1
|
Hou J, Deng Q, Qiu X, Liu S, Li Y, Huang C, Wang X, Zhang Q, Deng X, Zhong Z, Zhong W. Proteomic analysis of plasma proteins from patients with cardiac rupture after acute myocardial infarction using TMT-based quantitative proteomics approach. Clin Proteomics 2024; 21:18. [PMID: 38429673 PMCID: PMC10908035 DOI: 10.1186/s12014-024-09474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 02/23/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Cardiac rupture (CR) is a rare but catastrophic mechanical complication of acute myocardial infarction (AMI) that seriously threatens human health. However, the reliable biomarkers for clinical diagnosis and the underlying signaling pathways insights of CR has yet to be elucidated. METHODS In the present study, a quantitative approach with tandem mass tag (TMT) labeling and liquid chromatography-tandem mass spectrometry was used to characterize the differential protein expression profiles of patients with CR. Plasma samples were collected from patients with CR (n = 37), patients with AMI (n = 47), and healthy controls (n = 47). Candidate proteins were selected for validation by multiple reaction monitoring (MRM) and enzyme-linked immunosorbent assay (ELISA). RESULTS In total, 1208 proteins were quantified and 958 differentially expressed proteins (DEPs) were identified. The difference in the expression levels of the DEPs was more noticeable between the CR and Con groups than between the AMI and Con groups. Bioinformatics analysis showed most of the DEPs to be involved in numerous crucial biological processes and signaling pathways, such as RNA transport, ribosome, proteasome, and protein processing in the endoplasmic reticulum, as well as necroptosis and leukocyte transendothelial migration, which might play essential roles in the complex pathological processes associated with CR. MRM analysis confirmed the accuracy of the proteomic analysis results. Four proteins i.e., C-reactive protein (CRP), heat shock protein beta-1 (HSPB1), vinculin (VINC) and growth/differentiation factor 15 (GDF15), were further validated via ELISA. By receiver operating characteristic (ROC) analysis, combinations of these four proteins distinguished CR patients from AMI patients with a high area under the curve (AUC) value (0.895, 95% CI, 0.802-0.988, p < 0.001). CONCLUSIONS Our study highlights the value of comprehensive proteomic characterization for identifying plasma proteome changes in patients with CR. This pilot study could serve as a valid foundation and initiation point for elucidation of the mechanisms of CR, which might aid in identifying effective diagnostic biomarkers in the future.
Collapse
Affiliation(s)
- Jingyuan Hou
- Research Experimental Center, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
- GuangDong Engineering Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, Guangdong, 514031, China
| | - Qiaoting Deng
- Research Experimental Center, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
| | - Xiaohong Qiu
- Meizhou clinical Medical School, Guangdong Medical University, Meizhou, Guangdong, 514031, China
| | - Sudong Liu
- Research Experimental Center, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
| | - Youqian Li
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China
| | - Changjing Huang
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China
| | - Xianfang Wang
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China
| | - Qunji Zhang
- Research Experimental Center, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
| | - Xunwei Deng
- Research Experimental Center, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
| | - Zhixiong Zhong
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China.
| | - Wei Zhong
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China.
| |
Collapse
|
2
|
Jafari A, Farahani M, Abdollahpour-Alitappeh M, Manzari-Tavakoli A, Yazdani M, Rezaei-Tavirani M. Unveiling diagnostic and therapeutic strategies for cervical cancer: biomarker discovery through proteomics approaches and exploring the role of cervical cancer stem cells. Front Oncol 2024; 13:1277772. [PMID: 38328436 PMCID: PMC10847843 DOI: 10.3389/fonc.2023.1277772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/27/2023] [Indexed: 02/09/2024] Open
Abstract
Cervical cancer (CC) is a major global health problem and leading cause of cancer deaths among women worldwide. Early detection through screening programs has reduced mortality; however, screening compliance remains low. Identifying non-invasive biomarkers through proteomics for diagnosis and monitoring response to treatment could improve patient outcomes. Here we review recent proteomics studies which have uncovered biomarkers and potential drug targets for CC. Additionally, we explore into the role of cervical cancer stem cells and their potential implications in driving CC progression and therapy resistance. Although challenges remain, proteomics has the potential to revolutionize the field of cervical cancer research and improve patient outcomes.
Collapse
Affiliation(s)
- Ameneh Jafari
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Farahani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Asma Manzari-Tavakoli
- Department of Biology, Faculty of Science, Rayan Center for Neuroscience and Behavior, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohsen Yazdani
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | |
Collapse
|
3
|
Zhuang L, Xie X, Wang L, Weng X, Xiu Y, Liu D, Zhong L. Assessment of High-Risk Human Papillomavirus Infection Characteristics in Cervical Squamous Cell Carcinoma and Adenocarcinoma in China. Healthc Policy 2022; 15:2043-2055. [PMID: 36348757 PMCID: PMC9637370 DOI: 10.2147/rmhp.s384342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022] Open
Abstract
Background The characteristics of high-risk human papillomavirus (HR-HPV) infection in different pathological types of cervical cancer in China are unclear. The aim of this study was to evaluate HR-HPV genotypes and age stratification with cervical squamous cell carcinoma (SCC) and adenocarcinoma (ADC) in China. Materials and Methods Patients diagnosed with cervical cancer by histopathology in Fujian Maternity and Child Health Hospital from January 1, 2014, to December 31, 2017, were included in this study. The HR-HPV genotype was analyzed in cervical specimens. Logistic regression was used to calculate odds ratios (ORs). All tests of statistical significance were two-sided, and the P value<0.05. Results A total of 1,590,476 women were screened for cervical cancer, and 688 cervical cancers were detected, including 554 SCC and 93 ADC. The overall HR-HPV infection rate in SCC was higher than that in ADC (91.2% vs 81.7%, P=0.005). HPV-16 was the most prevalent genotype in SCC (70.0%) but was only 31.2% in ADC (P<0.001). However, the prevalence of HPV-18 in ADC was significantly higher than that in SCC (45.2% vs 7.0%; P<0.001). In SCC, the prevalence of HPV-16 was consistently much higher than that of HPV-18 regardless of age group. Among ADC, the prevalence of HPV-18 was higher than that of HPV-16 in women aged ≥45 years. Interestingly, in those aged <35 years, the highest prevalence was observed for HPV-16. HPV-18 infection has the highest risk of ADC (OR= 12.109; P< 0.001), and HPV-45 and HPV-51 were also found to be associated with the occurrence of ADC. However, HPV-16 infection greatly increased the risk of having histological SCC. Conclusion HPV-16 and HPV-18 infections are key risk factors for SCC and ADC. The use of HR-HPV genotyping tests in cervical cancer screening and vaccination against major HPV genotypes could reduce the incidence of cervical cancer.
