1
|
Dixit S, Dhaked RK, Ts G, Yadav A, Parashar J, Saxena N. A battery of assays for chasing ricin and its activity. Toxicol Lett 2025; 408:43-53. [PMID: 40239906 DOI: 10.1016/j.toxlet.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/31/2025] [Accepted: 04/14/2025] [Indexed: 04/18/2025]
Abstract
Ricin, a type-2 Ribosome-Inactivating Protein (RIP), is a dangerous biotoxin derived from castor plant seeds. It is classified as a Schedule 1 agent by the Chemical Weapon Convention (CWC) and a Category B agent by the Biological and Toxin Weapon Convention (BTWC). Despite their high toxicity, castor seed plants are widely used for the production of castor oil and in folk medicine systems for the treatment of various diseases. Due to the lack of a Food and Drug Administration (FDA) approved medication, early detection of biologically active ricin is critical for implementing suitable countermeasures in time to avert casualties. It is required to employ an integrated approach to distinguish between pure and crude ricin as well as active/inactive ricin. In the present study, a series of bioassays were performed to identify biologically active ricin and its different forms. This assessment included both field and lab-based assays to detect and differentiate different isoforms of ricin. The assays used are the lateral flow assay (LFA), hemagglutination assay (HA), In-vitro translational system (IVTS), cytotoxicity assay (CA), and mouse protection assay (MPA). Considering the ricin-contaminated scenario, the first step was to qualitatively determine the presence of ricin using LFA. Following that, a HA was optimized to differentiate between crude and pure ricin. In addition to this, the assay was also able to differentiate various cultivars and isoforms. IVTS assay was used to identify the enzymatic activity of the ricin A chain that inhibited translational machinery with IC50 (50 % inhibitory concentration) of 11.2 ng/ml. Further neutralization with anti-ricin rabbit polyclonal antibodies (RPAb) confirmed the ricin-mediated translation inhibition and excluded the use of other RIPs (abrin, saproin, and viscumin). Cytotoxicity in HeLa cells was used as a cellular model with an estimated CC50 value (50 % cytotoxic concentration) of 36 ng/ml. The neutralization experiment with RPAb specifically reversed the ricin-induced cytotoxicity. A mouse protection assay was done using 5X LD50 of ricin, which caused mortality within 48 h. RPAb increased the survival, verdict the presence of ricin, and eliminated the presence of related RIPs. All the proposed assays suffice the requirement during ricin exposure scenario from the field to the laboratory. These assays are also capable of distinguishing crude/pure/cultivars, and isoforms of ricin. During an emergency, a combination of these assays will help us to make faster decisions and increase the therapeutic time window for treatment.
Collapse
Affiliation(s)
- Shivani Dixit
- Division of Pharmacology & Toxicology, Defence Research Development & Establishment, Defence Research Development Organization, Gwalior 474002, India
| | - Ram Kumar Dhaked
- Biotechnology Division, Defence Research Development & Establishment, Defence Research Development Organization, Gwalior 474002, India
| | - Greeshma Ts
- Division of Pharmacology & Toxicology, Defence Research Development & Establishment, Defence Research Development Organization, Gwalior 474002, India
| | - Anjali Yadav
- Division of Pharmacology & Toxicology, Defence Research Development & Establishment, Defence Research Development Organization, Gwalior 474002, India
| | - Jagrati Parashar
- Division of Pharmacology & Toxicology, Defence Research Development & Establishment, Defence Research Development Organization, Gwalior 474002, India
| | - Nandita Saxena
- Division of Pharmacology & Toxicology, Defence Research Development & Establishment, Defence Research Development Organization, Gwalior 474002, India.
| |
Collapse
|
2
|
Aveilla N, Feraudet-Tarisse C, Marcé D, Fatihi A, Fenaille F, Hennekinne JA, Simon S, Nia Y, Becher F. Quantification of Staphylococcal Enterotoxin A Variants at Low Level in Dairy Products by High-Resolution Top-Down Mass Spectrometry. Toxins (Basel) 2024; 16:535. [PMID: 39728793 PMCID: PMC11679111 DOI: 10.3390/toxins16120535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/20/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024] Open
Abstract
Food poisoning outbreaks frequently involve staphylococcal enterotoxins (SEs). SEs include 33 distinct types and multiple sequence variants per SE type. Various mass spectrometry methods have been reported for the detection of SEs using a conventional bottom-up approach. However, the bottom-up approach cannot differentiate between all sequence variants due to partial sequence coverage, and it requires a long trypsin digestion time. While the alternative top-down approach can theoretically identify any sequence modifications, it generally provides lower sensitivity. In this study, we optimized top-down mass spectrometry conditions and incorporated a fully 15N-labeled SEA spiked early in the protocol to achieve sensitivity and repeatability comparable to bottom-up approaches. After robust immunoaffinity purification of the SEA, mass spectrometry signals were acquired on a Q-Orbitrap instrument operated in full-scan mode and targeted acquisition by parallel reaction monitoring (PRM), enabling the identification of sequence variants and precise quantification of SEA. The protocol was evaluated in liquid and solid dairy products and demonstrated detection limits of 0.5 ng/mL or ng/g in PRM and 1 ng/mL or ng/g in full-scan mode for milk and Roquefort cheese. The top-down method was successfully applied to various dairy products, allowing discrimination of contaminated versus non-contaminated food, quantification of SEA level and identification of the variant involved.
Collapse
Affiliation(s)
- Nina Aveilla
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (N.A.); (C.F.-T.); (D.M.); (F.F.); (S.S.)
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94700 Maisons-Alfort, France; (A.F.); (J.-A.H.); (Y.N.)
| | - Cécile Feraudet-Tarisse
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (N.A.); (C.F.-T.); (D.M.); (F.F.); (S.S.)
| | - Dominique Marcé
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (N.A.); (C.F.-T.); (D.M.); (F.F.); (S.S.)
| | - Abdelhak Fatihi
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94700 Maisons-Alfort, France; (A.F.); (J.-A.H.); (Y.N.)
| | - François Fenaille
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (N.A.); (C.F.-T.); (D.M.); (F.F.); (S.S.)
| | - Jacques-Antoine Hennekinne
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94700 Maisons-Alfort, France; (A.F.); (J.-A.H.); (Y.N.)
| | - Stéphanie Simon
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (N.A.); (C.F.-T.); (D.M.); (F.F.); (S.S.)
| | - Yacine Nia
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94700 Maisons-Alfort, France; (A.F.); (J.-A.H.); (Y.N.)
| | - François Becher
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (N.A.); (C.F.-T.); (D.M.); (F.F.); (S.S.)
