher levels in awake than in sleeping mice. Some changes extend previous findings (glutamate, homovanillic acid, lactate, pyruvate, tryptophan, uridine), while others are novel (D-gluconate, N-acetyl-beta-alanine, N-acetylglutamine, orotate, succinate/methylmalonate). The upregulation of the de novo pyrimidine pathway, gluconate shunt and aerobic glycolysis may reflect a wake-dependent need to promote the synthesis of many essential components, from nucleic acids to synaptic membranes.
Collapse
Affiliation(s)
- Allen K Bourdon
- Department of Chemistry, University of Tennessee, Knoxville, TN, United States
| | - Giovanna Maria Spano
- Department of Psychiatry, University of Wisconsin, Madison, Madison, WI, United States
| | - William Marshall
- Department of Psychiatry, University of Wisconsin, Madison, Madison, WI, United States
| | - Michele Bellesi
- Department of Psychiatry, University of Wisconsin, Madison, Madison, WI, United States.,Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin, Madison, Madison, WI, United States
| | - Pier Andrea Serra
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Helen A Baghdoyan
- Department of Anesthesiology and Psychology, University of Tennessee, Knoxville, TN, United States.,Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Ralph Lydic
- Department of Anesthesiology and Psychology, University of Tennessee, Knoxville, TN, United States.,Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN, United States. .,Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, TN, United States.
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin, Madison, Madison, WI, United States.
| |
Collapse
|
16
|
Khan AM, Grant AH, Martinez A, Burns GAPC, Thatcher BS, Anekonda VT, Thompson BW, Roberts ZS, Moralejo DH, Blevins JE. Mapping Molecular Datasets Back to the Brain Regions They are Extracted from: Remembering the Native Countries of Hypothalamic Expatriates and Refugees. ADVANCES IN NEUROBIOLOGY 2018; 21:101-193. [PMID: 30334222 PMCID: PMC6310046 DOI: 10.1007/978-3-319-94593-4_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This article focuses on approaches to link transcriptomic, proteomic, and peptidomic datasets mined from brain tissue to the original locations within the brain that they are derived from using digital atlas mapping techniques. We use, as an example, the transcriptomic, proteomic and peptidomic analyses conducted in the mammalian hypothalamus. Following a brief historical overview, we highlight studies that have mined biochemical and molecular information from the hypothalamus and then lay out a strategy for how these data can be linked spatially to the mapped locations in a canonical brain atlas where the data come from, thereby allowing researchers to integrate these data with other datasets across multiple scales. A key methodology that enables atlas-based mapping of extracted datasets-laser-capture microdissection-is discussed in detail, with a view of how this technology is a bridge between systems biology and systems neuroscience.
Collapse
Affiliation(s)
- Arshad M Khan
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX, USA.
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA.
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA.
| | - Alice H Grant
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX, USA
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
- Graduate Program in Pathobiology, University of Texas at El Paso, El Paso, TX, USA
| | - Anais Martinez
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX, USA
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
- Graduate Program in Pathobiology, University of Texas at El Paso, El Paso, TX, USA
| | - Gully A P C Burns
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Marina del Rey, CA, USA
| | - Brendan S Thatcher
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Vishwanath T Anekonda
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Benjamin W Thompson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Zachary S Roberts
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Daniel H Moralejo
- Division of Neonatology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
17
|
O'Callaghan EK, Green EW, Franken P, Mongrain V. Omics Approaches in Sleep-Wake Regulation. Handb Exp Pharmacol 2018; 253:59-81. [PMID: 29796779 DOI: 10.1007/164_2018_125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Although sleep seems an obvious and simple behaviour, it is extremely complex involving numerous interactions both at the neuronal and the molecular levels. While we have gained detailed insight into the molecules and neuronal networks responsible for the circadian organization of sleep and wakefulness, the molecular underpinnings of the homeostatic aspect of sleep regulation are still unknown and the focus of a considerable research effort. In the last 20 years, the development of techniques allowing the simultaneous measurement of hundreds to thousands of molecular targets (i.e. 'omics' approaches) has enabled the unbiased study of the molecular pathways regulated by and regulating sleep. In this chapter, we will review how the different omics approaches, including transcriptomics, epigenomics, proteomics, and metabolomics, have advanced sleep research. We present relevant data in the framework of the two-process model in which circadian and homeostatic processes interact to regulate sleep. The integration of the different omics levels, known as 'systems genetics', will eventually lead to a better understanding of how information flows from the genome, to molecules, to networks, and finally to sleep both in health and disease.