Collapse
Affiliation(s)
- Lijuan Zhuang
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, People’s Republic of China
| | - Xiaoyan Xie
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, People’s Republic of China
| | - Lihua Wang
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, People’s Republic of China
| | - Xiulan Weng
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, People’s Republic of China
| | - Yingling Xiu
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, People’s Republic of China
| | - Dabin Liu
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, People’s Republic of China
| | - Liying Zhong
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, People’s Republic of China
- Correspondence: Liying Zhong; Dabin Liu, Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, 18 Daoshan Road, Fuzhou, 350001, People’s Republic of China, Tel +86-13860610354; +86-13489997701, Fax +86-591-87551247, Email ;
| |
Collapse
|
4
|
Mukherjee A, Pednekar CB, Kolke SS, Kattimani M, Duraisamy S, Burli AR, Gupta S, Srivastava S. Insights on Proteomics-Driven Body Fluid-Based Biomarkers of Cervical Cancer. Proteomes 2022; 10:proteomes10020013. [PMID: 35645371 PMCID: PMC9149910 DOI: 10.3390/proteomes10020013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Cervical cancer is one of the top malignancies in women around the globe, which still holds its place despite being preventable at early stages. Gynecological conditions, even maladies like cervical cancer, still experience scrutiny from society owing to prevalent taboo and invasive screening methods, especially in developing economies. Additionally, current diagnoses lack specificity and sensitivity, which prolong diagnosis until it is too late. Advances in omics-based technologies aid in discovering differential multi-omics profiles between healthy individuals and cancer patients, which could be utilized for the discovery of body fluid-based biomarkers. Body fluids are a promising potential alternative for early disease detection and counteracting the problems of invasiveness while also serving as a pool of potential biomarkers. In this review, we will provide details of the body fluids-based biomarkers that have been reported in cervical cancer. Here, we have presented our perspective on proteomics for global biomarker discovery by addressing several pertinent problems, including the challenges that are confronted in cervical cancer. Further, we also used bioinformatic methods to undertake a meta-analysis of significantly up-regulated biomolecular profiles in CVF from cervical cancer patients. Our analysis deciphered alterations in the biological pathways in CVF such as immune response, glycolytic processes, regulation of cell death, regulation of structural size, protein polymerization disease, and other pathways that can cumulatively contribute to cervical cancer malignancy. We believe, more extensive research on such biomarkers, will speed up the road to early identification and prevention of cervical cancer in the near future.
Collapse
Affiliation(s)
- Amrita Mukherjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India;
| | | | - Siddhant Sujit Kolke
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India;
| | - Megha Kattimani
- Undergraduate Department, Indian Institute of Science, Bengaluru 560012, India;
| | - Subhiksha Duraisamy
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, India;
| | - Ananya Raghu Burli
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India;
| | - Sudeep Gupta
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Hospital, Mumbai 400012, India;
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India;
- Correspondence: ; Tel.: +91-22-2576-7779
| |
Collapse
|
5
|
Ran C, Sun J, Qu Y, Long N. Clinical value of MRI, serum SCCA, and CA125 levels in the diagnosis of lymph node metastasis and para-uterine infiltration in cervical cancer. World J Surg Oncol 2021; 19:343. [PMID: 34886853 PMCID: PMC8656033 DOI: 10.1186/s12957-021-02448-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/13/2021] [Indexed: 12/13/2022] Open
Abstract
Background Cervical cancer shows great differences in depth of invasion, metastasis, and other biological behaviors. The location of the lesion is special, so it is usually difficult to determine the clinical stage. This study aimed to explore the clinical value of magnetic resonance imaging (MRI) and tumor serum markers for the preoperative diagnosis of cervical cancer lymph node metastasis and para-uterine invasion. Methods A total of 200 patients with cervical cancer admitted to our hospital from January 2019 to January 2020 were collected as the research subjects. Comparing the diagnosis results of preoperative MRI scan, serum tumor markers, and postoperative pathological examination using single factor comparison, we determined the MRI scan results, the comprehensive matching rate between serum tumor markers (squamous cell carcinoma antigen (SCCA), carbohydrate antigen 125 (CA125)) and postoperative pathological results, and the differences of sensitivity, specificity, and accuracy in the prediction of lymph node metastasis and para-uterine infiltration of cervical cancer. Results The levels of SCCA and CA125 in patients with para-uterine invasion and lymph node metastasis were higher than those of patients without invasion and metastasis. Among them, the level of SCCA was significantly different (P<0.05). The level of CA125 was not statistically significant (P>0.05), so MRI combined with serum SCCA was selected for combined diagnosis in the later period. The sensitivity, specificity, and accuracy of MRI diagnosis of cervical cancer and para-uterine infiltrating lymph node metastasis and metastasis were 55.2, 91.6, and 89.5% and 55.2, 91.6, and 89.5%, respectively. These data in MRI combined with serum SCCA were 76.3, 95.3, and 94.3% and 63.2, 96.0, and 95.1%, respectively. The accuracy of tumor markers combined with MRI in the diagnosis of cervical cancer lymph node metastasis and para-uterine invasion was higher than that of MRI. Conclusions MRI combined with serum SCCA can more accurately identify cervical cancer lymph node metastasis and para-uterine invasion compared with MRI alone. Tumor marker combined with MRI diagnosis is an important auxiliary method for cervical cancer treatment and can provide comprehensive and reliable clinical evidence for evaluation before cervical cancer surgery.
Collapse
Affiliation(s)
- Chao Ran
- Department of Medical Imaging, Affiliated Yantai Yuhuangding Hospital of Qingdao University, No.20 Yuhuangding East Road, Zhifu District, Yantai, 264000, China
| | - Jian Sun
- Department of Medical Imaging, Affiliated Yantai Yuhuangding Hospital of Qingdao University, No.20 Yuhuangding East Road, Zhifu District, Yantai, 264000, China
| | - Yunhui Qu
- Department of Medical Imaging, Affiliated Yantai Yuhuangding Hospital of Qingdao University, No.20 Yuhuangding East Road, Zhifu District, Yantai, 264000, China
| | - Na Long
- Department of Medical Imaging, Affiliated Yantai Yuhuangding Hospital of Qingdao University, No.20 Yuhuangding East Road, Zhifu District, Yantai, 264000, China.
| |
Collapse
|
6
|
Shao D, Huang L, Wang Y, Cui X, Li Y, Wang Y, Ma Q, Du W, Cui J. HBFP: a new repository for human body fluid proteome. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2021:6395039. [PMID: 34642750 PMCID: PMC8516408 DOI: 10.1093/database/baab065] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022]
Abstract
Body fluid proteome has been intensively studied as a primary source for disease
biomarker discovery. Using advanced proteomics technologies, early research
success has resulted in increasingly accumulated proteins detected in different
body fluids, among which many are promising biomarkers. However, despite a
handful of small-scale and specific data resources, current research is clearly
lacking effort compiling published body fluid proteins into a centralized and
sustainable repository that can provide users with systematic analytic tools. In
this study, we developed a new database of human body fluid proteome (HBFP) that
focuses on experimentally validated proteome in 17 types of human body fluids.
