1
|
Chuang YC, Haas NW, Pepin R, Behringer MG, Oda Y, LaSarre B, Harwood CS, McKinlay JB. Bacterial adenine cross-feeding stems from a purine salvage bottleneck. THE ISME JOURNAL 2024; 18:wrae034. [PMID: 38452196 PMCID: PMC10976475 DOI: 10.1093/ismejo/wrae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/19/2023] [Accepted: 03/06/2024] [Indexed: 03/09/2024]
Abstract
Diverse ecosystems host microbial relationships that are stabilized by nutrient cross-feeding. Cross-feeding can involve metabolites that should hold value for the producer. Externalization of such communally valuable metabolites is often unexpected and difficult to predict. Previously, we discovered purine externalization by Rhodopseudomonas palustris by its ability to rescue an Escherichia coli purine auxotroph. Here we found that an E. coli purine auxotroph can stably coexist with R. palustris due to purine cross-feeding. We identified the cross-fed purine as adenine. Adenine was externalized by R. palustris under diverse growth conditions. Computational modeling suggested that adenine externalization occurs via diffusion across the cytoplasmic membrane. RNAseq analysis led us to hypothesize that adenine accumulation and externalization stem from a salvage pathway bottleneck at the enzyme encoded by apt. Ectopic expression of apt eliminated adenine externalization, supporting our hypothesis. A comparison of 49 R. palustris strains suggested that purine externalization is relatively common, with 16 strains exhibiting the trait. Purine externalization was correlated with the genomic orientation of apt, but apt orientation alone could not always explain purine externalization. Our results provide a mechanistic understanding of how a communally valuable metabolite can participate in cross-feeding. Our findings also highlight the challenge in identifying genetic signatures for metabolite externalization.
Collapse
Affiliation(s)
- Ying-Chih Chuang
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
- Biochemistry Program, Indiana University, Bloomington, IN 47405, United States
| | - Nicholas W Haas
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
| | - Robert Pepin
- Department of Chemistry, Indiana University, Bloomington, IN 47405, United States
| | - Megan G Behringer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, United States
| | - Yasuhiro Oda
- Department of Microbiology, University of Washington, Seattle, WA 98195, United States
| | - Breah LaSarre
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, United States
| | - Caroline S Harwood
- Department of Microbiology, University of Washington, Seattle, WA 98195, United States
| | - James B McKinlay
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
| |
Collapse
|
2
|
Chuang YC, Haas NW, Pepin R, Behringer M, Oda Y, LaSarre B, Harwood CS, McKinlay JB. A purine salvage bottleneck leads to bacterial adenine cross-feeding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562681. [PMID: 37904951 PMCID: PMC10614841 DOI: 10.1101/2023.10.17.562681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Diverse ecosystems host microbial relationships that are stabilized by nutrient cross-feeding. Cross-feeding can involve metabolites that should hold value for the producer. Externalization of such communally valuable metabolites is often unexpected and difficult to predict. Previously, we fortuitously discovered purine externalization by Rhodopseudomonas palustris by its ability to rescue growth of an Escherichia coli purine auxotroph. Here we found that an E. coli purine auxotroph can stably coexist with R. palustris due to purine cross-feeding. We identified the cross-fed purine as adenine. Adenine was externalized by R. palustris under diverse growth conditions. Computational models suggested that adenine externalization occurs via passive diffusion across the cytoplasmic membrane. RNAseq analysis led us to hypothesize that accumulation and externalization of adenine stems from an adenine salvage bottleneck at the enzyme encoded by apt. Ectopic expression of apt eliminated adenine externalization, supporting our hypothesis. A comparison of 49 R. palustris strains suggested that purine externalization is relatively common, with 15 of the strains exhibiting the trait. Purine externalization was correlated with the genomic orientation of apt orientation, but apt orientation alone could not explain adenine externalization in some strains. Our results provide a mechanistic understanding of how a communally valuable metabolite can participate in cross-feeding. Our findings also highlight the challenge in identifying genetic signatures for metabolite externalization.