| |
Collapse
|
3
|
Miyaguchi H. Simultaneous analysis of depurinated nucleic acid stem-loop and free adenine for ricin toxicity assay by hydrophilic interaction liquid chromatography-high-resolution mass spectrometry (HILIC-HRMS). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7940-7946. [PMID: 39435592 DOI: 10.1039/d4ay01203h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
A simple, accurate method for measuring ricin activity was developed by detecting depurinated nucleic acid stem-loops and adenine using a commercially available hydrophilic interaction liquid chromatography (HILIC) column and a quadrupole-Orbitrap tandem mass spectrometer. Ricin in beverages was isolated using magnetic beads conjugated with ricin B-chain antibodies, and then incubated with a 14 mer RNA or a 12 mer RNA/DNA chimera, in which adenosine at the depurination site of RNA was replaced by deoxyadenosine. The adenine and depurinated nucleic acids were separated by HILIC and both analytes were detected by high-resolution mass spectrometry. The depurinated RNA was detectable at concentrations as low as 100 pM (6.5 μg mL-1) in orange juice and coffee, and 10 pM (0.65 μg mL-1) in milk and sake after incubation with the RNA substrate for 4 h. Free adenine was detectable at 10 pM in all matrices, although free adenine was also detected in all blanks and could not be distinguished from the coffee and orange juice blanks at 10 pM. When using the chimera as the substrate, the depurinated chimera and adenine were detected up to concentrations of 10 pM as larger peaks. However, since the depurinated chimera and adenine were also detected in blanks, careful judgment was needed to determine whether they were active. Following the assay, the captured ricin could be analyzed by enzymatic digestion and nano liquid chromatography-high-resolution mass spectrometry. The ricin A chain-specific T7A peptide was detectable at 10 pM for sake and at 100 pM for milk, orange juice, and coffee. Using the present method, a toxicity assay and qualitative analysis of ricin were feasible with a 0.2 mL beverage sample.
Collapse
Affiliation(s)
- Hajime Miyaguchi
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan.
| |
Collapse
|
4
|
Piquet P, Saadi J, Fenaille F, Kalb SR, Becher F. Rapid detection of ricin at trace levels in complex matrices by asialofetuin-coated beads and bottom-up proteomics using high-resolution mass spectrometry. Anal Bioanal Chem 2024; 416:5145-5153. [PMID: 39046503 PMCID: PMC11377644 DOI: 10.1007/s00216-024-05452-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Ricin is a toxic protein regarded as a potential chemical weapon for bioterrorism or criminal use. In the event of a ricin incident, rapid analytical methods are essential for ricin confirmation in a diversity of matrices, from environmental to human or food samples. Mass spectrometry-based methods provide specific toxin identification but require prior enrichment by antibodies to reach trace-level detection in matrices. Here, we describe a novel assay using the glycoprotein asialofetuin as an alternative to antibodies for ricin enrichment, combined with the specific detection of signature peptides by high-resolution mass spectrometry. Additionally, optimizations made to the assay reduced the sample preparation time from 5 h to 80 min only. Method evaluation confirmed the detection of ricin at trace levels over a wide range of pH and in protein-rich samples, illustrating challenging matrices. This new method constitutes a relevant antibody-free solution for the fast and specific mass spectrometry detection of ricin in the situation of a suspected toxin incident, complementary to active ricin determination by adenine release assays.
Collapse
Affiliation(s)
- Paloma Piquet
- Département Médicaments Et Technologies Pour La Santé (DMTS), INRAE, CEA, Université Paris-Saclay, 91191, Gif-Sur-Yvette, France
| | - Justyna Saadi
- Département Médicaments Et Technologies Pour La Santé (DMTS), INRAE, CEA, Université Paris-Saclay, 91191, Gif-Sur-Yvette, France
| | - François Fenaille
- Département Médicaments Et Technologies Pour La Santé (DMTS), INRAE, CEA, Université Paris-Saclay, 91191, Gif-Sur-Yvette, France
| | - Suzanne R Kalb
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, National Center for Environmental Health, Atlanta, GA, 30341, USA
| | - François Becher
- Département Médicaments Et Technologies Pour La Santé (DMTS), INRAE, CEA, Université Paris-Saclay, 91191, Gif-Sur-Yvette, France.
| |
Collapse
|
5
|
Dixit S, Parashar J, Dhaked RK, Kumar A, Saxena N. Development and validation of streptavidin-biotin-based double antibody sandwich ELISA for ricin diagnosis. Int Immunopharmacol 2024; 132:111986. [PMID: 38574703 DOI: 10.1016/j.intimp.2024.111986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/01/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Ricin is a potential biowarfare agent. It is a phytotoxin isolated from castor seeds. At present there is no antidote available for ricin poisoning, patients only get supportive treatment based on their symptoms. This highlights the importance of early detection to avoid severity of accidents and reduce the risk factor. Considering this, our study aimed to develop a highly sensitive and specific sandwich ELISA for the detection of ricin. METHODS Ricin was purified from castor seeds. Anti-ricin polyclonal and monoclonal antibodies were generated from rabbit antisera and hybridoma cell (1H6F1) supernatant using a protein A/G column. Antibody titer estimation was done using Indirect ELISA. A streptavidin-biotin-based sandwich ELISA was developed and the limit of detection (LOD), linear range, intra and inter-assay coefficient of variation (CV), and cross-reactivity with other similar toxins were determined. Interference of human plasma samples spiked with ricin was also checked. RESULTS The LOD of the ELISA was found to be 0.45 ng/ml, with a linear range of 0.90-62 ng/ml, intra and inter-assay CV ranged from 3.34 % to 5 % and 5.17 % to 10.80 % respectively. The assay was not cross-reactive with other similar ribosome-inactivating protein (RIP) toxins. Ricin was detected in spiked plasma samples. CONCLUSION The developed assay is highly sensitive and specific for detecting ricin and is not cross-reactive with other similar types of toxins. The assay can detect ricin in spiked plasma samples, so it has the potential to be used for the analysis of clinical samples after ricin poisoning.