The current database archives 11 827 unique proteins reported by 164
scientific publications, with a maximal false discovery rate of 0.01 on both the
peptide and protein levels since 2001, and enables users to query, analyze and
download protein entries with respect to each body fluid. Three unique features
of this new system include the following: (i) the protein annotation page
includes detailed abundance information based on relative qualitative measures
of peptides reported in the original references, (ii) a new score is calculated
on each reported protein to indicate the discovery confidence and (iii) HBFP
catalogs 7354 proteins with at least two non-nested uniquely mapping peptides of
nine amino acids according to the Human Proteome Project Data Interpretation
Guidelines, while the remaining 4473 proteins have more than two unique peptides
without given sequence information. As an important resource for human protein
secretome, we anticipate that this new HBFP database can be a powerful tool that
facilitates research in clinical proteomics and biomarker discovery. Database URL:https://bmbl.bmi.osumc.edu/HBFP/
Collapse
Affiliation(s)
- Dan Shao
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, 122E Avery Hall, 1144 T St., Lincoln, NE 68588, USA.,Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China.,Department of Computer Science and Technology, Changchun University, 6543 Weixing Road, Changchun 130022, China
| | - Lan Huang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yan Wang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xueteng Cui
- Department of Computer Science and Technology, Changchun University, 6543 Weixing Road, Changchun 130022, China
| | - Yufei Li
- Department of Computer Science and Technology, Changchun University, 6543 Weixing Road, Changchun 130022, China
| | - Yao Wang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 310G Lincoln tower, 1800 cannon drive, Columbus, OH 43210, USA
| | - Wei Du
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Juan Cui
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, 122E Avery Hall, 1144 T St., Lincoln, NE 68588, USA
| |
Collapse
|
7
|
Güzel C, van Sten-Van't Hoff J, de Kok IMCM, Govorukhina NI, Boychenko A, Luider TM, Bischoff R. Molecular markers for cervical cancer screening. Expert Rev Proteomics 2021; 18:675-691. [PMID: 34551656 DOI: 10.1080/14789450.2021.1980387] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Cervical cancer remains a significant healthcare problem, notably in low- to middle-income countries. While a negative test for hrHPV has a predictive value of more than 99.5%, its positive predictive value is less than 10% for CIN2+ stages. This makes the use of a so-called triage test indispensable for population-based screening to avoid referring women, that are ultimately at low risk of developing cervical cancer, to a gynecologist. This review will give an overview of tests that are based on epigenetic marker panels and protein markers. AREAS COVERED There is a medical need for molecular markers with a better predictive value to discriminate hrHPV-positive women that are at risk of developing cervical cancer from those that are not. Areas covered are epigenetic and protein markers as well as health economic considerations in view of the fact that most cases of cervical cancer arise in low-to-middle-income countries. EXPERT OPINION While there are biomarker assays based on changes at the nucleic acid (DNA methylation patterns, miRNAs) and at the protein level, they are not widely used in population screening. Combining nucleic acid-based and protein-based tests could improve the overall specificity for discriminating CIN2+ lesions that carry a low risk of progressing to cervical cancer within the screening interval from those that carry an elevated risk. The challenge is to reduce unnecessary referrals without an undesired increase in false-negative diagnoses resulting in cases of cervical cancer that could have been prevented. A further challenge is to develop tests for low-and middle-income countries, which is critical to reduce the worldwide burden of cervical cancer.
Collapse
Affiliation(s)
- Coşkun Güzel
- Erasmus MC, Department of Neurology, University of Groningen, Rotterdam, The Netherlands
| | | | | | - Natalia I Govorukhina
- Department of Analytical Biochemistry, University of Groningen, Groningen, The Netherlands
| | | | - Theo M Luider
- Erasmus MC, Department of Neurology, University of Groningen, Rotterdam, The Netherlands
| | - Rainer Bischoff
- Department of Analytical Biochemistry, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Fabrication of supramolecular nano-assembly irinotecan prodrug into polymeric nanomaterials for delivery in cervical carcinoma therapy. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Martínez-Rodríguez F, Limones-González JE, Mendoza-Almanza B, Esparza-Ibarra EL, Gallegos-Flores PI, Ayala-Luján JL, Godina-González S, Salinas E, Mendoza-Almanza G. Understanding Cervical Cancer through Proteomics. Cells 2021; 10:1854. [PMID: 34440623 PMCID: PMC8391734 DOI: 10.3390/cells10081854] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/05/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer is one of the leading public health issues worldwide, and the number of cancer patients increases every day. Particularly, cervical cancer (CC) is still the second leading cause of cancer death in women from developing countries. Thus, it is essential to deepen our knowledge about the molecular pathogenesis of CC and propose new therapeutic targets and new methods to diagnose this disease in its early stages. Differential expression analysis using high-throughput techniques applied to biological samples allows determining the physiological state of normal cells and the changes produced by cancer development. The cluster of differential molecular profiles in the genome, the transcriptome, or the proteome is analyzed in the disease, and it is called the molecular signature of cancer. Proteomic analysis of biological samples of patients with different grades of cervical intraepithelial neoplasia (CIN) and CC has served to elucidate the pathways involved in the development and progression of cancer and identify cervical proteins associated with CC. However, several cervical carcinogenesis mechanisms are still unclear. Detecting pathologies in their earliest stages can significantly improve a patient's survival rate, prognosis, and recurrence. The present review is an update on the proteomic study of CC.