Collapse
Affiliation(s)
- Ying-Chih Chuang
- Department of Biology, Indiana University, Bloomington, IN
- Biochemistry Program, Indiana University, Bloomington, IN
| | | | - Robert Pepin
- Department of Chemistry, Indiana University, Bloomington, IN
| | - Megan Behringer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| | - Yasuhiro Oda
- Department of Microbiology, University of Washington, Seattle, WA
| | - Breah LaSarre
- Department of Biology, Indiana University, Bloomington, IN
| | | | | |
Collapse
|
3
|
du Toit JP, Lea-Smith DJ, Git A, Hervey JRD, Howe CJ, Pott RWM. Expression of Alternative Nitrogenases in Rhodopseudomonas palustris Is Enhanced Using an Optimized Genetic Toolset for Rapid, Markerless Modifications. ACS Synth Biol 2021; 10:2167-2178. [PMID: 34431288 DOI: 10.1021/acssynbio.0c00496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The phototrophic bacterium Rhodopseudomonas palustris is emerging as a promising biotechnological chassis organism, due to its resilience to a range of harsh conditions, a wide metabolic repertoire, and the ability to quickly regenerate ATP using light. However, realization of this promise is impeded by a lack of efficient, rapid methods for genetic modification. Here, we present optimized tools for generating chromosomal insertions and deletions employing electroporation as a means of transformation. Generation of markerless strains can be completed in 12 days, approximately half the time for previous conjugation-based methods. This system was used for overexpression of alternative nitrogenase isozymes with the aim of improving biohydrogen productivity. Insertion of the pucBa promoter upstream of vnf and anf nitrogenase operons drove robust overexpression up to 4000-fold higher than wild-type. Transcript quantification was facilitated by an optimized high-quality RNA extraction protocol employing lysis using detergent and heat. Overexpression resulted in increased nitrogenase protein levels, extending to superior hydrogen productivity in bioreactor studies under nongrowing conditions, where promoter-modified strains better utilized the favorable energy state created by reduced competition from cell division. Robust heterologous expression driven by the pucBa promoter is thus attractive for energy-intensive biosyntheses suited to the capabilities of R. palustris. Development of this genetic modification toolset will accelerate the advancement of R. palustris as a biotechnological chassis organism, and insights into the effects of nitrogenase overexpression will guide future efforts in engineering strains for improved hydrogen production.
Collapse
Affiliation(s)
- Jan-Pierre du Toit
- Department of Process Engineering, Stellenbosch University, Banghoek Road, Stellenbosch, 7600, South Africa
| | - David J. Lea-Smith
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge, CB2 1QW, United Kingdom
| | - Anna Git
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge, CB2 1QW, United Kingdom
| | - John R. D. Hervey
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge, CB2 1QW, United Kingdom
| | - Christopher J. Howe
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge, CB2 1QW, United Kingdom
| | - Robert W. M. Pott
- Department of Process Engineering, Stellenbosch University, Banghoek Road, Stellenbosch, 7600, South Africa
| |
Collapse
|
4
|
Zhai Z, Du J, Chen L, Hamid MR, Du X, Kong X, Cheng J, Tang W, Zhang D, Su P, Liu Y. A genetic tool for production of GFP-expressing Rhodopseudomonas palustris for visualization of bacterial colonization. AMB Express 2019; 9:141. [PMID: 31506772 PMCID: PMC6737145 DOI: 10.1186/s13568-019-0866-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/27/2019] [Indexed: 02/04/2023] Open
Abstract
Development of a genetic tool for visualization of photosynthetic bacteria (PSB) is essential for understanding microbial function during their interaction with plant and microflora. In this study, Rhodopseudomonas palustris GJ-22-gfp harboring the vector pBBR1-pckAPT-gfp was constructed using an electroporation transformation method and was used for dynamic tracing of bacteria in plants. The results showed that strain GJ-22-gfp was stable and did not affect the biocontrol function, and the Confocal Laser Scanning Microscopy (CLSM) results indicated it could successfully colonised on the surface of leaf and root of tobacco and rice. In tobacco leaves, cells formed aggregates on the mesophyll epidermal cells. While in rice, no aggregate was found. Instead, the fluorescent cells colonise the longitudinal intercellular spaces between epidermal cells. In addition, the results of strain GJ-22 on the growth promotion and disease resistance of tobacco and rice indicated that the different colonization patterns might be related to the bacteria could induce systemic resistance in tobacco.
Collapse
|
5
|
LaSarre B, Kysela DT, Stein BD, Ducret A, Brun YV, McKinlay JB. Restricted Localization of Photosynthetic Intracytoplasmic Membranes (ICMs) in Multiple Genera of Purple Nonsulfur Bacteria. mBio 2018; 9:e00780-18. [PMID: 29970460 PMCID: PMC6030561 DOI: 10.1128/mbio.00780-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/06/2018] [Indexed: 01/18/2023] Open
Abstract
In bacteria and eukaryotes alike, proper cellular physiology relies on robust subcellular organization. For the phototrophic purple nonsulfur bacteria (PNSB), this organization entails the use of a light-harvesting, membrane-bound compartment known as the intracytoplasmic membrane (ICM). Here we show that ICMs are spatially and temporally localized in diverse patterns among PNSB. We visualized ICMs in live cells of 14 PNSB species across nine genera by exploiting the natural autofluorescence of the photosynthetic pigment bacteriochlorophyll (BChl). We then quantitatively characterized ICM localization using automated computational analysis of BChl fluorescence patterns within single cells across the population. We revealed that while many PNSB elaborate ICMs along the entirety of the cell, species across as least two genera restrict ICMs to discrete, nonrandom sites near cell poles in a manner coordinated with cell growth and division. Phylogenetic and phenotypic comparisons established that ICM localization and ICM architecture are not strictly interdependent and that neither trait fully correlates with the evolutionary relatedness of the species. The natural diversity of ICM localization revealed herein has implications for both the evolution of phototrophic organisms and their light-harvesting compartments and the mechanisms underpinning spatial organization of bacterial compartments.IMPORTANCE Many bacteria organize their cellular space by constructing subcellular compartments that are arranged in specific, physiologically relevant patterns. The purple nonsulfur bacteria (PNSB) utilize a membrane-bound compartment known as the intracytoplasmic membrane (ICM) to harvest light for photosynthesis. It was previously unknown whether ICM localization within cells is systematic or irregular and if ICM localization is conserved among PNSB. Here we surveyed ICM localization in diverse PNSB and show that ICMs are spatially organized in species-specific patterns. Most strikingly, several PNSB resolutely restrict ICMs to regions near the cell poles, leaving much of the cell devoid of light-harvesting machinery. Our results demonstrate that bacteria of a common lifestyle utilize unequal portions of their intracellular space to harvest light, despite light harvesting being a process that is intuitively influenced by surface area. Our findings therefore raise fundamental questions about ICM biology and evolution.
