1
|
Karam G, Molaro A. Casting histone variants during mammalian reproduction. Chromosoma 2023:10.1007/s00412-023-00803-9. [PMID: 37347315 PMCID: PMC10356639 DOI: 10.1007/s00412-023-00803-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023]
Abstract
During mammalian reproduction, germ cell chromatin packaging is key to prepare parental genomes for fertilization and to initiate embryonic development. While chromatin modifications such as DNA methylation and histone post-translational modifications are well known to carry regulatory information, histone variants have received less attention in this context. Histone variants alter the stability, structure and function of nucleosomes and, as such, contribute to chromatin organization in germ cells. Here, we review histone variants expression dynamics during the production of male and female germ cells, and what is currently known about their parent-of-origin effects during reproduction. Finally, we discuss the apparent conundrum behind these important functions and their recent evolutionary diversification.
Collapse
Affiliation(s)
- Germaine Karam
- Genetics, Reproduction and Development Institute (iGReD), CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Antoine Molaro
- Genetics, Reproduction and Development Institute (iGReD), CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
2
|
de la Iglesia A, Jodar M, Oliva R, Castillo J. Insights into the sperm chromatin and implications for male infertility from a protein perspective. WIREs Mech Dis 2023; 15:e1588. [PMID: 36181449 DOI: 10.1002/wsbm.1588] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022]
Abstract
Male germ cells undergo an extreme but fascinating process of chromatin remodeling that begins in the testis during the last phase of spermatogenesis and continues through epididymal sperm maturation. Most of the histones are replaced by small proteins named protamines, whose high basicity leads to a tight genomic compaction. This process is epigenetically regulated at many levels, not only by posttranslational modifications, but also by readers, writers, and erasers, in a context of a highly coordinated postmeiotic gene expression program. Protamines are key proteins for acquiring this highly specialized chromatin conformation, needed for sperm functionality. Interestingly, and contrary to what could be inferred from its very specific DNA-packaging function across protamine-containing species, human sperm chromatin contains a wide spectrum of protamine proteoforms, including truncated and posttranslationally modified proteoforms. The generation of protamine knock-out models revealed not only chromatin compaction defects, but also collateral sperm alterations contributing to infertile phenotypes, evidencing the importance of sperm chromatin protamination toward the generation of a new individual. The unique features of sperm chromatin have motivated its study, applying from conventional to the most ground-breaking techniques to disentangle its peculiarities and the cellular mechanisms governing its successful conferment, especially relevant from the protein point of view due to the important epigenetic role of sperm nuclear proteins. Gathering and contextualizing the most striking discoveries will provide a global understanding of the importance and complexity of achieving a proper chromatin compaction and exploring its implications on postfertilization events and beyond. This article is categorized under: Reproductive System Diseases > Genetics/Genomics/Epigenetics Reproductive System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Alberto de la Iglesia
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain
| | - Meritxell Jodar
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain.,Biochemistry and Molecular Genetics Service, Hospital Clinic, Barcelona, Spain
| | - Rafael Oliva
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain.,Biochemistry and Molecular Genetics Service, Hospital Clinic, Barcelona, Spain
| | - Judit Castillo
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
3
|