Collapse
Affiliation(s)
- Fátima Martínez-Rodríguez
- Microbiology Department, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes 20100, Mexico;
| | | | - Brenda Mendoza-Almanza
- Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas 98068, Mexico; (B.M.-A.); (E.L.E.-I.); (P.I.G.-F.)
| | - Edgar L. Esparza-Ibarra
- Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas 98068, Mexico; (B.M.-A.); (E.L.E.-I.); (P.I.G.-F.)
| | - Perla I. Gallegos-Flores
- Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas 98068, Mexico; (B.M.-A.); (E.L.E.-I.); (P.I.G.-F.)
| | - Jorge L. Ayala-Luján
- Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (J.L.A.-L.); (S.G.-G.)
| | - Susana Godina-González
- Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (J.L.A.-L.); (S.G.-G.)
| | - Eva Salinas
- Microbiology Department, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes 20100, Mexico;
| | - Gretel Mendoza-Almanza
- Master in Biomedical Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico;
- National Council of Science and Technology, Autonomous University of Zacatecas, Zacatecas 98000, Mexico
| |
Collapse
|
10
|
Zheng R, Govorukhina N, Arrey TN, Pynn C, van der Zee A, Marko-Varga G, Bischoff R, Boychenko A. Online-2D NanoLC-MS for Crude Serum Proteome Profiling: Assessing Sample Preparation Impact on Proteome Composition. Anal Chem 2021; 93:9663-9668. [PMID: 34236853 DOI: 10.1021/acs.analchem.1c01291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although current LC-MS technology permits scientists to efficiently screen clinical samples in translational research, e.g., steroids, biogenic amines, and even plasma or serum proteomes, in a daily routine, maintaining the balance between throughput and analytical depth is still a limiting factor. A typical approach to enhance the proteome depth is employing offline two-dimensional (2D) fractionation techniques before reversed-phase nanoLC-MS/MS analysis (1D-nanoLC-MS). These additional sample preparation steps usually require extensive sample manipulation, which could result in sample alteration and sample loss. Here, we present and compare 1D-nanoLC-MS with an automated online-2D high-pH RP × low pH RP separation method for deep proteome profiling using a nanoLC system coupled to a high-resolution accurate-mass mass spectrometer. The proof-of-principle study permitted the identification of ca. 500 proteins with ∼10,000 peptides in 15 enzymatically digested crude serum samples collected from healthy donors in 3 laboratories across Europe. The developed method identified 60% more peptides in comparison with conventional 1D nanoLC-MS/MS analysis with ca. 4 times lower throughput while retaining the quantitative information. Serum sample preparation related changes were revealed by applying unsupervised classification techniques and, therefore, must be taken into account while planning multicentric biomarker discovery and validation studies. Overall, this novel method reduces sample complexity and boosts the number of peptide and protein identifications without the need for extra sample handling procedures for samples equivalent to less than 1 μL of blood, which expands the space for potential biomarker discovery by looking deeper into the composition of biofluids.
Collapse
Affiliation(s)
- Runsheng Zheng
- Thermo Fisher Scientific, Dornierstrasse 4, 82110 Germering, Germany
| | - Natalia Govorukhina
- Department of Analytical Biochemistry, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Tabiwang N Arrey
- Thermo Fisher Scientific, Hanna-Kunath-Straße 11, 28199 Bremen, Germany
| | - Christopher Pynn
- Thermo Fisher Scientific, Dornierstrasse 4, 82110 Germering, Germany
| | - Ate van der Zee
- University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - György Marko-Varga
- Clinical Protein Science and Imaging, Lund University, Box 117, S-22100 Lund, Sweden
| | - Rainer Bischoff
- Department of Analytical Biochemistry, University of Groningen, 9713 AV Groningen, The Netherlands
| | | |
Collapse
|
11
|
Precise engineering of nanoassembled Corilagin small molecule into supramolecular nanoparticles for the treatment and care against cervical carcinoma. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Gao N, Wang Q, Tang J, Yao S, Li H, Yue X, Fu J, Zhong F, Wang T, Wang J. Non-invasive SERS serum detection technology combined with multivariate statistical algorithm for simultaneous screening of cervical cancer and breast cancer. Anal Bioanal Chem 2021; 413:4775-4784. [PMID: 34128082 DOI: 10.1007/s00216-021-03431-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/11/2021] [Accepted: 05/22/2021] [Indexed: 12/15/2022]
Abstract
Surface-enhanced Raman scattering (SERS), as a rapid, reliable and non-destructive spectral detection technology, has made a series of breakthrough achievements in screening and pre-diagnosis of various cancerous tumors. In this paper, high-performance gold nanoparticles/785 porous silicon photonic crystals (Au NPs/785 PSi PhCs) active SERS substrates were specially designed for serum testing, and realized highly sensitive detection of serum from healthy people, patients with cervical cancer and breast cancer. Based on the SERS spectra of the three groups of serum, the significant differences between the healthy group and cancer group at 1030 cm-1 and 1051 cm-1 were analyzed, and the similar but different serum SERS spectra of cervical cancer and breast cancer patients were compared. In addition, the spectral difference detected by SERS technology combined with a multivariate statistical algorithm was used to distinguish three kinds of serum. The serum SERS spectral sensitive bands were extracted by recursive weighted partial least squares (rPLS), and the three classification diagnosis models were established by combining orthogonal partial least squares discriminant analysis (OPLS-DA), linear discriminant analysis (LDA) and principal component analysis support vector machine (PCA-SVM) for synchronous classification and discrimination of the three groups of serum. The diagnostic results showed that the overall screening accuracy of three models were 93.28%, 97.77% and 94.78%, respectively. These above results confirmed that the Au NPs/785 PSi PhCs can realize super-sensitive detection of serum, and the established diagnostic model has great potential for pre-diagnosis and simultaneous screening of cervical cancer and breast cancer.
Collapse
Affiliation(s)
- Ningning Gao
- Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Xinjiang, 830046, Urumqi, China
| | - Qing Wang
- College of Physics and Technology, Xinjiang University, Urumqi, 830046, China
| | - Jun Tang
- Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Xinjiang, 830046, Urumqi, China.
| | - Shengyuan Yao
- Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Xinjiang, 830046, Urumqi, China
| | - Hongmei Li
- Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Xinjiang, 830046, Urumqi, China
| | - Xiaxia Yue
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Jihong Fu
- College of chemical engineering, Xinjiang University, Xinjiang, 830046, Urumqi, China
| | - Furu Zhong
- School of physics and electronic science, Zunyi Normal College, Zunyi, 563006, Guizhou, China
| | - Tao Wang
- Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Xinjiang, 830046, Urumqi, China.
| | - Jing Wang
- First Affiliated Hospital of Xinjiang Medical University, Xinjiang, 830046, Urumqi, China
| |
Collapse
|
13
|
Huang L, Shao D, Wang Y, Cui X, Li Y, Chen Q, Cui J. Human body-fluid proteome: quantitative profiling and computational prediction. Brief Bioinform 2021; 22:315-333. [PMID: 32020158 PMCID: PMC7820883 DOI: 10.1093/bib/bbz160] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/22/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022] Open
Abstract
Empowered by the advancement of high-throughput bio technologies, recent research on body-fluid proteomes has led to the discoveries of numerous novel disease biomarkers and therapeutic drugs. In the meantime, a tremendous progress in disclosing the body-fluid proteomes was made, resulting in a collection of over 15 000 different proteins detected in major human body fluids. However, common challenges remain with current proteomics technologies about how to effectively handle the large variety of protein modifications in those fluids. To this end, computational effort utilizing statistical and machine-learning approaches has shown early successes in identifying biomarker proteins in specific human diseases. In this article, we first summarized the experimental progresses using a combination of conventional and high-throughput technologies, along with the major discoveries, and focused on current research status of 16 types of body-fluid proteins. Next, the emerging computational work on protein prediction based on support vector machine, ranking algorithm, and protein-protein interaction network were also surveyed, followed by algorithm and application discussion. At last, we discuss additional critical concerns about these topics and close the review by providing future perspectives especially toward the realization of clinical disease biomarker discovery.