Collapse
Affiliation(s)
- Breah LaSarre
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - David T Kysela
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Barry D Stein
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Adrien Ducret
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Yves V Brun
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - James B McKinlay
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
6
|
A Rhizobiales-Specific Unipolar Polysaccharide Adhesin Contributes to Rhodopseudomonas palustris Biofilm Formation across Diverse Photoheterotrophic Conditions. Appl Environ Microbiol 2017; 83:AEM.03035-16. [PMID: 27986718 DOI: 10.1128/aem.03035-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/08/2016] [Indexed: 12/25/2022] Open
Abstract
Bacteria predominantly exist as members of surfaced-attached communities known as biofilms. Many bacterial species initiate biofilms and adhere to each other using cell surface adhesins. This is the case for numerous ecologically diverse Alphaprotebacteria, which use polar exopolysaccharide adhesins for cell-cell adhesion and surface attachment. Here, we show that Rhodopseudomonas palustris, a metabolically versatile member of the alphaproteobacterial order Rhizobiales, contains a functional unipolar polysaccharide (UPP) biosynthesis gene cluster. Deletion of genes predicted to be critical for UPP biosynthesis and export abolished UPP production. We also found that R. palustris uses UPP to mediate biofilm formation across diverse photoheterotrophic growth conditions, wherein light and organic substrates are used to support growth. However, UPP was less important for biofilm formation during photoautotrophy, where light and CO2 support growth, and during aerobic respiration with organic compounds. Expanding our analysis beyond R. palustris, we examined the phylogenetic distribution and genomic organization of UPP gene clusters among Rhizobiales species that inhabit diverse niches. Our analysis suggests that UPP is a conserved ancestral trait of the Rhizobiales but that it has been independently lost multiple times during the evolution of this clade, twice coinciding with adaptation to intracellular lifestyles within animal hosts. IMPORTANCE Bacteria are ubiquitously found as surface-attached communities and cellular aggregates in nature. Here, we address how bacterial adhesion is coordinated in response to diverse environments using two complementary approaches. First, we examined how Rhodopseudomonas palustris, one of the most metabolically versatile organisms ever described, varies its adhesion to surfaces in response to different environmental conditions. We identified critical genes for the production of a unipolar polysaccharide (UPP) and showed that UPP is important for adhesion when light and organic substrates are used for growth. Looking beyond R. palustris, we performed the most comprehensive survey to date on the conservation of UPP biosynthesis genes among a group of closely related bacteria that occupy diverse niches. Our findings suggest that UPP is important for free-living and plant-associated lifestyles but dispensable for animal pathogens. Additionally, we propose guidelines for classifying the adhesins produced by various Alphaprotebacteria, facilitating future functional and comparative studies.
Collapse
|
7
|
Sharp JL, Borkowski JJ. A conditional frequency distribution test for analyzing 2×ctables. Stat Probab Lett 2016. [DOI: 10.1016/j.spl.2016.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
LaSarre B, McCully AL, Lennon JT, McKinlay JB. Microbial mutualism dynamics governed by dose-dependent toxicity of cross-fed nutrients. ISME JOURNAL 2016; 11:337-348. [PMID: 27898053 DOI: 10.1038/ismej.2016.141] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 08/25/2016] [Accepted: 09/07/2016] [Indexed: 02/03/2023]
Abstract
Microbial interactions, including mutualistic nutrient exchange (cross-feeding), underpin the flow of energy and materials in all ecosystems. Metabolic exchanges are difficult to assess within natural systems. As such, the impact of exchange levels on ecosystem dynamics and function remains unclear. To assess how cross-feeding levels govern mutualism behavior, we developed a bacterial coculture amenable to both modeling and experimental manipulation. In this coculture, which resembles an anaerobic food web, fermentative Escherichia coli and photoheterotrophic Rhodopseudomonas palustris obligately cross-feed carbon (organic acids) and nitrogen (ammonium). This reciprocal exchange enforced immediate stable coexistence and coupled species growth. Genetic engineering of R. palustris to increase ammonium cross-feeding elicited increased reciprocal organic acid production from E. coli, resulting in culture acidification. Consequently, organic acid function shifted from that of a nutrient to an inhibitor, ultimately biasing species ratios and decreasing carbon transformation efficiency by the community; nonetheless, stable coexistence persisted at a new equilibrium. Thus, disrupting the symmetry of nutrient exchange can amplify alternative roles of an exchanged resource and thereby alter community function. These results have implications for our understanding of mutualistic interactions and the use of microbial consortia as biotechnology.