Collapse
Affiliation(s)
- Shivani Dixit
- Division of Pharmacology & Toxicology, Defence Research Development & Establishment, Defence Research Development Organization, Gwalior, India
| | - Jagrati Parashar
- Division of Pharmacology & Toxicology, Defence Research Development & Establishment, Defence Research Development Organization, Gwalior, India
| | - Ram Kumar Dhaked
- Biotechnology Division, Defence Research Development & Establishment, Defence Research Development Organization, Gwalior, India
| | - Abdhesh Kumar
- Animal Facility Division, Defence Research Development & Establishment, Defence Research Development Organization, Gwalior, India
| | - Nandita Saxena
- Division of Pharmacology & Toxicology, Defence Research Development & Establishment, Defence Research Development Organization, Gwalior, India.
| |
Collapse
|
6
|
Rasetti-Escargueil C, Avril A. Medical Countermeasures against Ricin Intoxication. Toxins (Basel) 2023; 15:toxins15020100. [PMID: 36828415 PMCID: PMC9966136 DOI: 10.3390/toxins15020100] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Ricin toxin is a disulfide-linked glycoprotein (AB toxin) comprising one enzymatic A chain (RTA) and one cell-binding B chain (RTB) contained in the castor bean, a Ricinus species. Ricin inhibits peptide chain elongation via disruption of the binding between elongation factors and ribosomes, resulting in apoptosis, inflammation, oxidative stress, and DNA damage, in addition to the classically known rRNA damage. Ricin has been used in traditional medicine throughout the world since prehistoric times. Because ricin toxin is highly toxic and can be readily extracted from beans, it could be used as a bioweapon (CDC B-list). Due to its extreme lethality and potential use as a biological weapon, ricin toxin remains a global public health concern requiring specific countermeasures. Currently, no specific treatment for ricin intoxication is available. This review focuses on the drugs under development. In particular, some examples are reviewed to demonstrate the proof of concept of antibody-based therapy. Chemical inhibitors, small proteins, and vaccines can serve as alternatives to antibodies or may be used in combination with antibodies.
Collapse
Affiliation(s)
- Christine Rasetti-Escargueil
- Unité des Bactéries Anaérobies et Toxines, Institut Pasteur, 25 Avenue du Docteur Roux, 75015 Paris, France
- Correspondence:
| | - Arnaud Avril
- Unité Immunopathologies, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France
| |
Collapse
|
7
|
Hosu I, Sobaszek M, Ficek M, Bogdanowicz R, Coffinier Y. Boron-doped carbon nanowalls for fast and direct detection of cytochrome C and ricin by matrix-free laser desorption/ionization mass spectrometry. Talanta 2023; 252:123778. [DOI: 10.1016/j.talanta.2022.123778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 10/15/2022]
|
8
|
Qin L, Han J, Wang C, Xu B, Tan D, He S, Guo L, Bo X, Xie J. Key defatting tissue pretreatment protocol for enhanced MALDI MS Imaging of peptide biomarkers visualization in the castor beans and their attribution applications. FRONTIERS IN PLANT SCIENCE 2022; 13:1083901. [PMID: 36589060 PMCID: PMC9800866 DOI: 10.3389/fpls.2022.1083901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Castor bean or ricin-induced intoxication or terror events have threatened public security and social safety. Potential resources or materials include beans, raw extraction products, crude toxins, and purified ricin. The traceability of the origins of castor beans is thus essential for forensic and anti-terror investigations. As a new imaging technique with label-free, rapid, and high throughput features, matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) has been gradually stressed in plant research. However, sample preparation approaches for plant tissues still face severe challenges, especially for some lipid-rich, water-rich, or fragile tissues. Proper tissue washing procedures would be pivotal, but little information is known until now. METHODS For castor beans containing plenty of lipids that were fragile when handled, we developed a comprehensive tissue pretreatment protocol. Eight washing procedures aimed at removing lipids were discussed in detail. We then constructed a robust MALDI-MSI method to enhance the detection sensitivity of RCBs in castor beans. RESULTS AND DISCUSSION A modified six-step washing procedure was chosen as the most critical parameter regarding the MSI visualization of peptides. The method was further applied to visualize and quantify the defense peptides, Ricinus communis biomarkers (RCBs) in castor bean tissue sections from nine different geographic sources from China, Pakistan, and Ethiopia. Multivariate statistical models, including deep learning network, revealed a valuable classification clue concerning nationality and altitude.
Collapse
Affiliation(s)
- Luyuan Qin
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Junshan Han
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Chuang Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
- Ministry of Education Key Laboratory of Ethnic Medicine, College of Pharmacy, Minzu University of China, Beijing, China
| | - Bin Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Deyun Tan
- Institute of Cash Crop Research, Zibo Academy of Agricultural Sciences, Zibo, China
| | - Song He
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Lei Guo
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Xiaochen Bo
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Dried urine spot and dried blood spot sample collection for rapid and sensitive monitoring of exposure to ricin and abrin by LC–MS/MS analysis of ricinine and l-abrine. Forensic Chem 2022. [DOI: 10.1016/j.forc.2022.100438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Sabna S, Kamboj DV, Kumar RB, Babele P, Rajoria S, Gupta MK, Alam SI. Strategy for the enrichment of protein biomarkers from diverse bacterial select agents. Protein Pept Lett 2021; 28:1071-1082. [PMID: 33820508 DOI: 10.2174/0929866528666210405160131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Some pathogenic bacteria can be potentially used for nefarious applications in the event of bioterrorism or biowarfare. Accurate identification of biological agent from clinical and diverse environmental matrices is of paramount importance for implementation of medical countermeasures and biothreat mitigation. OBJECTIVE A novel methodology is reported here for the development of a novel enrichment strategy for the generally conserved abundant bacterial proteins for an accurate downstream species identification using tandem MS analysis in biothreat scenario. METHODS Conserved regions in the common bacterial protein markers were analyzed using bioinformatic tools and stitched for a possible generic immuno-capture for an intended downstream MS/MS analysis. Phylogenetic analysis of selected proteins was carried out and synthetic constructs were generated for the expression of conserved stitched regions of 60 kDa chaperonin GroEL. Hyper-immune serum was raised against recombinant synthetic GroEL protein. RESULTS The conserved regions of common bacterial proteins were stitched for a possible generic immuno-capture and subsequent specific identification by tandem MS using variable regions of the molecule. Phylogenetic analysis of selected proteins was carried out and synthetic constructs were generated for the expression of conserved stitched regions of GroEL. In a proof-of-concept study, hyper-immune serum raised against recombinant synthetic GroEL protein exhibited reactivity with ~60 KDa proteins from the cell lysates of three bacterial species tested. CONCLUSION The envisaged methodology can lead to the development of a novel enrichment strategy for the abundant bacterial proteins from complex environmental matrices for the downstream species identification with increased sensitivity and substantially reduce the time-to-result.