Collapse
Affiliation(s)
- Lan Huang
- College of Computer Science and Technology in the Jilin University
| | - Dan Shao
- College of Computer Science and Technology in the Jilin University
- College of Computer Science and Technology in Changchun University
| | - Yan Wang
- College of Computer Science and Technology in the Jilin University
| | - Xueteng Cui
- College of Computer Science and Technology in the Changchun University
| | - Yufei Li
- College of Computer Science and Technology in the Changchun University
| | - Qian Chen
- College of Computer Science and Technology in the Jilin University
| | - Juan Cui
- Department of Computer Science and Engineering in the University of Nebraska-Lincoln
| |
Collapse
|
14
|
Han X, Zhong S, Zhang P, Liu Y, Shi S, Wu C, Gao S. Identification of differentially expressed proteins and clinicopathological significance of HMGB2 in cervical cancer. Clin Proteomics 2021; 18:2. [PMID: 33407071 PMCID: PMC7789524 DOI: 10.1186/s12014-020-09308-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/07/2020] [Indexed: 01/02/2023] Open
Abstract
To investigate the complexity of proteomics in cervical cancer tissues, we used isobaric tags for relative and absolute quantitation (iTRAQ)-based mass spectrometry analysis on a panel of normal cervical tissues (N), high-grade squamous intraepithelial lesion tissues (HSIL) and cervical cancer tissues (CC). Total 72 differentially expressed proteins were identified both in CC vs N and CC vs HSIL. The expression of HMGB2 was markedly higher in CC than that in HSIL and N. High HMGB2 expression was significantly correlated with primary tumor size, invasion and tumor stage. The up-regulated HMGB2 was discovered to be associated with human cervical cancer. These findings suggest that HMGB2 may be a potentially prognostic biomarker and a target for the therapy of cervical cancer.
Collapse
Affiliation(s)
- Xiao Han
- Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, No. 419, Fangxie Road, Huangpu District, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, 200011, China
| | - Siyi Zhong
- Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, No. 419, Fangxie Road, Huangpu District, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, 200011, China
| | - Pengnan Zhang
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, 200011, China.,Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Yanmei Liu
- Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, No. 419, Fangxie Road, Huangpu District, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, 200011, China
| | - Sangsang Shi
- Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, No. 419, Fangxie Road, Huangpu District, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, 200011, China
| | - Congquan Wu
- Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, No. 419, Fangxie Road, Huangpu District, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, 200011, China
| | - Shujun Gao
- Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, No. 419, Fangxie Road, Huangpu District, Shanghai, 200011, China. .,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
15
|
邱 峰, 陈 富, 刘 冬, 徐 建, 何 静, 肖 菊, 操 龙, 黄 宪. [LC-MS/MS-based screening of new protein biomarkers for cervical precancerous lesions and cervical cancer]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:13-22. [PMID: 30692061 PMCID: PMC6765587 DOI: 10.12122/j.issn.1673-4254.2019.01.03] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To screen potential plasma protein biomarkers for the progression of cervical precancerous lesions into cervical carcinoma and analyze their functions. METHODS Plasma samples obtained from healthy control subjects, patients with low-grade squamous intraepithelial lesion (LSIL), high-grade squamous intraepithelial lesion (HSIL), cervical cancer (CC), and patients with CC after treatment were enriched for low-abundance proteins for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The MS data of the samples were analyzed using Discoverer 2.2 software, and the differential proteins (peptide coverage ≥20%, unique peptides≥2) were screened by comparison of LSIL, HSIL and CC groups against the control group followed by verification using target proteomics technology. Protein function enrichment and coexpression analyses were carried out to explore the role of the differentially expressed proteins as potential biomarkers and their pathological mechanisms. RESULTS Compared with the control group, both LSIL group and HSIL group showed 9 differential proteins; 5 differentially expressed proteins were identified in CC group. The proteins ORM2 and HPR showed obvious differential expressions in LSIL and HSIL groups compared with the control group, and could serve as potential biomarkers for the progression of cervical carcinoma. The expression of F9 increased consistently with the lesion progression from LSIL to HSIL and CC, suggesting its value as a potential biomarker for the progression of cervical cancer. CFI and AFM protein levels were obviously decreased in treated patients with CC compared with the patients before treatment, indicating their predictive value for the therapeutic efficacy. Protein function enrichment analysis showed that all these differentially expressed proteins were associated with the complement system and the coagulation cascades pathway. CONCLUSIONS We identified 5 new protein biomarkers (F9, CFI, AFM, HPR, and ORM2) for cervical precancerous lesions and for prognostic evaluation of CC, and combined detection of these biomarkers may help in the evaluation of the development and progression of CC and also in improving the diagnostic sensitivity and specificity of cervical lesions.