Patankar A, Sudhakar DVS, Gajbhiye R, Surve S, Thangaraj K, Parte P. Proteomic and genetic dissection of testis-specific histone 2B in infertile men reveals its contribution to meiosis and sperm motility. F&S SCIENCE 2022; 3:322-330. [PMID: 35840050 DOI: 10.1016/j.xfss.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To investigate testis-specific histone 2B (TSH2B) and its gene anomalies in infertile men. DESIGN Case-control study. SETTING Basic science laboratory. PATIENT(S) Fertile and infertile men. INTERVENTION(S) Not applicable. MAIN OUTCOME MEASURE(S) The histone and protamine status of sperm was studied by aniline blue and chromomycin A3 staining, respectively. Testis-specific histone 2B, total H2B, and phosphorylated TSH2B (pTSH2B) were estimated by Western blot analysis. The frequency of genetic polymorphisms and rare variants in H2BC1 was studied by Sanger sequencing. Phosphosites on TSH2B in sperm were identified by reverse-phase high-performance liquid chromatography purification of TSH2B followed by mass spectrometric analysis. RESULT(S) Aniline blue and chromomycin A3 staining revealed significantly higher histone retention and low protamine in sperm of infertile men. Sperm TSH2B and total H2B levels were significantly lower in oligozoospermic and oligoasthenozoospermic men (in both groups). The TSH2B levels were comparable in asthenozoospermic men; however, the pTSH2B level was significantly low. The H2BC1 gene sequencing identified 6 variants, of which 2 are rare variants (rs368672899 and rs544942090) and 4 (rs4711096, rs4712959, rs4712960 and rs4712961) are single nucleotide polymorphisms. Minor allele frequency of 5'-untranslated region variant rs4711096 was significantly lower in infertile men (OR = 0.65). The rare nonsynonymous variant, rs368672899, p.Ser5Pro was seen in 1 oligoasthenoteratozoospermic individual. Interestingly, mass spectrometric analysis identified a site on TSH2B to bear a phosphate group in the sperm of fertile men. CONCLUSION(S) Our study reveals a defect in the replacement of somatic histones with testis-specific variants in infertile men. Chromatin compaction positively correlates with sperm motility, which is suggestive of its utility in diagnostic semen analysis of infertile individuals. Our observations with TSH2B and its cognate gene in sperm of infertile men indicate an essential role for TSH2B in meiosis and its phosphorylation in sperm motility, respectively.
Collapse
Affiliation(s)
- Aniket Patankar
- Department of Gamete Immunobiology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Digumarthi V S Sudhakar
- Department of Gamete Immunobiology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Rahul Gajbhiye
- Clinical Research Laboratory & Andrology Clinic, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Suchitra Surve
- Clinical Research Laboratory & Andrology Clinic, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Kumarasamy Thangaraj
- Council of Scientific and Industrial Research (CSIR)-Centre for Cellular and Molecular Biology, Hyderabad, India; Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Priyanka Parte
- Department of Gamete Immunobiology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive and Child Health, Mumbai, India.
| |
Collapse
|
4
|
H4K5 Butyrylation Coexist with Acetylation during Human Spermiogenesis and Are Retained in the Mature Sperm Chromatin. Int J Mol Sci 2022; 23:ijms232012398. [PMID: 36293256 PMCID: PMC9604518 DOI: 10.3390/ijms232012398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Male germ cells experience a drastic chromatin remodeling through the nucleo-histone to nucleo-protamine (NH-NP) transition necessary for proper sperm functionality. Post-translational modifications (PTMs) of H4 Lys5, such as acetylation (H4K5ac), play a crucial role in epigenetic control of nucleosome disassembly facilitating protamine incorporation into paternal DNA. It has been shown that butyrylation on the same residue (H4K5bu) participates in temporal regulation of NH-NP transition in mice, delaying the bromodomain testis specific protein (BRDT)-dependent nucleosome disassembly and potentially marking retained nucleosomes. However, no information was available so far on this modification in human sperm. Here, we report a dual behavior of H4K5bu and H4K5ac in human normal spermatogenesis, suggesting a specific role of H4K5bu during spermatid elongation, coexisting with H4K5ac although with different starting points. This pattern is stable under different testicular pathologies, suggesting a highly conserved function of these modifications. Despite a drastic decrease of both PTMs in condensed spermatids, they are retained in ejaculated sperm, with 30% of non-colocalizing nucleosome clusters, which could reflect differential paternal genome retention. Whereas no apparent effect of these PTMs was observed associated with sperm quality, their presence in mature sperm could entail a potential role in the zygote.