Collapse
Affiliation(s)
- Sasikumar Sabna
- Biotechnology Division, Defence Research & Development Establishment, Gwalior. India
| | - Dev Vrat Kamboj
- Biotechnology Division, Defence Research & Development Establishment, Gwalior. India
| | - Ravi Bhushan Kumar
- Biotechnology Division, Defence Research & Development Establishment, Gwalior. India
| | - Prabhakar Babele
- Biotechnology Division, Defence Research & Development Establishment, Gwalior. India
| | - Sakshi Rajoria
- Biotechnology Division, Defence Research & Development Establishment, Gwalior. India
| | | | - Syed Imteyaz Alam
- Biotechnology Division, Defence Research & Development Establishment, Gwalior-474002. India
| |
Collapse
|
11
|
Sabna S, Kamboj DV, Rajoria S, Kumar RB, Babele P, Goel AK, Tuteja U, Gupta MK, Alam SI. Protein biomarker elucidation for the verification of biological agents in the taxonomic group of Gammaproteobacteria using tandem mass spectrometry. World J Microbiol Biotechnol 2021; 37:74. [PMID: 33779874 DOI: 10.1007/s11274-021-03039-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/16/2021] [Indexed: 12/01/2022]
Abstract
Some pathogenic microbes can be used for nefarious applications and instigate population-based fear. In a bio-threat scenario, rapid and accurate methods to detect biological agents in a wide range of complex environmental and clinical matrices, is of paramount importance for the implementation of mitigation protocols and medical countermeasures. This study describes targeted and shot-gun tandem MS based approaches for the verification of biological agents from the environmental samples. The marker proteins and peptides were elucidated by an exhaustive literature mining, in silico analysis of prioritized proteins, and MS/MS analysis of abundant proteins from selected bacterial species. For the shot-gun methodology, tandem MS analysis of abundant peptides was carried from spiked samples. The validation experiments employing a combination of shot-gun tandem MS analysis and a targeted search reported here is a proof of concept to show the applicability of the methodology for the unambiguous verification of biological agents at sub-species level, even with limited fractionation of crude protein extracts from environmental samples.
Collapse
Affiliation(s)
- Sasikumar Sabna
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Dev Vrat Kamboj
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Sakshi Rajoria
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Ravi Bhushan Kumar
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Prabhakar Babele
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Ajay Kumar Goel
- Bioprocess Technology Division, Defence Research & Development Establishment, Gwalior, India
| | - Urmil Tuteja
- Microbiology Division, Defence Research & Development Establishment, Gwalior, India
| | | | - Syed Imteyaz Alam
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India.
| |
Collapse
|
12
|
Livet S, Worbs S, Volland H, Simon S, Dorner MB, Fenaille F, Dorner BG, Becher F. Development and Evaluation of an Immuno-MALDI-TOF Mass Spectrometry Approach for Quantification of the Abrin Toxin in Complex Food Matrices. Toxins (Basel) 2021; 13:toxins13010052. [PMID: 33450857 PMCID: PMC7828309 DOI: 10.3390/toxins13010052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 11/16/2022] Open
Abstract
The toxin abrin found in the seeds of Abrus precatorius has attracted much attention regarding criminal and terroristic misuse over the past decade. Progress in analytical methods for a rapid and unambiguous identification of low abrin concentrations in complex matrices is essential. Here, we report on the development and evaluation of a MALDI-TOF mass spectrometry approach for the fast, sensitive and robust abrin isolectin identification, differentiation and quantification in complex food matrices. The method combines immunoaffinity-enrichment with specific abrin antibodies, accelerated trypsin digestion and the subsequent MALDI-TOF analysis of abrin peptides using labeled peptides for quantification purposes. Following the optimization of the workflow, common and isoform-specific peptides were detected resulting in a ~38% sequence coverage of abrin when testing ng-amounts of the toxin. The lower limit of detection was established at 40 ng/mL in milk and apple juice. Isotope-labeled versions of abundant peptides with high ionization efficiency were added. The quantitative evaluation demonstrated an assay variability at or below 22% with a linear range up to 800 ng/mL. MALDI-TOF mass spectrometry allows for a simple and fast (<5 min) analysis of abrin peptides, without a time-consuming peptide chromatographic separation, thus constituting a relevant alternative to liquid chromatography-tandem mass spectrometry.
Collapse
Affiliation(s)
- Sandrine Livet
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SPI, 91191 Gif-sur-Yvette, France; (S.L.); (H.V.); (S.S.); (F.F.)
| | - Sylvia Worbs
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (S.W.); (M.B.D.); (B.G.D.)
| | - Hervé Volland
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SPI, 91191 Gif-sur-Yvette, France; (S.L.); (H.V.); (S.S.); (F.F.)
| | - Stéphanie Simon
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SPI, 91191 Gif-sur-Yvette, France; (S.L.); (H.V.); (S.S.); (F.F.)
| | - Martin B. Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (S.W.); (M.B.D.); (B.G.D.)
| | - François Fenaille
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SPI, 91191 Gif-sur-Yvette, France; (S.L.); (H.V.); (S.S.); (F.F.)
| | - Brigitte G. Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (S.W.); (M.B.D.); (B.G.D.)
| | - François Becher
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SPI, 91191 Gif-sur-Yvette, France; (S.L.); (H.V.); (S.S.); (F.F.)
- Correspondence: ; Tel.: +33-1-69-08-13-15
| |
Collapse
|
13
|
Delaunay N, Combès A, Pichon V. Immunoaffinity Extraction and Alternative Approaches for the Analysis of Toxins in Environmental, Food or Biological Matrices. Toxins (Basel) 2020; 12:toxins12120795. [PMID: 33322240 PMCID: PMC7764248 DOI: 10.3390/toxins12120795] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
The evolution of instrumentation in terms of separation and detection allowed a real improvement of the sensitivity and analysis time. However, the analysis of ultra-traces of toxins in complex samples requires often a step of purification and even preconcentration before their chromatographic analysis. Therefore, immunoaffinity sorbents based on specific antibodies thus providing a molecular recognition mechanism appear as powerful tools for the selective extraction of a target molecule and its structural analogs to obtain more reliable and sensitive quantitative analysis in environmental, food or biological matrices. This review focuses on immunosorbents that have proven their efficiency in selectively extracting various types of toxins of various sizes (from small mycotoxins to large proteins) and physicochemical properties. Immunosorbents are now commercially available, and their use has been validated for numerous applications. The wide variety of samples to be analyzed, as well as extraction conditions and their impact on extraction yields, is discussed. In addition, their potential for purification and thus suppression of matrix effects, responsible for quantification problems especially in mass spectrometry, is presented. Due to their similar properties, molecularly imprinted polymers and aptamer-based sorbents that appear to be an interesting alternative to antibodies are also briefly addressed by comparing their potential with that of immunosorbents.
Collapse
Affiliation(s)
- Nathalie Delaunay
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), CBI ESPCI Paris, PSL University, CNRS, 75005 Paris, France; (N.D.); (A.C.)
| | - Audrey Combès
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), CBI ESPCI Paris, PSL University, CNRS, 75005 Paris, France; (N.D.); (A.C.)
| | - Valérie Pichon
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), CBI ESPCI Paris, PSL University, CNRS, 75005 Paris, France; (N.D.); (A.C.)