Collapse
Affiliation(s)
- 峰 邱
- 南方医科大学南海医院全科医学中心,广东 佛山 528244General Practice Center, Nanhai Hospital, Southern Medical University, Foshan 528244, China
| | - 富 陈
- 广东省中医院检验科,广东 广州 510120Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - 冬冬 刘
- 广东省中医院检验科,广东 广州 510120Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - 建华 徐
- 广东省中医院检验科,广东 广州 510120Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - 静玲 何
- 广东省中医院妇科,广东 广州 510120Department of Gynecology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - 菊姣 肖
- 南方医科大学南海医院全科医学中心,广东 佛山 528244General Practice Center, Nanhai Hospital, Southern Medical University, Foshan 528244, China
| | - 龙斌 操
- 南方医科大学南海医院医学检验科,广东 佛山 528244Department of Laboratory Medicine, Nanhai Hospital, Southern Medical University, Foshan 528244, China
| | - 宪章 黄
- 广东省中医院检验科,广东 广州 510120Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| |
Collapse
|
16
|
Wolters JC, Permentier HP, Bakker BM, Bischoff R. Targeted Proteomics to Study Mitochondrial Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1158:101-117. [PMID: 31452138 DOI: 10.1007/978-981-13-8367-0_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Targeted mass spectrometry in the selected or parallel reaction monitoring (SRM or PRM) mode is a widely used methodology to quantify proteins based on so-called signature or proteotypic peptides. SRM has the advantage of being able to quantify a range of proteins in a single analysis, for example, to measure the level of enzymes comprising a biochemical pathway. In this chapter, we will detail how to set up an SRM assay on the example of the mitochondrial protein succinate dehydrogenase [ubiquinone] flavoprotein subunit (mouse UniProt-code Q8K2B3). First, we will outline the in silico assay design including the choice of peptides based on a range of properties. We will further delineate different quantification strategies and introduce the reader to LC-MS assay development including the selection of the optimal peptide charge state and fragment ions as well as a discussion of the dynamic range of detection. The chapter will close with an application from the area of mitochondrial biology related to the quantification of a set of proteins isolated from mouse liver mitochondria in a study on mitochondrial respiratory flux decline in aging mouse muscle.
Collapse
Affiliation(s)
- Justina C Wolters
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
- Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Systems Biology Centre for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hjalmar P Permentier
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Barbara M Bakker
- Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Systems Biology Centre for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rainer Bischoff
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
17
|
Moulder R, Bhosale SD, Goodlett DR, Lahesmaa R. Analysis of the plasma proteome using iTRAQ and TMT-based Isobaric labeling. MASS SPECTROMETRY REVIEWS 2018; 37:583-606. [PMID: 29120501 DOI: 10.1002/mas.21550] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/26/2017] [Indexed: 05/23/2023]
Abstract
Over the past decade, chemical labeling with isobaric tandem mass tags, such as isobaric tags for relative and absolute quantification reagents (iTRAQ) and tandem mass tag (TMT) reagents, has been employed in a wide range of different clinically orientated serum and plasma proteomics studies. In this review the scope of these works is presented with attention to the areas of research, methods employed and performance limitations. These applications have covered a wide range of diseases, disorders and infections, and have implemented a variety of different preparative and mass spectrometric approaches. In contrast to earlier works, which struggled to quantify more than a few hundred proteins, increasingly these studies have provided deeper insight into the plasma proteome extending the numbers of quantified proteins to over a thousand.
Collapse
Affiliation(s)
- Robert Moulder
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Santosh D Bhosale
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | | | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
18
|
Greco V, Piras C, Pieroni L, Urbani A. Direct Assessment of Plasma/Serum Sample Quality for Proteomics Biomarker Investigation. Methods Mol Biol 2018; 1619:3-21. [PMID: 28674873 DOI: 10.1007/978-1-4939-7057-5_1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Blood proteome analysis for biomarker discovery represents one of the most challenging tasks to be achieved through clinical proteomics due to the sample complexity, such as the extreme heterogeneity of proteins in very dynamic concentrations, and to the observation of proper sampling and storage conditions. Quantitative and qualitative proteomics profiling of plasma and serum could be useful both for the early detection of diseases and for the evaluation of pathological status. Two main sources of variability can affect the precision and accuracy of the quantitative experiments designed for biomarker discovery and validation. These sources are divided into two categories, pre-analytical and analytical, and are often ignored; however, they can contribute to consistent errors and misunderstanding in biomarker research. In this chapter, we review critical pre-analytical and analytical variables that can influence quantitative proteomics. According to guidelines accepted by proteomics community, we propose some recommendations and strategies for a proper proteomics analysis addressed to biomarker studies.
Collapse
Affiliation(s)
- Viviana Greco
- Proteomics and metabonomics unit, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Cristian Piras
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Luisa Pieroni
- Proteomics and metabonomics unit, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Andrea Urbani
- Proteomics and metabonomics unit, Fondazione Santa Lucia, IRCCS, Rome, Italy. .,Institute of Biochemistry and Clinical Biochemistry, Catholic University of Sacred Heart, Rome, Italy.
| |
Collapse
|
19
|
Güzel C, Govorukhina NI, Stingl C, Dekker LJM, Boichenko A, van der Zee AGJ, Bischoff RP, Luider TM. Comparison of Targeted Mass Spectrometry Techniques with an Immunoassay: A Case Study for HSP90α. Proteomics Clin Appl 2017; 12. [DOI: 10.1002/prca.201700107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/31/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Coşkun Güzel
- Department of Neurology; Neuro-Oncology; Clinical and Cancer Proteomics Laboratory; Erasmus University Medical Centre; Rotterdam The Netherlands
| | - Natalia I. Govorukhina
- Department of Analytical Biochemistry; Centre for Pharmacy; University of Groningen; Groningen The Netherlands
| | - Christoph Stingl
- Department of Neurology; Neuro-Oncology; Clinical and Cancer Proteomics Laboratory; Erasmus University Medical Centre; Rotterdam The Netherlands
| | - Lennard J. M. Dekker
- Department of Neurology; Neuro-Oncology; Clinical and Cancer Proteomics Laboratory; Erasmus University Medical Centre; Rotterdam The Netherlands
| | - Alexander Boichenko
- Department of Analytical Biochemistry; Centre for Pharmacy; University of Groningen; Groningen The Netherlands
| | - Ate G. J. van der Zee
- Department of Gynecology; University Medical Centre Groningen; Groningen the Netherlands
| | - Rainer P.H. Bischoff
- Department of Analytical Biochemistry; Centre for Pharmacy; University of Groningen; Groningen The Netherlands
| | - Theo M. Luider
- Department of Neurology; Neuro-Oncology; Clinical and Cancer Proteomics Laboratory; Erasmus University Medical Centre; Rotterdam The Netherlands
| |
Collapse
|
20
|
Kontostathi G, Zoidakis J, Anagnou NP, Pappa KI, Vlahou A, Makridakis M. Proteomics approaches in cervical cancer: focus on the discovery of biomarkers for diagnosis and drug treatment monitoring. Expert Rev Proteomics 2017; 13:731-45. [PMID: 27398979 DOI: 10.1080/14789450.2016.1210514] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The HPV virus accounts for the majority of cervical cancer cases. Although a diagnostic tool (Pap Test) is widely available, cervical cancer incidence still remains high worldwide, and especially in developing countries, attributed to a large extent to suboptimal sensitivities of the Pap test and unavailability of the test in developing countries. AREAS COVERED Proteomics approaches have been used in order to understand the HPV virus correlation to cervical cancer pathology, as well as to discover putative biomarkers for early cervical cancer diagnosis and drug mode of action. Expert commentary: The present review summarizes the latest in vitro and in vivo proteomic studies for the discovery of putative cervical cancer biomarkers and the evaluation of available drugs and treatments.