Collapse
|
5
|
Wang T, Gao H, Li W, Liu C. Essential Role of Histone Replacement and Modifications in Male Fertility. Front Genet 2019; 10:962. [PMID: 31649732 PMCID: PMC6792021 DOI: 10.3389/fgene.2019.00962] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/10/2019] [Indexed: 01/19/2023] Open
Abstract
Spermiogenesis is a complex cellular differentiation process that the germ cells undergo a distinct morphological change, and the protamines replace the core histones to facilitate chromatin compaction in the sperm head. Recent studies show the essential roles of epigenetic events during the histone-to-protamine transition. Defects in either the replacement or the modification of histones might cause male infertility with azoospermia, oligospermia or teratozoospermia. Here, we summarize recent advances in our knowledge of how epigenetic regulators, such as histone variants, histone modification and their related chromatin remodelers, facilitate the histone-to-protamine transition during spermiogenesis. Understanding the molecular mechanism underlying the modification and replacement of histones during spermiogenesis will enable the identification of epigenetic biomarkers of male infertility, and shed light on potential therapies for these patients in the future.
Collapse
Affiliation(s)
- Tong Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hui Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Mahadevan IA, Pentakota S, Roy R, Bhaduri U, Satyanarayana Rao MR. TH2BS11ph histone mark is enriched in the unsynapsed axes of the XY body and predominantly associates with H3K4me3-containing genomic regions in mammalian spermatocytes. Epigenetics Chromatin 2019; 12:53. [PMID: 31493790 PMCID: PMC6731575 DOI: 10.1186/s13072-019-0300-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
Background TH2B is a major histone variant that replaces about 80–85% of somatic H2B in mammalian spermatocytes and spermatids. The post-translational modifications (PTMs) on TH2B have been well characterised in spermatocytes and spermatids. However, the biological function(s) of these PTMs on TH2B have not been deciphered in great detail. In our attempt to decipher the unique function(s) of histone variant TH2B, we detected the modification in the N-terminal tail, Serine 11 phosphorylation on TH2B (TH2BS11ph) in spermatocytes. Results The current study is aimed at understanding the function of the TH2BS11ph modification in the context of processes that occur during meiotic prophase I. Immunofluorescence studies with the highly specific antibodies revealed that TH2BS11ph histone mark is enriched in the unsynapsed axes of the sex body and is associated with XY body-associated proteins like Scp3, γH2AX, pATM, ATR, etc. Genome-wide occupancy studies as determined by ChIP sequencing experiments in P20 C57BL6 mouse testicular cells revealed that TH2BS11ph is enriched in X and Y chromosomes confirming the immunofluorescence staining pattern in the pachytene spermatocytes. Apart from the localisation of this modification in the XY body, TH2BS11ph is majorly associated with H3K4me3-containing genomic regions like gene promoters, etc. These data were also found to corroborate with the ChIP sequencing data of TH2BS11ph histone mark carried out in P12 C57BL6 mouse testicular cells, wherein we found the predominant localisation of this modification at H3K4me3-containing genomic regions. Mass spectrometry analysis of proteins that associate with TH2BS11ph-containing mononucleosomes revealed key proteins linked with the functions of XY body, pericentric heterochromatin and transcription. Conclusions TH2BS11ph modification is densely localised in the unsynapsed axes of the XY body of the pachytene spermatocyte. By ChIP sequencing studies in mouse P12 and P20 testicular cells, we demonstrate that TH2BS11ph is predominantly associated with H3K4me3 positive genomic regions like gene promoters, etc. We propose that TH2BS11ph modification could act alone or in concert with other histone modifications to recruit the appropriate transcription or XY body recombination protein machinery at specific genomic loci.
Collapse
Affiliation(s)
- Iyer Aditya Mahadevan
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO., Bangalore, 560064, India
| | - Satyakrishna Pentakota
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Raktim Roy
- The Graduate School of the Stowers Institute for Medical Research, 1000E. 50th St., Kansas City, MO, 64110, USA
| | - Utsa Bhaduri
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO., Bangalore, 560064, India
| | - Manchanahalli R Satyanarayana Rao
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO., Bangalore, 560064, India.