Collapse
Affiliation(s)
- Emma K O'Callaghan
- Center for Advanced Research in Sleep Medicine and Research Center, Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada.,Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
| | - Edward W Green
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Valérie Mongrain
- Center for Advanced Research in Sleep Medicine and Research Center, Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada. .,Department of Neuroscience, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
18
|
Liu J, Xu Y, Kang Y, Cao S, Shi G, Cui H, Sun S, Wang L. The aberrantly expressed long non-coding RNA in the substantia nigra and corpus striatum of Nrf2-knockout mice. J Neurochem 2017; 143:65-75. [DOI: 10.1111/jnc.14141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/23/2017] [Accepted: 07/26/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Jian Liu
- Department of Human Anatomy; Hebei Medical University; Shijiazhuang China
| | - Yali Xu
- The Third Hospital of Hebei Medical University; Shijiazhuang China
| | - Yunxiao Kang
- Department of Neurobiology; Hebei Medical University; Shijiazhuang China
| | - Shanhu Cao
- Department of Biochemistry and Molecular Biology; Hebei Medical University; Shijiazhuang China
| | - Geming Shi
- Department of Neurobiology; Hebei Medical University; Shijiazhuang China
| | - Huixian Cui
- Department of Human Anatomy; Hebei Medical University; Shijiazhuang China
| | - Shaoguang Sun
- Department of Biochemistry and Molecular Biology; Hebei Medical University; Shijiazhuang China
| | - Lei Wang
- Department of Human Anatomy; Hebei Medical University; Shijiazhuang China
| |
Collapse
|
19
|
Kim JH, Ko PW, Lee HW, Jeong JY, Lee MG, Kim JH, Lee WH, Yu R, Oh WJ, Suk K. Astrocyte-derived lipocalin-2 mediates hippocampal damage and cognitive deficits in experimental models of vascular dementia. Glia 2017; 65:1471-1490. [DOI: 10.1002/glia.23174] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Jae-Hong Kim
- Department of Pharmacology; Kyungpook National University we of Medicine; Daegu Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Sciences; Kyungpook National University School of Medicine; Daegu Republic of Korea
| | - Pan-Woo Ko
- Department of Neurology; Kyungpook National University School of Medicine; Daegu Republic of Korea
- Brain Science & Engineering Institute; Kyungpook National University; Daegu Republic of Korea
| | - Ho-Won Lee
- Department of Neurology; Kyungpook National University School of Medicine; Daegu Republic of Korea
- Brain Science & Engineering Institute; Kyungpook National University; Daegu Republic of Korea
| | - Ji-Young Jeong
- Department of Pharmacology; Kyungpook National University we of Medicine; Daegu Republic of Korea
| | - Maan-Gee Lee
- Department of Pharmacology; Kyungpook National University we of Medicine; Daegu Republic of Korea
- Brain Science & Engineering Institute; Kyungpook National University; Daegu Republic of Korea
| | - Jong-Heon Kim
- Department of Pharmacology; Kyungpook National University we of Medicine; Daegu Republic of Korea
- Brain Science & Engineering Institute; Kyungpook National University; Daegu Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Sciences; Kyungpook National University School of Medicine; Daegu Republic of Korea
| | - Won-Ha Lee
- Department of Genetic Engineering; Kyungpook National University; Daegu Republic of Korea
| | - Ri Yu
- Korea Brain Research Institute; Daegu Republic of Korea
| | - Won-Jong Oh
- Korea Brain Research Institute; Daegu Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology; Kyungpook National University we of Medicine; Daegu Republic of Korea
- Brain Science & Engineering Institute; Kyungpook National University; Daegu Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Sciences; Kyungpook National University School of Medicine; Daegu Republic of Korea
| |
Collapse
|
20
|
Bohmbach K, Schwarz MK, Schoch S, Henneberger C. The structural and functional evidence for vesicular release from astrocytes in situ. Brain Res Bull 2017; 136:65-75. [PMID: 28122264 DOI: 10.1016/j.brainresbull.2017.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 12/31/2022]
Abstract
The concept of the tripartite synapse states that bi-directional signalling between perisynaptic astrocyte processes, presynaptic axonal boutons and postsynaptic neuronal structures defines the properties of synaptic information processing. Ca2+-dependent vesicular release from astrocytes, as one of the mechanisms of astrocyte-neuron communication, has attracted particular attention but has also been the subject of intense debate. In neurons, regulated vesicular release is a strongly coordinated process. It requires a complex release machinery comprised of many individual components ranging from vesicular neurotransmitter transporters and soluble NSF attachment protein receptors (SNARE) proteins to Ca2+-sensors and the proteins that spatially and temporally control exocytosis of synaptic vesicles. If astrocytes employ similar mechanisms to release neurotransmitters is less well understood. The aim of this review is therefore to discuss recent experimental evidence that sheds light on the central structural components responsible for vesicular release from astrocytes in situ.