Collapse
Affiliation(s)
- Georgia Kontostathi
- a Biotechnology Division , Biomedical Research Foundation, Academy of Athens (BRFAA) , Athens , Greece.,b Laboratory of Biology , University of Athens School of Medicine , Athens , Greece
| | - Jerome Zoidakis
- a Biotechnology Division , Biomedical Research Foundation, Academy of Athens (BRFAA) , Athens , Greece
| | - Nicholas P Anagnou
- b Laboratory of Biology , University of Athens School of Medicine , Athens , Greece.,c Cell and Gene Therapy Laboratory , Biomedical Research Foundation, Academy of Athens (BRFAA) , Athens , Greece
| | - Kalliopi I Pappa
- c Cell and Gene Therapy Laboratory , Biomedical Research Foundation, Academy of Athens (BRFAA) , Athens , Greece.,d First Department of Obstetrics and Gynecology , University of Athens School of Medicine , Athens , Greece
| | - Antonia Vlahou
- a Biotechnology Division , Biomedical Research Foundation, Academy of Athens (BRFAA) , Athens , Greece
| | - Manousos Makridakis
- a Biotechnology Division , Biomedical Research Foundation, Academy of Athens (BRFAA) , Athens , Greece
| |
Collapse
|
21
|
Mandili G, Notarpietro A, Khadjavi A, Allasia M, Battaglia A, Lucatello B, Frea B, Turrini F, Novelli F, Giribaldi G, Destefanis P. Beta-2-glycoprotein-1 and alpha-1-antitrypsin as urinary markers of renal cancer in von Hippel–Lindau patients. Biomarkers 2016; 23:123-130. [DOI: 10.1080/1354750x.2016.1269132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Giorgia Mandili
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin Medical School, Turin, Italy
- Center for Experimental Research and Medical Studies (CeRMS), Città della Salute e della Scienza, Ospedale San Giovanni Battista, Turin, Italy
| | - Agata Notarpietro
- Department of Oncology, University of Turin Medical School, Turin, Italy
| | - Amina Khadjavi
- Department of Surgical Sciences, University of Turin Medical School, Turin, Italy
| | - Marco Allasia
- Department of Urology, Azienda Ospedaliera Città della Salute e Della Scienza di Torino – Molinette, Turin, Italy
| | - Antonino Battaglia
- Department of Urology, Azienda Ospedaliera Città della Salute e Della Scienza di Torino – Molinette, Turin, Italy
| | - Barbara Lucatello
- Department of Endocrinology, Diabetology and Metabolism, Azienda Ospedaliera Città della Salute e Della Scienza di Torino – Molinette, Turin, Italy
| | - Bruno Frea
- Department of Urology, Azienda Ospedaliera Città della Salute e Della Scienza di Torino – Molinette, Turin, Italy
| | - Francesco Turrini
- Department of Oncology, University of Turin Medical School, Turin, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin Medical School, Turin, Italy
- Center for Experimental Research and Medical Studies (CeRMS), Città della Salute e della Scienza, Ospedale San Giovanni Battista, Turin, Italy
- Immunogenetics and Transplantation Biology Unit, Azienda Ospedaliera Città della Salute e della Scienza, Ospedale San Giovanni Battista, Turin, Italy
| | - Giuliana Giribaldi
- Department of Oncology, University of Turin Medical School, Turin, Italy
| | - Paolo Destefanis
- Department of Urology, Azienda Ospedaliera Città della Salute e Della Scienza di Torino – Molinette, Turin, Italy
| |
Collapse
|
22
|
Xu W, Yu S, Xin J, Guo Q. Relationship of 18F-FDG PET/CT metabolic, clinical and pathological characteristics of primary squamous cell carcinoma of the cervix. J Investig Med 2016; 64:1246-1251. [PMID: 27436350 DOI: 10.1136/jim-2016-000166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2016] [Indexed: 11/04/2022]
Abstract
The objectives of this retrospective study were to use preoperative 18fluoro-d-glucose (18FDG) PET/CT in patients with primary cervical squamous cell carcinoma to explore the relationship between clinical, pathological and metabolic characteristics. Eighty consecutive patients with squamous cell carcinoma of cervix received 18FDG PET/CT scan before treatment. Metabolic tumor volume (MTV), total lesion glycolysis (TLG) and the peak standardized uptake value (SUVpeak) of the cervical tumors were calculated by an iterative adaptive algorithm. The association of these metabolic markers with serum squamous cell carcinoma antigen (SCC-ag), International Federation of Gynecology and Obstetrics (FIGO) stage, maximum tumor size and depth of cervical stromal invasion of the tumor was determined by the multivariate analysis. MTV and TLG were significantly higher in subjects with serum SCC-ag levels ≥3.95, with FIGO stage 1b2 and with a maximum tumor size of ≥4 cm (p≤0.009). Higher SUVpeak levels were associated with a maximum tumor size of ≥4 cm and with a cervical stromal invasion depth of ≥1/2 (p≤0.003). Multivariate analysis indicated that MTV was independently associated with FIGO stage Ib2 (p=0.041) and depth of cervical stromal invasion (p=0.020). TLG and SUVpeak were independently associated with maximum tumor size (p≤0.004) and depth of cervical stromal invasion (p≤0.013). Significant linear correlation was found between SUVpeak and tumor size; the Pearson correlation coefficient was 0.34 (p=0.002). Metabolic parameters such as MTV, TLG and SUVpeak are able to predict clinical and pathological status in preoperative cervical cancer.
Collapse
Affiliation(s)
- Weina Xu
- Department of Nuclear Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shupeng Yu
- Department of Nuclear Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Xin
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiyong Guo
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
23
|
Dual targeting of p53 and c-MYC selectively eliminates leukaemic stem cells. Nature 2016; 534:341-6. [PMID: 27281222 PMCID: PMC4913876 DOI: 10.1038/nature18288] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/26/2016] [Indexed: 02/07/2023]
Abstract
Chronic myeloid leukaemia (CML) arises after transformation of a haemopoietic stem cell (HSC) by the protein-tyrosine kinase BCR-ABL. Direct inhibition of BCR-ABL kinase has revolutionized disease management, but fails to eradicate leukaemic stem cells (LSCs), which maintain CML. LSCs are independent of BCR-ABL for survival, providing a rationale for identifying and targeting kinase-independent pathways. Here we show--using proteomics, transcriptomics and network analyses--that in human LSCs, aberrantly expressed proteins, in both imatinib-responder and non-responder patients, are modulated in concert with p53 (also known as TP53) and c-MYC regulation. Perturbation of both p53 and c-MYC, and not BCR-ABL itself, leads to synergistic cell kill, differentiation, and near elimination of transplantable human LSCs in mice, while sparing normal HSCs. This unbiased systems approach targeting connected nodes exemplifies a novel precision medicine strategy providing evidence that LSCs can be eradicated.