| |
Collapse
|
7
|
Beedle MT, Topping T, Hogarth C, Griswold M. Differential localization of histone variant TH2B during the first round compared with subsequent rounds of spermatogenesis. Dev Dyn 2019; 248:488-500. [PMID: 30939211 PMCID: PMC6545161 DOI: 10.1002/dvdy.33] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/20/2019] [Accepted: 03/29/2019] [Indexed: 02/02/2023] Open
Abstract
Background Male germ cells are unique because they express a substantial number of variants of the general DNA binding proteins, known as histones, yet the biological significance of these variants is still unknown. In the present study, we aimed to address the expression pattern of the testis‐specific histone H2B variant (TH2B) and the testis‐specific histone H2A variant (TH2A) within the neonatal mouse testis. Results We demonstrate that TH2B and TH2A are present in a testis‐enriched for undifferentiated spermatogonia. Co‐localization studies with an undifferentiated marker, ZBTB16, revealed that TH2B and ZBTB16 co‐localize in the neonatal testis. Upon the appearance of the primary spermatocytes, TH2B no longer co‐localized with the ZBTB16 positive spermatogonia but were instead detected within the differentiating spermatogonia. This pattern of expression where TH2B and ZBTB16 no longer co‐localize was maintained in the adult testis. Conclusion These findings are in contrast to previous studies, which demonstrated that TH2B and TH2A were found only in adult spermatocytes. Our data are in support of a switch in the expression of these variants following the first round of spermatogonial differentiation. These studies reinforce current understandings that spermatogonia within the neonatal mouse testis are inherently different from those residing within the adult testis. Contrary to previous beliefs, testis specific histone variants TH2B and TH2A are also expressed expressed in undifferentiated spermatogonia in the neonatal mouse testis. Upon the appearance of the primary spermatocytes, TH2B switches its expression from spermatogonia to the spermatocyte population. This study reinforces the idea that spermatogonia in the neonatal mouse testis is inherently different than those residing within the adult.
Collapse
Affiliation(s)
- My-Thanh Beedle
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Traci Topping
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Cathryn Hogarth
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Michael Griswold
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington
| |
Collapse
|
8
|
Mishra LN, Shalini V, Gupta N, Ghosh K, Suthar N, Bhaduri U, Rao MRS. Spermatid-specific linker histone HILS1 is a poor condenser of DNA and chromatin and preferentially associates with LINE-1 elements. Epigenetics Chromatin 2018; 11:43. [PMID: 30068355 PMCID: PMC6069787 DOI: 10.1186/s13072-018-0214-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/25/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Linker histones establish and maintain higher-order chromatin structure. Eleven linker histone subtypes have been reported in mammals. HILS1 is a spermatid-specific linker histone, and its expression overlaps with the histone-protamine exchange process during mammalian spermiogenesis. However, the role of HILS1 in spermatid chromatin remodeling is largely unknown. RESULTS In this study, we demonstrate using circular dichroism spectroscopy that HILS1 is a poor condenser of DNA and chromatin compared to somatic linker histone H1d. Genome-wide occupancy study in elongating/condensing spermatids revealed the preferential binding of HILS1 to the LINE-1 (L1) elements within the intergenic and intronic regions of rat spermatid genome. We observed specific enrichment of the histone PTMs like H3K9me3, H4K20me3 and H4 acetylation marks (H4K5ac and H4K12ac) in the HILS1-bound chromatin complex, whereas H3K4me3 and H3K27me3 marks were absent. CONCLUSIONS HILS1 possesses significantly lower α-helicity compared to other linker histones such as H1t and H1d. Interestingly, in contrast to the somatic histone variant H1d, HILS1 is a poor condenser of chromatin which demonstrate the idea that this particular linker histone variant may have distinct role in histone to protamine replacement. Based on HILS1 ChIP-seq analysis of elongating/condensing spermatids, we speculate that HILS1 may provide a platform for the structural transitions and forms the higher-order chromatin structures encompassing LINE-1 elements during spermiogenesis.