Collapse
Affiliation(s)
- Breah LaSarre
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | |
Collapse
|
9
|
Bible AN, Fletcher SJ, Pelletier DA, Schadt CW, Jawdy SS, Weston DJ, Engle NL, Tschaplinski T, Masyuko R, Polisetti S, Bohn PW, Coutinho TA, Doktycz MJ, Morrell-Falvey JL. A Carotenoid-Deficient Mutant in Pantoea sp. YR343, a Bacteria Isolated from the Rhizosphere of Populus deltoides, Is Defective in Root Colonization. Front Microbiol 2016; 7:491. [PMID: 27148182 PMCID: PMC4834302 DOI: 10.3389/fmicb.2016.00491] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/24/2016] [Indexed: 11/13/2022] Open
Abstract
The complex interactions between plants and their microbiome can have a profound effect on the health and productivity of the plant host. A better understanding of the microbial mechanisms that promote plant health and stress tolerance will enable strategies for improving the productivity of economically important plants. Pantoea sp. YR343 is a motile, rod-shaped bacterium isolated from the roots of Populus deltoides that possesses the ability to solubilize phosphate and produce the phytohormone indole-3-acetic acid (IAA). Pantoea sp. YR343 readily colonizes plant roots and does not appear to be pathogenic when applied to the leaves or roots of selected plant hosts. To better understand the molecular mechanisms involved in plant association and rhizosphere survival by Pantoea sp. YR343, we constructed a mutant in which the crtB gene encoding phytoene synthase was deleted. Phytoene synthase is responsible for converting geranylgeranyl pyrophosphate to phytoene, an important precursor to the production of carotenoids. As predicted, the ΔcrtB mutant is defective in carotenoid production, and shows increased sensitivity to oxidative stress. Moreover, we find that the ΔcrtB mutant is impaired in biofilm formation and production of IAA. Finally we demonstrate that the ΔcrtB mutant shows reduced colonization of plant roots. Taken together, these data suggest that carotenoids are important for plant association and/or rhizosphere survival in Pantoea sp. YR343.
Collapse
Affiliation(s)
- Amber N. Bible
- Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA
| | - Sarah J. Fletcher
- Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA
| | - Dale A. Pelletier
- Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA
| | | | - Sara S. Jawdy
- Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA
| | - David J. Weston
- Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA
| | - Nancy L. Engle
- Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA
| | | | - Rachel Masyuko
- Department of Chemical and Biomolecular Engineering, University of Notre DameNotre Dame, IN, USA
| | - Sneha Polisetti
- Department of Chemical and Biomolecular Engineering, University of Notre DameNotre Dame, IN, USA
| | - Paul W. Bohn
- Department of Chemical and Biomolecular Engineering, University of Notre DameNotre Dame, IN, USA
| | - Teresa A. Coutinho
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of PretoriaPretoria, South Africa
| | | | | |
Collapse
|
10
|
Wille T, Barlag B, Jakovljevic V, Hensel M, Sourjik V, Gerlach RG. A gateway-based system for fast evaluation of protein-protein interactions in bacteria. PLoS One 2015; 10:e0123646. [PMID: 25856398 PMCID: PMC4391838 DOI: 10.1371/journal.pone.0123646] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/26/2015] [Indexed: 11/18/2022] Open
Abstract
Protein-protein interactions are important layers of regulation in all kingdoms of life. Identification and characterization of these interactions is one challenging task of the post-genomic era and crucial for understanding of molecular processes within a cell. Several methods have been successfully employed during the past decades to identify protein-protein interactions in bacteria, but most of them include tedious and time-consuming manipulations of DNA. In contrast, the MultiSite Gateway system is a fast tool for transfer of multiple DNA fragments between plasmids enabling simultaneous and site directed cloning of up to four fragments into one construct. Here we developed a new set of Gateway vectors including custom made entry vectors and modular Destination vectors for studying protein-protein interactions via Fluorescence Resonance Energy Transfer (FRET), Bacterial two Hybrid (B2H) and split Gaussia luciferase (Gluc), as well as for fusions with SNAP-tag and HaloTag for dual-color super-resolution microscopy. As proof of principle, we characterized the interaction between the Salmonella effector SipA and its chaperone InvB via split Gluc and B2H approach. The suitability for FRET analysis as well as functionality of fusions with SNAP- and HaloTag could be demonstrated by studying the transient interaction between chemotaxis response regulator CheY and its phosphatase CheZ.