Collapse
|
24
|
Comprehensive maternal serum proteomics identifies the cytoskeletal proteins as non-invasive biomarkers in prenatal diagnosis of congenital heart defects. Sci Rep 2016; 6:19248. [PMID: 26750556 PMCID: PMC4707500 DOI: 10.1038/srep19248] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/09/2015] [Indexed: 12/27/2022] Open
Abstract
Congenital heart defects (CHDs) are the most common group of major birth defects. Presently there are no clinically used biomarkers for prenatally detecting CHDs. Here, we performed a comprehensive maternal serum proteomics assessment, combined with immunoassays, for the discovery of non-invasive biomarkers for prenatal diagnosis of CHDs. A total of 370 women were included in this study. An isobaric tagging for relative and absolute quantification (iTRAQ) proteomic approach was used first to compare protein profiles in pooled serum collected from women who had CHD-possessing or normal fetuses, and 47 proteins displayed significant differential expressions. Targeted verifications were performed on 11 proteins using multiple reaction monitoring mass spectrometry (MRM-MS), and the resultant candidate biomarkers were then further validated using ELISA analysis. Finally, we identified a biomarker panel composed of 4 cytoskeletal proteins capable of differentiating CHD-pregnancies from normal ones [with an area under the receiver operating characteristic curve (AUC) of 0.938, P < 0.0001]. The discovery of cytoskeletal protein changes in maternal serum not only could help us in prenatal diagnosis of CHDs, but also may shed new light on CHD embryogenesis studies.
Collapse
|
25
|
Zhang T, Chen J, Jia X. Identification of the Key Fields and Their Key Technical Points of Oncology by Patent Analysis. PLoS One 2015; 10:e0143573. [PMID: 26599967 PMCID: PMC4658002 DOI: 10.1371/journal.pone.0143573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/08/2015] [Indexed: 11/19/2022] Open
Abstract
Background This paper aims to identify the key fields and their key technical points of oncology by patent analysis. Methodology/Principal Findings Patents of oncology applied from 2006 to 2012 were searched in the Thomson Innovation database. The key fields and their key technical points were determined by analyzing the Derwent Classification (DC) and the International Patent Classification (IPC), respectively. Patent applications in the top ten DC occupied 80% of all the patent applications of oncology, which were the ten fields of oncology to be analyzed. The number of patent applications in these ten fields of oncology was standardized based on patent applications of oncology from 2006 to 2012. For each field, standardization was conducted separately for each of the seven years (2006–2012) and the mean of the seven standardized values was calculated to reflect the relative amount of patent applications in that field; meanwhile, regression analysis using time (year) and the standardized values of patent applications in seven years (2006–2012) was conducted so as to evaluate the trend of patent applications in each field. Two-dimensional quadrant analysis, together with the professional knowledge of oncology, was taken into consideration in determining the key fields of oncology. The fields located in the quadrant with high relative amount or increasing trend of patent applications are identified as key ones. By using the same method, the key technical points in each key field were identified. Altogether 116,820 patents of oncology applied from 2006 to 2012 were retrieved, and four key fields with twenty-nine key technical points were identified, including “natural products and polymers” with nine key technical points, “fermentation industry” with twelve ones, “electrical medical equipment” with four ones, and “diagnosis, surgery” with four ones. Conclusions/Significance The results of this study could provide guidance on the development direction of oncology, and also help researchers broaden innovative ideas and discover new technological opportunities.
Collapse
Affiliation(s)
- Ting Zhang
- Institute of Medical Information & Library, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- * E-mail:
| | - Juan Chen
- Institute of Medical Information & Library, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiaofeng Jia
- Institute of Medical Information & Library, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
26
|
Thongboonkerd V, LaBaer J, Domont GB. Recent Advances of Proteomics Applied to Human Diseases. J Proteome Res 2014; 13:4493-6. [DOI: 10.1021/pr501038g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Visith Thongboonkerd
- Medical Proteomics Unit,
Office for Research and Development, Faculty of Medicine Siriraj Hospital,
and Center for Research in Complex Systems Science, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand
| | - Joshua LaBaer
- Virginia G. Piper Center
for Personalized Diagnostics, Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85287-6401, United States
| | - Gilberto B. Domont
- Proteomics Unit, Institute
of Chemistry, Federal University of Rio de Janeiro (UFRJ), Avenida
Athos da Silveira Ramos, Rio de Janeiro, 21941-909 RJ, Brazil
| |
Collapse
|
27
|
Boichenko AP, Govorukhina N, Klip HG, van der Zee AGJ, Güzel C, Luider TM, Bischoff R. A panel of regulated proteins in serum from patients with cervical intraepithelial neoplasia and cervical cancer. J Proteome Res 2014; 13:4995-5007. [PMID: 25232869 DOI: 10.1021/pr500601w] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We developed a discovery-validation mass-spectrometry-based pipeline to identify a set of proteins that are regulated in serum of patients with cervical intraepithelial neoplasia (CIN) and squamous cell cervical cancer using iTRAQ, label-free shotgun, and targeted mass-spectrometric quantification. In the discovery stage we used a "pooling" strategy for the comparative analysis of immunodepleted serum and revealed 15 up- and 26 down-regulated proteins in patients with early- (CES) and late-stage (CLS) cervical cancer. The analysis of nondepleted serum samples from patients with CIN, CES, an CLS and healthy controls showed significant changes in abundance of alpha-1-acid glycoprotein 1, alpha-1-antitrypsin, serotransferrin, haptoglobin, alpha-2-HS-glycoprotein, and vitamin D-binding protein. We validated our findings using a fast UHPLC/MRM method in an independent set of serum samples from patients with cervical cancer or CIN and healthy controls as well as serum samples from patients with ovarian cancer (more than 400 samples in total). The panel of six proteins showed 67% sensitivity and 88% specificity for discrimination of patients with CIN from healthy controls, a stage of the disease where current protein-based biomarkers, for example, squamous cell carcinoma antigen (SCCA), fail to show any discrimination. Additionally, combining the six-protein panel with SCCA improves the discrimination of patients with CES and CLS from healthy controls.
Collapse
Affiliation(s)
- Alexander P Boichenko
- Department of Analytical Biochemistry, University of Groningen , Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|