Collapse
Affiliation(s)
- Laxmi Narayan Mishra
- Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India.,Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Vasantha Shalini
- Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Nikhil Gupta
- Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India.,Epigenetics and Cell Fate, UMR7216, CNRS, University Paris Diderot, Sorbonne Paris Cite, 75013, Paris, France
| | - Krittika Ghosh
- InterpretOmics India Pvt. Ltd., #329, 7th Main, HAL II Stage 80 Feet Road, Indira Nagar, Bangalore, 560008, India
| | - Neeraj Suthar
- InterpretOmics India Pvt. Ltd., #329, 7th Main, HAL II Stage 80 Feet Road, Indira Nagar, Bangalore, 560008, India
| | - Utsa Bhaduri
- Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - M R Satyanarayana Rao
- Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India.
| |
Collapse
|
9
|
Champroux A, Cocquet J, Henry-Berger J, Drevet JR, Kocer A. A Decade of Exploring the Mammalian Sperm Epigenome: Paternal Epigenetic and Transgenerational Inheritance. Front Cell Dev Biol 2018; 6:50. [PMID: 29868581 PMCID: PMC5962689 DOI: 10.3389/fcell.2018.00050] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/18/2018] [Indexed: 12/12/2022] Open
Abstract
The past decade has seen a tremendous increase in interest and progress in the field of sperm epigenetics. Studies have shown that chromatin regulation during male germline development is multiple and complex, and that the spermatozoon possesses a unique epigenome. Its DNA methylation profile, DNA-associated proteins, nucleo-protamine distribution pattern and non-coding RNA set up a unique epigenetic landscape which is delivered, along with its haploid genome, to the oocyte upon fertilization, and therefore can contribute to embryogenesis and to the offspring health. An emerging body of compelling data demonstrates that environmental exposures and paternal lifestyle can change the sperm epigenome and, consequently, may affect both the embryonic developmental program and the health of future generations. This short review will attempt to provide an overview of what is currently known about sperm epigenome and the existence of transgenerational epigenetic inheritance of paternally acquired traits that may contribute to the offspring phenotype.
Collapse
Affiliation(s)
- Alexandre Champroux
- GReD, Laboratoire “Génétique, Reproduction and Développement,” UMR Centre National de la Recherche Scientifique 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Julie Cocquet
- INSERM U1016, Institut Cochin, Centre National de la Recherche Scientifique UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Joëlle Henry-Berger
- GReD, Laboratoire “Génétique, Reproduction and Développement,” UMR Centre National de la Recherche Scientifique 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Joël R. Drevet
- GReD, Laboratoire “Génétique, Reproduction and Développement,” UMR Centre National de la Recherche Scientifique 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Ayhan Kocer
- GReD, Laboratoire “Génétique, Reproduction and Développement,” UMR Centre National de la Recherche Scientifique 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
10
|
Xie C, Shen H, Zhang H, Yan J, Liu Y, Yao F, Wang X, Cheng Z, Tang TS, Guo C. Quantitative proteomics analysis reveals alterations of lysine acetylation in mouse testis in response to heat shock and X-ray exposure. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:464-472. [DOI: 10.1016/j.bbapap.2017.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
|
11
|
Kwak HG, Suzuki T, Dohmae N. Global mapping of post-translational modifications on histone H3 variants in mouse testes. Biochem Biophys Rep 2017; 11:1-8. [PMID: 28955761 PMCID: PMC5614684 DOI: 10.1016/j.bbrep.2017.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/23/2017] [Indexed: 11/17/2022] Open
Abstract
Mass spectrometry (MS)-based characterization is important in proteomic research for verification of structural features and functional understanding of gene expression. Post-translational modifications (PTMs) such as methylation and acetylation have been reported to be associated with chromatin remodeling during spermatogenesis. Although antibody- and MS-based approaches have been applied for characterization of PTMs on H3 variants during spermatogenesis, variant-specific PTMs are still underexplored. We identified several lysine modifications in H3 variants, including testis-specific histone H3 (H3t), through their successful separation with MS-based strategy, based on differences in masses, retention times, and presence of immonium ions. Besides methylation and acetylation, we detected formylation as a novel PTM on H3 variants in mouse testes. These patterns were also observed in H3t. Our data provide high-throughput structural information about PTMs on H3 variants in mouse testes and show possible applications of this strategy in future proteomic studies on histone PTMs. Various post-translational modifications in histone H3 variants were characterized in the mouse testes. We specifically identified similar modified patterns based on immonium ions. Novel modified lysines in testis-specific H3 histone, H3t, were verified. Our approach will be helpful for the discovery of other novel or specific modifications during spermatogenesis.