- Department of Chemistry, Sorbonne University, 75005 Paris, France
- Correspondence:
| |
Collapse
|
14
|
Liang LH, Cheng X, Yu HL, Yang Y, Mu XH, Chen B, Li XS, Wu JN, Yan L, Liu CC, Liu SL. Quantitative detection of ricin in beverages using trypsin/Glu-C tandem digestion coupled with ultra-high-pressure liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2020; 413:585-597. [PMID: 33184759 DOI: 10.1007/s00216-020-03030-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022]
Abstract
The toxic protein of ricin has drawn wide attention in recent years as a potential bioterrorism agent due to its high toxicity and wide availability. For the verification of the potential anti-terrorism activities, it is urgent for the quantification of ricin in food-related matrices. Here, a novel strategy of trypsin/Glu-C tandem digestion was introduced for quantitative detection of ricin marker peptides in several beverage matrices using isotope-labeled internal standard (IS)-mass spectrometry. The ricin in beverages was captured and enriched by biotinylated anti-ricin polyclonal antibodies conjugated to streptavidin magnetic beads. The purified ricin was cleaved using the developed trypsin/Glu-C tandem digestion method and then quantitatively detected by ultra-high-pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) with isotope-labeled T7A and TG11B selected as IS. The use of trypsin/Glu-C digestion allows shorter peptides, which are more suitable for MS detection, to be obtained than the use of single trypsin digestion. Under the optimized tandem digestion condition, except for T7A in the A-chain, two resulting specific peptides of TG13A, TG28A from the A-chain and two of TG11B, TG33B from the B-chain were chosen as novel marker peptides with high MS response. The uniqueness of the selected marker peptides allows for unambiguous identification of ricin among its homologous proteins in a single run. The MS response of the four novel marker peptides is increased by more than 10 times compared with that of individual corresponding tryptic peptides. Both the marker peptides of A-chain T7A and B-chain TG11B were selected as quantitative peptides based on the highest MS response among the marker peptides from their individual chains. The limit of detection (LOD) of ricin is 0.1 ng/mL in PBS and 0.5 ng/mL in either milk or orange juice. The linear range of calibration curves for ricin were 0.5-300 ng/mL in PBS, 1.0-400 ng/mL in milk, and 1.0-250 ng/mL in orange juice. The method accuracy ranged between 82.6 and 101.8% for PBS, 88.9-105.2% for milk, and 95.3-118.7% for orange juice. The intra-day and inter-day precision had relative standard deviations (%RSD) of 0.3-9.4%, 0.7-8.9%, and 0.2-6.9% in the three matrices respectively. Furthermore, whether T7A or TG11B is used as a quantitative peptide, the quantitative results of ricin are consistent. This study provides not only a practical method for the absolute quantification of ricin in beverage matrices but also a new strategy for the investigation of illegal use of ricin in chemical weapon verification tasks such as OPCW biotoxin sample analysis exercises.
Collapse
Affiliation(s)
- Long-Hui Liang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
- The Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, China
| | - Xi Cheng
- The Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, China
| | - Hui-Lan Yu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
- The Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, China
| | - Yang Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
- The Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, China
| | - Xi-Hui Mu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Bo Chen
- The Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, China
| | - Xiao-Sen Li
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
- The Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, China
| | - Ji-Na Wu
- The Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, China
| | - Long Yan
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
- The Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, China
| | - Chang-Cai Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
- The Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, China.
| | - Shi-Lei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
- The Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, China.
| |
Collapse
|
15
|
Elucidation of protein biomarkers for verification of selected biological warfare agents using tandem mass spectrometry. Sci Rep 2020; 10:2205. [PMID: 32042063 PMCID: PMC7010682 DOI: 10.1038/s41598-020-59156-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 01/22/2020] [Indexed: 11/10/2022] Open
Abstract
Some pathogens and toxins have the potential to be used as weapons of mass destruction and instigate population-based fear. Efforts to mitigate biothreat require development of efficient countermeasures which in turn relies on fast and accurate methods to detect the biological agents in a range of complex matrices including environmental and clinical samples. We report here an mass spectrometry (MS) based methodology, employing both targeted and shot-gun approaches for the verification of biological agents from the environmental samples. Our shot-gun methodology relied on tandem MS analysis of abundant peptides from the spiked samples, whereas, the targeted method was based on an extensive elucidation of marker proteins and unique peptides resulting in the generation of an inclusion list of masses reflecting relevant peptides for the unambiguous identification of nine bacterial species [listed as priority agents of bioterrorism by Centre for Disease Control and Prevention (CDC)] belonging to phylogenetically diverse genera. The marker peptides were elucidated by extensive literature mining, in silico analysis, and tandem MS (MS/MS) analysis of abundant proteins of the cultivated bacterial species in our laboratory. A combination of shot-gun MS/MS analysis and the targeted search using a panel of unique peptides is likely to provide unambiguous verification of biological agents at sub-species level, even with limited fractionation of crude protein extracts from environmental samples. The comprehensive list of peptides reflected in the inclusion list, makes a valuable resource for the multiplex analysis of select biothreat agents and further development of targeted MS/MS assays.
Collapse
|
16
|
Swiner DJ, Durisek GR, Osae H, Badu-Tawiah A. A Proof-of-Concept, Two-Tiered Approach for Ricin Detection Using Ambient Mass Spectrometry. RSC Adv 2020; 10:17045-17049. [PMID: 35173958 PMCID: PMC8846442 DOI: 10.1039/d0ra03317k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ricin is a naturally occurring, highly potent toxin native to castor bean plants that has recently been used as a biological weapon in cases of bioterrorism and suicide attempts. Difficulties with direct detection arise from large heterogeneities in ricin glycosylation, which leads to markedly different bioactivity, and the fact that carefully developed and laborious sample preparation steps are required to maintain the activity of the protein during analysis. Herein, we present an alternative, two-tiered approach to identify the presence of ricin by detecting ricinoleic acid and ricinine, which are co-extracted with the protein. This direct mass spectrometric-based technique takes as little as 2 minutes, and we determined its sensitivity to be in the parts-per-trillion range. Our method is applicable to paper substrates from suspected contaminated envelopes and biofluids from at-risk patients. The fact that prior sample preparations are not needed in this procedure means that analysis can be performed in the field for emergency cases. Ricin is a naturally occurring, highly potent toxin native to castor bean plants that has recently been used as a biological weapon in cases of bioterrorism and suicide attempts.![]()
Collapse
Affiliation(s)
- Devin J Swiner
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W 18th Ave, Columbus, OH 43210
| | - George R Durisek
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W 18th Ave, Columbus, OH 43210
| | - Hannah Osae
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W 18th Ave, Columbus, OH 43210
| | - Abraham Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W 18th Ave, Columbus, OH 43210
| |
Collapse
|
17
|
Kandasamy K, Selvaprakash K, Chen YC. Using lactosylated cysteine functionalized gold nanoparticles as colorimetric sensing probes for rapid detection of the ricin B chain. Mikrochim Acta 2019; 186:847. [PMID: 31776791 DOI: 10.1007/s00604-019-3900-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/07/2019] [Indexed: 10/25/2022]
Abstract
A new colorimetric method that can be used to rapidly detect toxic ricin is demonstrated. Lactosylated cysteine-functionalized gold nanoparticles (Au@LACY NPs) were prepared by a one-pot reaction and employed as optical probes for determination of ricin B chain. It is found that the Au@LACY NPs undergo aggregation in the presence of ricin B chain. This leads to surface plasmon coupling effects of the particles and a color change from red to blue, with absorption maxima at 519 and 670 nm, respectively. The feasibility of using the current approach for quantitative analysis of ricin B chain is also demonstrated. The calibration plot is generated by plotting the ratio of the absorbance at the wavelength of 634 to 518 nm versus the concentration of the ricin B chain. The spectrophotometric method has a ~29 pM (~ 0.91 ng·mL-1) detection limit, and the sample with the concentration of ~ 400 pM (~ 13 ng·mL-1) can be detected visually. Graphical abstractSchematic representation of using lactosylated cysteine capped gold nanoparticles (Au@LACY NPs) as colorimetric probes for the ricin B chain through surface plasmon coupling effects. Sample solution turns from red to blue in the presence of ricin B chain.