Collapse
Affiliation(s)
- Thorsten Wille
- Junior Research Group 3, Robert Koch-Institute, Wernigerode Branch, Wernigerode, Germany
| | - Britta Barlag
- Division of Microbiology, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Vladimir Jakovljevic
- Center for Molecular Biology at the University of Heidelberg (ZMBH), DKFZ (German Cancer Research Center) -ZMBH Alliance, Heidelberg, Germany
| | - Michael Hensel
- Division of Microbiology, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Victor Sourjik
- Center for Molecular Biology at the University of Heidelberg (ZMBH), DKFZ (German Cancer Research Center) -ZMBH Alliance, Heidelberg, Germany
- Max Planck Institute for Terrestrial Microbiology & LOEWE (state offensive for the development of scientific and economic excellence) Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Roman G. Gerlach
- Junior Research Group 3, Robert Koch-Institute, Wernigerode Branch, Wernigerode, Germany
- * E-mail:
| |
Collapse
|
11
|
Allen MS, Hurst GB, Lu TYS, Perry LM, Pan C, Lankford PK, Pelletier DA. Rhodopseudomonas palustris CGA010 Proteome Implicates Extracytoplasmic Function Sigma Factor in Stress Response. J Proteome Res 2015; 14:2158-68. [PMID: 25853567 DOI: 10.1021/pr5012558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rhodopseudomonas palustris encodes 16 extracytoplasmic function (ECF) σ factors. To begin to investigate the regulatory network of one of these ECF σ factors, the whole proteome of R. palustris CGA010 was quantitatively analyzed by tandem mass spectrometry from cultures episomally expressing the ECF σ(RPA4225) (ecfT) versus a WT control. Among the proteins with the greatest increase in abundance were catalase KatE, trehalose synthase, a DPS-like protein, and several regulatory proteins. Alignment of the cognate promoter regions driving expression of several upregulated proteins suggested a conserved binding motif in the -35 and -10 regions with the consensus sequence GGAAC-18N-TT. Additionally, the putative anti-σ factor RPA4224, whose gene is contained in the same predicted operon as RPA4225, was identified as interacting directly with the predicted response regulator RPA4223 by mass spectrometry of affinity-isolated protein complexes. Furthermore, another gene (RPA4226) coding for a protein that contains a cytoplasmic histidine kinase domain is located immediately upstream of RPA4225. The genomic organization of orthologs for these four genes is conserved in several other strains of R. palustris as well as in closely related α-Proteobacteria. Taken together, these data suggest that ECF σ(RPA4225) and the three additional genes make up a sigma factor mimicry system in R. palustris.
Collapse
Affiliation(s)
- Michael S Allen
- §Department of Biological Sciences, University of North Texas, Denton, Texas 76203-5017, United States.,∥Center for Biosafety and Biosecurity Department of Molecular and Medical Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | | | | | - Leslie M Perry
- §Department of Biological Sciences, University of North Texas, Denton, Texas 76203-5017, United States
| | | | | | | |
Collapse
|
12
|
Quantitative and Systems-Based Approaches for Deciphering Bacterial Membrane Interactome and Gene Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 883:135-54. [PMID: 26621466 DOI: 10.1007/978-3-319-23603-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
High-throughput genomic and proteomic methods provide a concise description of the molecular constituents of a cell, whereas systems biology strives to understand the way these components function as a whole. Recent developments, such as genome editing technologies and protein epitope-tagging coupled with high-sensitivity mass-spectrometry, allow systemic studies to be performed at an unprecedented scale. Available methods can be successfully applied to various goals, both expanding fundamental knowledge and solving applied problems. In this review, we discuss the present state and future of bacterial cell envelope interactomics, with a specific focus on host-pathogen interactions and drug target discovery. Both experimental and computational methods will be outlined together with examples of their practical implementation.