Collapse
Key Words
- DTT, dithiothreitol
- ESI-TRAP, electrospray TRAP
- FDR, false discovery rate
- H2SO4, sulfuric acid
- HCD, high-energy collision dissociation
- HFBA, heptafluorobutyric acid
- HPLC, high performance liquid chromatography
- ISD, in source decay
- MALDI, matrix-assisted laser desorption/ionization
- MS, mass spectrometry
- Mass spectrometry
- PTMs, post-translational modifications
- Post-translational modification
- RP, reverse phase
- SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis
- Spermatogenesis
- TCA, trichloroacetic acid
- TFA, trifluoroacetic acid
- Testis-specific H3 histone
Collapse
|
12
|
Identification of Posttranslational Modifications of Endogenous Chromatin Proteins From Testicular Cells by Mass Spectrometry. Methods Enzymol 2017; 586:115-142. [PMID: 28137559 DOI: 10.1016/bs.mie.2016.09.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chromatin architecture in mammalian spermatogenesis undergoes extensive structural and functional reorganization during which several testis-specific histone variants and other chromatin proteins are expressed in a stage-dependent manner. The most dramatic change in chromatin composition is observed during spermiogenesis where nucleosomal chromatin is transformed into nucleoprotamine fiber. Role of posttranslational modification (PTM) of somatic canonical histones and histone variants is well documented and effect several chromatin-templated events. PTM of testis-specific chromatin proteins is proposed to orchestrate chromatin-templated events during mammalian spermatogenesis and their identification and subsequent functional characterization is key to understand chromatin restructuring events and establishment of sperm epigenome. Here, we present protocols for the purification of endogenous testis chromatin proteins from different stages of spermatogenesis and identification of their PTM repertoire by mass spectrometry through examples of testis-specific histone variants (TH2B and HILS1), and transition proteins (TP1 and TP2).
Collapse
|
13
|
Kwak HG, Dohmae N. Proteomic characterization of histone variants in the mouse testis by mass spectrometry-based top-down analysis. Biosci Trends 2016; 10:357-364. [PMID: 27545216 DOI: 10.5582/bst.2016.01090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Various histones, including testis-specific histones, exist during spermatogenesis and some of them have been reported to play a key role in chromatin remodeling. Mass spectrometry (MS)-based characterization has become the important step to understand histone structures. Although individual histones or partial histone variant groups have been characterized, the comprehensive analysis of histone variants has not yet been conducted in the mouse testis. Here, we present the comprehensive separation and characterization of histone variants from mouse testes by a top-down approach using MS. Histone variants were successfully separated on a reversed phase column using high performance liquid chromatography (HPLC) with an ion-pairing reagent. Increasing concentrations of testis-specific histones were observed in the mouse testis and some somatic histones increased in the epididymis. Specifically, the increase of mass abundance in H3.2 in the epididymis was inversely proportional to the decrease in H3t in the testis, which was approximately 80%. The top-down characterization of intact histone variants in the mouse testis was performed using LC-MS/MS. The masses of separated histone variants and their expected post-translation modifications were calculated by performing deconvolution with information taken from the database. TH2A, TH2B and H3t were characterized by MS/MS fragmentation. Our approach provides comprehensive knowledge for identification of histone variants in the mouse testis that will contribute to the structural and functional research of histone variants during spermatogenesis.