Collapse
Affiliation(s)
- Kirsten Bohmbach
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany.
| | - Martin K Schwarz
- Department of Epileptology, University of Bonn Medical School, Bonn, Germany
| | - Susanne Schoch
- Institute of Neuropathology, University of Bonn Medical School, Bonn, Germany
| | - Christian Henneberger
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
21
|
Quantitative Proteomics of Sleep-Deprived Mouse Brains Reveals Global Changes in Mitochondrial Proteins. PLoS One 2016; 11:e0163500. [PMID: 27684481 PMCID: PMC5042483 DOI: 10.1371/journal.pone.0163500] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 09/09/2016] [Indexed: 12/13/2022] Open
Abstract
Sleep is a ubiquitous, tightly regulated, and evolutionarily conserved behavior observed in almost all animals. Prolonged sleep deprivation can be fatal, indicating that sleep is a physiological necessity. However, little is known about its core function. To gain insight into this mystery, we used advanced quantitative proteomics technology to survey the global changes in brain protein abundance. Aiming to gain a comprehensive profile, our proteomics workflow included filter-aided sample preparation (FASP), which increased the coverage of membrane proteins; tandem mass tag (TMT) labeling, for relative quantitation; and high resolution, high mass accuracy, high throughput mass spectrometry (MS). In total, we obtained the relative abundance ratios of 9888 proteins encoded by 6070 genes. Interestingly, we observed significant enrichment for mitochondrial proteins among the differentially expressed proteins. This finding suggests that sleep deprivation strongly affects signaling pathways that govern either energy metabolism or responses to mitochondrial stress. Additionally, the differentially-expressed proteins are enriched in pathways implicated in age-dependent neurodegenerative diseases, including Parkinson’s, Huntington’s, and Alzheimer’s, hinting at possible connections between sleep loss, mitochondrial stress, and neurodegeneration.
Collapse
|
22
|
Hu X, Yuan Y, Wang D, Su Z. Heterogeneous astrocytes: Active players in CNS. Brain Res Bull 2016; 125:1-18. [PMID: 27021168 DOI: 10.1016/j.brainresbull.2016.03.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 12/12/2022]
Abstract
Astrocytes, the predominant cell type that are broadly distributed in the brain and spinal cord, play key roles in maintaining homeostasis of the central nerve system (CNS) in physiological and pathological conditions. Increasing evidence indicates that astrocytes are a complex colony with heterogeneity on morphology, gene expression, function and many other aspects depending on their spatio-temporal distribution and activation level. In pathological conditions, astrocytes differentially respond to all kinds of insults, including injury and disease, and participate in the neuropathological process. Based on current studies, we here give an overview of the roles of heterogeneous astrocytes in CNS, especially in neuropathologies, which focuses on biological and functional diversity of astrocytes. We propose that a precise understanding of the heterogeneous astrocytes is critical to unlocking the secrets about pathogenesis and treatment of the mazy CNS.
Collapse
Affiliation(s)
- Xin Hu
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai, China
| | - Yimin Yuan
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai, China
| | - Dan Wang
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai, China
| | - Zhida Su
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai, China.
| |
Collapse
|
23
|
Harada K, Kamiya T, Tsuboi T. Gliotransmitter Release from Astrocytes: Functional, Developmental, and Pathological Implications in the Brain. Front Neurosci 2016; 9:499. [PMID: 26793048 PMCID: PMC4709856 DOI: 10.3389/fnins.2015.00499] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/15/2015] [Indexed: 12/20/2022] Open
Abstract
Astrocytes comprise a large population of cells in the brain and are important partners to neighboring neurons, vascular cells, and other glial cells. Astrocytes not only form a scaffold for other cells, but also extend foot processes around the capillaries to maintain the blood–brain barrier. Thus, environmental chemicals that exist in the blood stream could have potentially harmful effects on the physiological function of astrocytes. Although astrocytes are not electrically excitable, they have been shown to function as active participants in the development of neural circuits and synaptic activity. Astrocytes respond to neurotransmitters and contribute to synaptic information processing by releasing chemical transmitters called “gliotransmitters.” State-of-the-art optical imaging techniques enable us to clarify how neurotransmitters elicit the release of various gliotransmitters, including glutamate, D-serine, and ATP. Moreover, recent studies have demonstrated that the disruption of gliotransmission results in neuronal dysfunction and abnormal behaviors in animal models. In this review, we focus on the latest technical approaches to clarify the molecular mechanisms of gliotransmitter exocytosis, and discuss the possibility that exposure to environmental chemicals could alter gliotransmission and cause neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kazuki Harada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Tokyo, Japan
| | - Taichi Kamiya
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Tokyo, Japan
| | - Takashi Tsuboi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Tokyo, Japan
| |
Collapse
|