Collapse
|
13
|
Salzano AM, Novi G, Arioli S, Corona S, Mora D, Scaloni A. Mono-dimensional blue native-PAGE and bi-dimensional blue native/urea-PAGE or/SDS-PAGE combined with nLC–ESI-LIT-MS/MS unveil membrane protein heteromeric and homomeric complexes in Streptococcus thermophilus. J Proteomics 2013; 94:240-61. [DOI: 10.1016/j.jprot.2013.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/04/2013] [Accepted: 09/14/2013] [Indexed: 02/06/2023]
|
14
|
How posttranslational modification of nitrogenase is circumvented in Rhodopseudomonas palustris strains that produce hydrogen gas constitutively. Appl Environ Microbiol 2011; 78:1023-32. [PMID: 22179236 DOI: 10.1128/aem.07254-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrogenase catalyzes the conversion of dinitrogen gas (N(2)) and protons to ammonia and hydrogen gas (H(2)). This is a catalytically difficult reaction that requires large amounts of ATP and reducing power. Thus, nitrogenase is not normally expressed or active in bacteria grown with a readily utilized nitrogen source like ammonium. nifA* mutants of the purple nonsulfur phototrophic bacterium Rhodopseudomonas palustris have been described that express nitrogenase genes constitutively and produce H(2) when grown with ammonium as a nitrogen source. This raised the regulatory paradox of why these mutants are apparently resistant to a known posttranslational modification system that should switch off the activity of nitrogenase. Microarray, mutation analysis, and gene expression studies showed that posttranslational regulation of nitrogenase activity in R. palustris depends on two proteins: DraT2, an ADP-ribosyltransferase, and GlnK2, an NtrC-regulated P(II) protein. GlnK2 was not well expressed in ammonium-grown NifA* cells and thus not available to activate the DraT2 nitrogenase modification enzyme. In addition, the NifA* strain had elevated nitrogenase activity due to overexpression of the nif genes, and this increased amount of expression overwhelmed a basal level of activity of DraT2 in ammonium-grown cells. Thus, insufficient levels of both GlnK2 and DraT2 allow H(2) production by an nifA* mutant grown with ammonium. Inactivation of the nitrogenase posttranslational modification system by mutation of draT2 resulted in increased H(2) production by ammonium-grown NifA* cells.
Collapse
|
15
|
Dwane S, Kiely PA. Tools used to study how protein complexes are assembled in signaling cascades. Bioeng Bugs 2011; 2:247-59. [PMID: 22002082 PMCID: PMC3225741 DOI: 10.4161/bbug.2.5.17844] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 08/19/2011] [Accepted: 08/24/2011] [Indexed: 01/08/2023] Open
Abstract
Most proteins do not function on their own but as part of large signaling complexes that are arranged in every living cell in response to specific environmental cues. Proteins interact with each other either constitutively or transiently and do so with different affinity. When identifying the role played by a protein inside a cell, it is essential to define its particular cohort of binding partners so that the researcher can predict what signaling pathways the protein is engaged in. Once identified and confirmed, the information might allow the interaction to be manipulated by pharmacological inhibitors to help fight disease. In this review, we discuss protein-protein interactions and how they are essential to propagate signals in signaling pathways. We examine some of the high-throughput screening methods and focus on the methods used to confirm specific protein-protein interactions including; affinity tagging, co-immunoprecipitation, peptide array technology and fluorescence microscopy.
Collapse
Affiliation(s)
- Susan Dwane
- Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland
| | | |
Collapse
|
16
|
Ravindranath SP, Henne KL, Thompson DK, Irudayaraj J. Raman chemical imaging of chromate reduction sites in a single bacterium using intracellularly grown gold nanoislands. ACS NANO 2011; 5:4729-36. [PMID: 21634405 PMCID: PMC3140767 DOI: 10.1021/nn201105r] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Imaging live molecular events within micro-organisms at single-cell resolution would deliver valuable mechanistic information much needed in understanding key biological processes. We present a surface-enhanced Raman (SERS) chemical imaging strategy as a first step toward exploring the intracellular bioreduction pockets of toxic chromate in Shewanella. In order to achieve this, we take advantage of an innate reductive mechanism in bacteria of reducing gold ions into intracellular gold nanoislands, which provide the necessary enhancement for SERS imaging. We show that SERS has the sensitivity and selectivity not only to identify but also to differentiate between the two stable valence forms of chromate in cells. The imaging platform was used to understand intracellular metal reduction activities in a ubiquitous metal-reducing organism, Shewanella oneidensis MR-1, by mapping chromate reduction.
Collapse
Affiliation(s)
- Sandeep P. Ravindranath
- Bindley Bioscience Center, Birck Nanotechnology Center, Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, United States of America
| | - Kristene L. Henne
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, United States of America
| | - Dorothea K. Thompson
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, United States of America
| | - Joseph Irudayaraj
- Bindley Bioscience Center, Birck Nanotechnology Center, Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, United States of America
| |
Collapse
|
17
|
Production of hydrogen gas from light and the inorganic electron donor thiosulfate by Rhodopseudomonas palustris. Appl Environ Microbiol 2010; 76:7717-22. [PMID: 20889777 DOI: 10.1128/aem.01143-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A challenge for photobiological production of hydrogen gas (H(2)) as a potential biofuel is to find suitable electron-donating feedstocks. Here, we examined the inorganic compound thiosulfate as a possible electron donor for nitrogenase-catalyzed H(2) production by the purple nonsulfur phototrophic bacterium (PNSB) Rhodopseudomonas palustris. Thiosulfate is an intermediate of microbial sulfur metabolism in nature and is also generated in industrial processes. We found that R. palustris grew photoautotrophically with thiosulfate and bicarbonate and produced H(2) when nitrogen gas was the sole nitrogen source (nitrogen-fixing conditions). In addition, illuminated nongrowing R. palustris cells converted about 80% of available electrons from thiosulfate to H(2). H(2) production with acetate and succinate as electron donors was less efficient (40 to 60%), partly because nongrowing cells excreted the intermediary metabolite α-ketoglutarate into the culture medium. The fixABCX operon (RPA4602 to RPA4605) encoding a predicted electron-transfer complex is necessary for growth using thiosulfate under nitrogen-fixing conditions and may serve as a point of engineering to control rates of H(2) production. The possibility to use thiosulfate expands the range of electron-donating compounds for H(2) production by PNSBs beyond biomass-based electron donors.