Collapse
Affiliation(s)
- Ho-Geun Kwak
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science
| | | |
Collapse
|
14
|
Samanta L, Swain N, Ayaz A, Venugopal V, Agarwal A. Post-Translational Modifications in sperm Proteome: The Chemistry of Proteome diversifications in the Pathophysiology of male factor infertility. Biochim Biophys Acta Gen Subj 2016; 1860:1450-65. [DOI: 10.1016/j.bbagen.2016.04.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/26/2016] [Accepted: 04/04/2016] [Indexed: 12/18/2022]
|
15
|
Bao J, Bedford MT. Epigenetic regulation of the histone-to-protamine transition during spermiogenesis. Reproduction 2016; 151:R55-70. [PMID: 26850883 DOI: 10.1530/rep-15-0562] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/05/2016] [Indexed: 12/19/2022]
Abstract
In mammals, male germ cells differentiate from haploid round spermatids to flagella-containing motile sperm in a process called spermiogenesis. This process is distinct from somatic cell differentiation in that the majority of the core histones are replaced sequentially, first by transition proteins and then by protamines, facilitating chromatin hyper-compaction. This histone-to-protamine transition process represents an excellent model for the investigation of how epigenetic regulators interact with each other to remodel chromatin architecture. Although early work in the field highlighted the critical roles of testis-specific transcription factors in controlling the haploid-specific developmental program, recent studies underscore the essential functions of epigenetic players involved in the dramatic genome remodeling that takes place during wholesale histone replacement. In this review, we discuss recent advances in our understanding of how epigenetic players, such as histone variants and histone writers/readers/erasers, rewire the haploid spermatid genome to facilitate histone substitution by protamines in mammals.
Collapse
Affiliation(s)
- Jianqiang Bao
- Department of Epigenetics and Molecular CarcinogenesisThe University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular CarcinogenesisThe University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| |
Collapse
|
16
|
Mapping of post-translational modifications of spermatid-specific linker histone H1-like protein, HILS1. J Proteomics 2015; 128:218-30. [PMID: 26257145 DOI: 10.1016/j.jprot.2015.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 12/29/2022]
Abstract
In mammalian spermiogenesis, haploid round spermatids undergo dramatic biochemical and morphological changes and transform into motile mature spermatozoa. A majority of the histones are replaced by transition proteins during mid-spermiogenesis and later replaced by protamines, which occupy the sperm chromatin. In mammals, 11 linker histone H1 subtypes have been reported. Among them, H1t, HILS1, and H1T2 are uniquely expressed in testis, with the expression of HILS1 and H1T2 restricted to spermiogenesis. However, there is a lack of knowledge about linker histone role in the nuclear reorganization during mammalian spermiogenesis. Here, we report a method for separation of endogenous HILS1 protein from other rat testis linker histones by reversed-phase high-performance liquid chromatography (RP-HPLC) and identification of 15 novel post-translational modifications of HILS1, which include lysine acetylation and serine/threonine/tyrosine phosphorylation sites. Immunofluorescence studies demonstrate the presence of linker histone HILS1 and HILS1Y78p during different steps of spermiogenesis from early elongating to condensing spermatids.
Collapse
|
17
|
Shaytan AK, Landsman D, Panchenko AR. Nucleosome adaptability conferred by sequence and structural variations in histone H2A-H2B dimers. Curr Opin Struct Biol 2015; 32:48-57. [PMID: 25731851 DOI: 10.1016/j.sbi.2015.02.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/27/2015] [Accepted: 02/06/2015] [Indexed: 12/15/2022]
Abstract
Nucleosome variability is essential for their functions in compacting the chromatin structure and regulation of transcription, replication and cell reprogramming. The DNA molecule in nucleosomes is wrapped around an octamer composed of four types of core histones (H3, H4, H2A, H2B). Nucleosomes represent dynamic entities and may change their conformation, stability and binding properties by employing different sets of histone variants or by becoming post-translationally modified. There are many variants of histones H2A and H2B. Specific H2A and H2B variants may preferentially associate with each other resulting in different combinations of variants and leading to the increased combinatorial complexity of nucleosomes. In addition, the H2A-H2B dimer can be recognized and substituted by chaperones/remodelers as a distinct unit, can assemble independently and is stable during nucleosome unwinding. In this review we discuss how sequence and structural variations in H2A-H2B dimers may provide necessary complexity and confer the nucleosome functional variability.
Collapse
Affiliation(s)
- Alexey K Shaytan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - David Landsman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Anna R Panchenko
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|