Collapse
Affiliation(s)
- Karthikeyan Kandasamy
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | | | - Yu-Chie Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan.
| |
Collapse
|
18
|
Walper SA, Lasarte Aragonés G, Sapsford KE, Brown CW, Rowland CE, Breger JC, Medintz IL. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sens 2018; 3:1894-2024. [PMID: 30080029 DOI: 10.1021/acssensors.8b00420] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins. An introduction placing this subject in the historical context of previous naturally occurring outbreaks and efforts to weaponize selected agents is first provided along with definitions and relevant considerations. An overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration follows. Current "gold" standards for biothreat detection/diagnostics along with a listing of relevant FDA approved in vitro diagnostic devices is then discussed to provide an overview of the current state of the art. Given the 2014 outbreak of Ebola virus in Western Africa and the recent 2016 spread of Zika virus in the Americas, discussion of what constitutes a public health emergency and how new in vitro diagnostic devices are authorized for emergency use in the U.S. are also included. The majority of the Review is then subdivided around the sensing of bacterial, viral, and toxin biothreats with each including an overview of the major agents in that class, a detailed cross-section of different sensing methods in development based on assay format or analytical technique, and some discussion of related microfluidic lab-on-a-chip/point-of-care devices. Finally, an outlook is given on how this field will develop from the perspective of the biosensing technology itself and the new emerging threats they may face.
Collapse
Affiliation(s)
- Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Guillermo Lasarte Aragonés
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Kim E. Sapsford
- OMPT/CDRH/OIR/DMD Bacterial Respiratory and Medical Countermeasures Branch, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Carl W. Brown
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Clare E. Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20036, United States
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
19
|
Chen D, Bryden WA, Fenselau C. Rapid analysis of ricin using hot acid digestion and MALDI-TOF mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:1013-1017. [PMID: 29974543 PMCID: PMC7278220 DOI: 10.1002/jms.4257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/14/2018] [Accepted: 06/21/2018] [Indexed: 05/22/2023]
Abstract
Ricin is a protein toxin of considerable interest in forensics. A novel strategy is reported here for rapid detection of ricin based on microwave-assisted hot acid digestion and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. Ricin samples are subjected to aspartate-selective hydrolysis, and biomarker peptide products are characterized by mass spectrometry. Spectra are obtained using post source decay and searched against a protein database. Several advantages are offered by chemical hydrolysis, relative to enzymatic hydrolysis, notably speed, robustness, and the production of heavier biomarkers. Agglutinin contamination is reliably recognized, as is the disulfide bond strongly characteristic of ricin.
Collapse
Affiliation(s)
- Dapeng Chen
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | | | - Catherine Fenselau
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| |
Collapse
|
20
|
Determination of ricin intoxication in biological samples by monitoring depurinated 28S rRNA in a unique reverse transcription-ligase-polymerase chain reaction assay. Forensic Toxicol 2017. [DOI: 10.1007/s11419-017-0377-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Alam SI, Uppal A, Gupta P, Kamboj DV. Multiple-reaction monitoring for multiplex detection of three bacterial toxins using liquid chromatography-tandem mass spectrometry. Lett Appl Microbiol 2016; 64:217-224. [PMID: 28024103 DOI: 10.1111/lam.12706] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/09/2016] [Accepted: 12/10/2016] [Indexed: 11/28/2022]
Abstract
Clostridium perfringens epsilon toxin, staphylococcal enterotoxin B and shiga toxin are implicated in a number of diseases and food-borne intoxications and are considered potential agents for bioterrorism and warfare. Artificially generated aerosol is the likely mode of delivery of these for nefarious uses, potentially capable of causing mass destruction to human and animal health by inhalation of toxic bioaerosol. Multiplex and unambiguous detection of these agents is of paramount importance for emergency response in a biothreat scenario and for food safety. Multiple-reaction monitoring (MRM) assay for simultaneous monitoring of the three toxins is reported here using reverse-phase high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Three different peptides with two fragment ions each were considered for quantification and confirmation. One of the three MRM transitions from each toxin, which exhibited the best sensitivity, was selected for multiplexing of the assay. Simulating a biothreat scenario wherein the bioaerosol is collected in 10 ml of buffer, the multiplex assay was tested with blind samples with one or more of the three toxins even in the presence of interfering Escherichia coli lysate proteins.
Collapse
Affiliation(s)
- S I Alam
- Biotechnology Division, Defence Research and Development Establishment, Gwalior, India
| | - A Uppal
- Sciex, A Division of DHR Holding India Pvt. Ltd., Gurgaon, India
| | - P Gupta
- Biotechnology Division, Defence Research and Development Establishment, Gwalior, India
| | - D V Kamboj
- Biotechnology Division, Defence Research and Development Establishment, Gwalior, India
| |
Collapse
|
22
|
Selvaprakash K, Chen YC. Detection of ricin by using gold nanoclusters functionalized with chicken egg white proteins as sensing probes. Biosens Bioelectron 2016; 92:410-416. [PMID: 27836610 DOI: 10.1016/j.bios.2016.10.086] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/18/2016] [Accepted: 10/26/2016] [Indexed: 10/20/2022]
Abstract
Ricin produced from the castor oil plant, Ricinus communis, is a well-known toxin. The toxin comprises A and B chains. Ricin A chain can cause toxicity by inhibiting protein synthesis, and ricin B can bind to the galactose ligand on the cell membrane of host cells. Inhalation or ingestion of ricin may even lead to death. Therefore, rapid and convenient sensing methods for detecting ricin in suspicious samples must be developed. In this study, we generated protein encapsulated gold nanoclusters (AuNCs@ew) with bright photoluminescence by using chicken egg white proteins as starting materials to react with aqueous tetrachloroaurate. The generated nanoclusters, which were mainly composed of chicken ovalbumin-encapsulated AuNCs, can recognize ricin B because of the presence of Galβ(1→4)GlcNAc ligands on chicken ovalbumin. The generated conjugates of AuNCs@ew and ricin B were heavy and readily settled down under centrifugation (13,000rpm, 60min). Thus, bright spots resulting from the conjugates at the bottom of the sample vials were easily visualized by the naked eye under ultraviolet light illumination. The limit of detection (LOD) was ~4.6µM. The LOD was reduced to ~400nM when fluorescence spectroscopy was used as the detection tool, while the LOD can be further improved to ~7.8nM when using matrix-assisted laser desorption/ionization mass spectrometry as the detection method. We also demonstrated the feasibility of using the proposed approach to selectively detect ricin B chain in complex samples.