Collapse
|
18
|
Paradigm for industrial strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2010; 107:10395-400. [PMID: 20484677 DOI: 10.1073/pnas.0914506107] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The application of systems biology tools holds promise for rational industrial microbial strain development. Here, we characterize a Zymomonas mobilis mutant (AcR) demonstrating sodium acetate tolerance that has potential importance in biofuel development. The genome changes associated with AcR are determined using microarray comparative genome sequencing (CGS) and 454-pyrosequencing. Sanger sequencing analysis is employed to validate genomic differences and to investigate CGS and 454-pyrosequencing limitations. Transcriptomics, genetic data and growth studies indicate that over-expression of the sodium-proton antiporter gene nhaA confers the elevated AcR sodium acetate tolerance phenotype. nhaA over-expression mostly confers enhanced sodium (Na(+)) tolerance and not acetate (Ac(-)) tolerance, unless both ions are present in sufficient quantities. NaAc is more inhibitory than potassium and ammonium acetate for Z. mobilis and the combination of elevated Na(+) and Ac(-) ions exerts a synergistic inhibitory effect for strain ZM4. A structural model for the NhaA sodium-proton antiporter is constructed to provide mechanistic insights. We demonstrate that Saccharomyces cerevisiae sodium-proton antiporter genes also contribute to sodium acetate, potassium acetate, and ammonium acetate tolerances. The present combination of classical and systems biology tools is a paradigm for accelerated industrial strain improvement and combines benefits of few a priori assumptions with detailed, rapid, mechanistic studies.
Collapse
|
19
|
Yang S, Pelletier DA, Lu TYS, Brown SD. The Zymomonas mobilis regulator hfq contributes to tolerance against multiple lignocellulosic pretreatment inhibitors. BMC Microbiol 2010; 10:135. [PMID: 20459639 PMCID: PMC2877685 DOI: 10.1186/1471-2180-10-135] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 05/07/2010] [Indexed: 11/29/2022] Open
Abstract
Background Zymomonas mobilis produces near theoretical yields of ethanol and recombinant strains are candidate industrial microorganisms. To date, few studies have examined its responses to various stresses at the gene level. Hfq is a conserved bacterial member of the Sm-like family of RNA-binding proteins, coordinating a broad array of responses including multiple stress responses. In a previous study, we observed Z. mobilis ZM4 gene ZMO0347 showed higher expression under anaerobic, stationary phase compared to that of aerobic, stationary conditions. Results We generated a Z. mobilis hfq insertion mutant AcRIM0347 in an acetate tolerant strain (AcR) background and investigated its role in model lignocellulosic pretreatment inhibitors including acetate, vanillin, furfural and hydroxymethylfurfural (HMF). Saccharomyces cerevisiae Lsm protein (Hfq homologue) mutants and Lsm protein overexpression strains were also assayed for their inhibitor phenotypes. Our results indicated that all the pretreatment inhibitors tested in this study had a detrimental effect on both Z. mobilis and S. cerevisiae, and vanillin had the most inhibitory effect followed by furfural and then HMF for both Z. mobilis and S. cerevisiae. AcRIM0347 was more sensitive than the parental strain to the inhibitors and had an increased lag phase duration and/or slower growth depending upon the conditions. The hfq mutation in AcRIM0347 was complemented partially by trans-acting hfq gene expression. We also assayed growth phenotypes for S. cerevisiae Lsm protein mutant and overexpression phenotypes. Lsm1, 6, and 7 mutants showed reduced tolerance to acetate and other pretreatment inhibitors. S. cerevisiae Lsm protein overexpression strains showed increased acetate and HMF resistance as compared to the wild-type, while the overexpression strains showed greater inhibition under vanillin stress conditions. Conclusions We have shown the utility of the pKNOCK suicide plasmid for mutant construction in Z. mobilis, and constructed a Gateway compatible expression plasmid for use in Z. mobilis for the first time. We have also used genetics to show Z. mobilis Hfq and S. cerevisiae Lsm proteins play important roles in resisting multiple, important industrially relevant inhibitors. The conserved nature of this global regulator offers the potential to apply insights from these fundamental studies for further industrial strain development.