Collapse
Affiliation(s)
| | - Yu-Chie Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan.
| |
Collapse
|
23
|
Wang D, Baudys J, Barr JR, Kalb SR. Improved Sensitivity for the Qualitative and Quantitative Analysis of Active Ricin by MALDI-TOF Mass Spectrometry. Anal Chem 2016; 88:6867-72. [PMID: 27264550 DOI: 10.1021/acs.analchem.6b01486] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ricin is a highly toxic protein which causes cell death by blocking protein synthesis and is considered a potential bioterrorism agent. Rapid and sensitive detection of ricin toxin in various types of sample matrices is needed as an emergency requirement for public health and antibioterrorism response. An in vitro MALDI TOF MS-based activity assay that detects ricin mediated depurination of synthetic substrates was improved through optimization of the substrate, reaction conditions, and sample preparation. In this method, the ricin is captured by a specific polycolonal antibody followed by hydrolysis reaction. The ricin activity is determined by detecting the unique cleavage product of synthetic oligomer substrates. The detection of a depurinated substrate was enhanced by using a more efficient RNA substrate and optimizing buffer components, pH, and reaction temperature. In addition, the factors involved in mass spectrometry analysis, such as MALDI matrix, plate, and sample preparation, were also investigated to improve the ionization of the depurinated product and assay reproducibility. With optimized parameters, the limit of detection of 0.2 ng/mL of ricin spiked in buffer and milk was accomplished, representing more than 2 orders of magnitude enhancement in assay sensitivity. Improving assay's ruggeddness or reproducibility also made it possible to quantitatively detect active ricin with 3 orders of magnitude dynamic range.
Collapse
Affiliation(s)
- Dongxia Wang
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, United States
| | - Jakub Baudys
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, United States
| | - John R Barr
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, United States
| | - Suzanne R Kalb
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, United States
| |
Collapse
|
24
|
Duriez E, Armengaud J, Fenaille F, Ezan E. Mass spectrometry for the detection of bioterrorism agents: from environmental to clinical applications. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:183-199. [PMID: 26956386 DOI: 10.1002/jms.3747] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/14/2015] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
In the current context of international conflicts and localized terrorist actions, there is unfortunately a permanent threat of attacks with unconventional warfare agents. Among these, biological agents such as toxins, microorganisms, and viruses deserve particular attention owing to their ease of production and dissemination. Mass spectrometry (MS)-based techniques for the detection and quantification of biological agents have a decisive role to play for countermeasures in a scenario of biological attacks. The application of MS to every field of both organic and macromolecular species has in recent years been revolutionized by the development of soft ionization techniques (MALDI and ESI), and by the continuous development of MS technologies (high resolution, accurate mass HR/AM instruments, novel analyzers, hybrid configurations). New possibilities have emerged for exquisite specific and sensitive detection of biological warfare agents. MS-based strategies for clinical application can now address a wide range of analytical questions mainly including issues related to the complexity of biological samples and their available volume. Multiplexed toxin detection, discovery of new markers through omics approaches, and identification of untargeted microbiological or of novel molecular targets are examples of applications. In this paper, we will present these technological advances along with the novel perspectives offered by omics approaches to clinical detection and follow-up.
Collapse
Affiliation(s)
| | - Jean Armengaud
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunologie, 30207, Bagnols sur-Cèze, France
| | - François Fenaille
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, MetaboHUB-Paris, CEA Saclay, Building 136, 91191, Gif-sur-Yvette cedex, France
| | - Eric Ezan
- CEA, Programme Transversal Technologies pour la Santé, 91191, Gif sur Yvette, France
| |
Collapse
|
25
|
Recommended Mass Spectrometry-Based Strategies to Identify Ricin-Containing Samples. Toxins (Basel) 2015; 7:4881-94. [PMID: 26610568 PMCID: PMC4690104 DOI: 10.3390/toxins7124854] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/04/2015] [Accepted: 08/24/2015] [Indexed: 01/24/2023] Open
Abstract
Ricin is a protein toxin produced by the castor bean plant (Ricinus communis) together with a related protein known as R. communis agglutinin (RCA120). Mass spectrometric (MS) assays have the capacity to unambiguously identify ricin and to detect ricin’s activity in samples with complex matrices. These qualitative and quantitative assays enable detection and differentiation of ricin from the less toxic RCA120 through determination of the amino acid sequence of the protein in question, and active ricin can be monitored by MS as the release of adenine from the depurination of a nucleic acid substrate. In this work, we describe the application of MS-based methods to detect, differentiate and quantify ricin and RCA120 in nine blinded samples supplied as part of the EQuATox proficiency test. Overall, MS-based assays successfully identified all samples containing ricin or RCA120 with the exception of the sample spiked with the lowest concentration (0.414 ng/mL). In fact, mass spectrometry was the most successful method for differentiation of ricin and RCA120 based on amino acid determination. Mass spectrometric methods were also successful at ranking the functional activities of the samples, successfully yielding semi-quantitative results. These results indicate that MS-based assays are excellent techniques to detect, differentiate, and quantify ricin and RCA120 in complex matrices.