Collapse
Affiliation(s)
- Shihui Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | | | | | | |
Collapse
|
20
|
Edwards AN, Fowlkes JD, Owens ET, Standaert RF, Pelletier DA, Hurst GB, Doktycz MJ, Morrell-Falvey JL. An in vivo imaging-based assay for detecting protein interactions over a wide range of binding affinities. Anal Biochem 2009; 395:166-77. [PMID: 19698693 DOI: 10.1016/j.ab.2009.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/13/2009] [Accepted: 08/17/2009] [Indexed: 11/28/2022]
Abstract
Identifying and characterizing protein interactions are fundamental steps toward understanding and modeling biological networks. Methods that detect protein interactions in intact cells rather than buffered solutions are likely more relevant to natural systems since molecular crowding events in the cytosol can influence the diffusion and reactivity of individual proteins. One in vivo, imaging-based method relies on the colocalization of two proteins of interest fused to DivIVA, a cell division protein from Bacillus subtilis, and green fluorescent protein (GFP). We have modified this imaging-based assay to facilitate rapid cloning by constructing new vectors encoding N- and C-terminal DivIVA or GFP molecular tag fusions based on site-specific recombination technology. The sensitivity of the assay was defined using a well-characterized protein interaction system involving the eukaryotic nuclear import receptor subunit, Importin alpha (Imp alpha), and variant nuclear localization signals (NLS) representing a range of binding affinities. These data demonstrate that the modified colocalization assay is sensitive enough to detect protein interactions with K(d) values that span over four orders of magnitude (1 nM to 15 microM). Lastly, this assay was used to confirm numerous protein interactions identified from mass spectrometry-based analyses of affinity isolates as part of an interactome mapping project in Rhodopseudomonas palustris.
Collapse
Affiliation(s)
- A Nicole Edwards
- University of Tennessee-Oak Ridge National Laboratory, Graduate School of Genome Science and Technology, Knoxville, TN 37996, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Hervey WJ, Khalsa-Moyers G, Lankford PK, Owens ET, McKeown CK, Lu TY, Foote LJ, Asano KG, Morrell-Falvey JL, McDonald WH, Pelletier DA, Hurst GB. Evaluation of Affinity-Tagged Protein Expression Strategies Using Local and Global Isotope Ratio Measurements. J Proteome Res 2009; 8:3675-88. [DOI: 10.1021/pr801088f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- W. Judson Hervey
- Graduate School of Genome Science and Technology, University of Tennessee-Knoxville and Oak Ridge National Laboratory, 1060 Commerce Park Drive, Oak Ridge, Tennessee 37830-8026, Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, and Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6131
| | - Gurusahai Khalsa-Moyers
- Graduate School of Genome Science and Technology, University of Tennessee-Knoxville and Oak Ridge National Laboratory, 1060 Commerce Park Drive, Oak Ridge, Tennessee 37830-8026, Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, and Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6131
| | - Patricia K. Lankford
- Graduate School of Genome Science and Technology, University of Tennessee-Knoxville and Oak Ridge National Laboratory, 1060 Commerce Park Drive, Oak Ridge, Tennessee 37830-8026, Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, and Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6131
| | - Elizabeth T. Owens
- Graduate School of Genome Science and Technology, University of Tennessee-Knoxville and Oak Ridge National Laboratory, 1060 Commerce Park Drive, Oak Ridge, Tennessee 37830-8026, Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, and Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6131
| | - Catherine K. McKeown
- Graduate School of Genome Science and Technology, University of Tennessee-Knoxville and Oak Ridge National Laboratory, 1060 Commerce Park Drive, Oak Ridge, Tennessee 37830-8026, Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, and Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6131
| | - Tse-Yuan Lu
- Graduate School of Genome Science and Technology, University of Tennessee-Knoxville and Oak Ridge National Laboratory, 1060 Commerce Park Drive, Oak Ridge, Tennessee 37830-8026, Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, and Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6131
| | - Linda J. Foote
- Graduate School of Genome Science and Technology, University of Tennessee-Knoxville and Oak Ridge National Laboratory, 1060 Commerce Park Drive, Oak Ridge, Tennessee 37830-8026, Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, and Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6131
| | - Keiji G. Asano
- Graduate School of Genome Science and Technology, University of Tennessee-Knoxville and Oak Ridge National Laboratory, 1060 Commerce Park Drive, Oak Ridge, Tennessee 37830-8026, Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, and Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6131
| | - Jennifer L. Morrell-Falvey
- Graduate School of Genome Science and Technology, University of Tennessee-Knoxville and Oak Ridge National Laboratory, 1060 Commerce Park Drive, Oak Ridge, Tennessee 37830-8026, Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, and Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6131
| | - W. Hayes McDonald
- Graduate School of Genome Science and Technology, University of Tennessee-Knoxville and Oak Ridge National Laboratory, 1060 Commerce Park Drive, Oak Ridge, Tennessee 37830-8026, Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, and Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6131
| | - Dale A. Pelletier
- Graduate School of Genome Science and Technology, University of Tennessee-Knoxville and Oak Ridge National Laboratory, 1060 Commerce Park Drive, Oak Ridge, Tennessee 37830-8026, Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, and Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6131
| | - Gregory B. Hurst
- Graduate School of Genome Science and Technology, University of Tennessee-Knoxville and Oak Ridge National Laboratory, 1060 Commerce Park Drive, Oak Ridge, Tennessee 37830-8026, Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, and Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6131
| |
Collapse
|