Collapse
|
26
|
Dupré M, Gilquin B, Fenaille F, Feraudet-Tarisse C, Dano J, Ferro M, Simon S, Junot C, Brun V, Becher F. Multiplex Quantification of Protein Toxins in Human Biofluids and Food Matrices Using Immunoextraction and High-Resolution Targeted Mass Spectrometry. Anal Chem 2015; 87:8473-80. [DOI: 10.1021/acs.analchem.5b01900] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mathieu Dupré
- CEA, DSV, iBiTec-S, Laboratoire d’études
du métabolisme des médicaments, 91191 Gif-sur-Yvette, France
| | - Benoit Gilquin
- Université
Grenoble Alpes, iRTSV-BGE, F-38000 Grenoble, France
- CEA, iRTSV-BGE, F-38000 Grenoble, France
- INSERM, BGE, F-38000 Grenoble, France
| | - François Fenaille
- CEA, DSV, iBiTec-S, Laboratoire d’études
du métabolisme des médicaments, 91191 Gif-sur-Yvette, France
| | - Cécile Feraudet-Tarisse
- CEA, DSV, iBiTec-S, Laboratoire d’études
et de recherches en immunoanalyse, 91191 Gif-sur-Yvette, France
| | - Julie Dano
- CEA, DSV, iBiTec-S, Laboratoire d’études
et de recherches en immunoanalyse, 91191 Gif-sur-Yvette, France
| | - Myriam Ferro
- Université
Grenoble Alpes, iRTSV-BGE, F-38000 Grenoble, France
- CEA, iRTSV-BGE, F-38000 Grenoble, France
- INSERM, BGE, F-38000 Grenoble, France
| | - Stéphanie Simon
- CEA, DSV, iBiTec-S, Laboratoire d’études
et de recherches en immunoanalyse, 91191 Gif-sur-Yvette, France
| | - Christophe Junot
- CEA, DSV, iBiTec-S, Laboratoire d’études
du métabolisme des médicaments, 91191 Gif-sur-Yvette, France
| | - Virginie Brun
- Université
Grenoble Alpes, iRTSV-BGE, F-38000 Grenoble, France
- CEA, iRTSV-BGE, F-38000 Grenoble, France
- INSERM, BGE, F-38000 Grenoble, France
| | - François Becher
- CEA, DSV, iBiTec-S, Laboratoire d’études
du métabolisme des médicaments, 91191 Gif-sur-Yvette, France
| |
Collapse
|
27
|
Martelet A, L’Hostis G, Nevers MC, Volland H, Junot C, Becher F, Muller BH. Phage Amplification and Immunomagnetic Separation Combined with Targeted Mass Spectrometry for Sensitive Detection of Viable Bacteria in Complex Food Matrices. Anal Chem 2015; 87:5553-60. [DOI: 10.1021/ac504508a] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Armelle Martelet
- bioMérieux S.A., chemin de l’orme, 69280 Marcy-l’Etoile, France
- CEA, iBiTec-S,
SPI, Laboratoire d’Etude du Métabolisme des Médicaments
(LEMM), 91191 Gif-sur-Yvette, France
| | - Guillaume L’Hostis
- bioMérieux S.A., chemin de l’orme, 69280 Marcy-l’Etoile, France
- CEA, iBiTec-S,
SPI, Laboratoire d’Etude du Métabolisme des Médicaments
(LEMM), 91191 Gif-sur-Yvette, France
| | - Marie-Claire Nevers
- CEA, iBiTec-S, SPI,
Laboratoire d’Etudes et de Recherches en Immunoanalyse (LERI), 91191 Gif-sur-Yvette, France
| | - Hervé Volland
- CEA, iBiTec-S, SPI,
Laboratoire d’Etudes et de Recherches en Immunoanalyse (LERI), 91191 Gif-sur-Yvette, France
| | - Christophe Junot
- CEA, iBiTec-S,
SPI, Laboratoire d’Etude du Métabolisme des Médicaments
(LEMM), 91191 Gif-sur-Yvette, France
| | - François Becher
- CEA, iBiTec-S,
SPI, Laboratoire d’Etude du Métabolisme des Médicaments
(LEMM), 91191 Gif-sur-Yvette, France
| | - Bruno H. Muller
- bioMérieux S.A., chemin de l’orme, 69280 Marcy-l’Etoile, France
- CEA, iBiTec-S,
SPI, Laboratoire d’Etude du Métabolisme des Médicaments
(LEMM), 91191 Gif-sur-Yvette, France
| |
Collapse
|
28
|
Schieltz DM, McWilliams LG, Kuklenyik Z, Prezioso SM, Carter AJ, Williamson YM, McGrath SC, Morse SA, Barr JR. Quantification of ricin, RCA and comparison of enzymatic activity in 18 Ricinus communis cultivars by isotope dilution mass spectrometry. Toxicon 2015; 95:72-83. [PMID: 25576235 PMCID: PMC5303535 DOI: 10.1016/j.toxicon.2015.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/20/2014] [Accepted: 01/06/2015] [Indexed: 11/22/2022]
Abstract
The seeds of the Ricinus communis (Castor bean) plant are the source of the economically important commodity castor oil. Castor seeds also contain the proteins ricin and R. communis agglutinin (RCA), two toxic lectins that are hazardous to human health. Radial immunodiffusion (RID) and the enzyme linked immunosorbent assay (ELISA) are two antibody-based methods commonly used to quantify ricin and RCA; however, antibodies currently used in these methods cannot distinguish between ricin and RCA due to the high sequence homology of the respective proteins. In this study, a technique combining antibody-based affinity capture with liquid chromatography and multiple reaction monitoring (MRM) mass spectrometry (MS) was used to quantify the amounts of ricin and RCA independently in extracts prepared from the seeds of eighteen representative cultivars of R. communis which were propagated under identical conditions. Additionally, liquid chromatography and MRM-MS was used to determine rRNA N-glycosidase activity for each cultivar and the overall activity in these cultivars was compared to a purified ricin standard. Of the cultivars studied, the average ricin content was 9.3 mg/g seed, the average RCA content was 9.9 mg/g seed, and the enzymatic activity agreed with the activity of a purified ricin reference within 35% relative activity.
Collapse
Affiliation(s)
- David M Schieltz
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway N.E., MS-F50, Atlanta, GA 30341, USA
| | - Lisa G McWilliams
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway N.E., MS-F50, Atlanta, GA 30341, USA
| | - Zsuzsanna Kuklenyik
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway N.E., MS-F50, Atlanta, GA 30341, USA
| | - Samantha M Prezioso
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Center for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA
| | - Andrew J Carter
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Center for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA
| | - Yulanda M Williamson
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway N.E., MS-F50, Atlanta, GA 30341, USA
| | - Sara C McGrath
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway N.E., MS-F50, Atlanta, GA 30341, USA
| | - Stephen A Morse
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Center for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA
| | - John R Barr
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway N.E., MS-F50, Atlanta, GA 30341, USA.
| |
Collapse
|
29
|
Tran TTN, Brinkworth CS, Bowie JH. The identification of disulfides in ricin D using proteolytic cleavage followed by negative-ion nano-electrospray ionization mass spectrometry of the peptide fragments. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:182-190. [PMID: 25641493 DOI: 10.1002/rcm.7088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/30/2014] [Accepted: 10/30/2014] [Indexed: 06/04/2023]
Abstract
RATIONALE To use negative-ion nano-electrospray ionization mass spectrometry of peptides from the tryptic digest of ricin D, to provide sequence information; in particular, to identify disulfide position and connectivity. METHODS Negative-ion fragmentations of peptides from the tryptic digest of ricin D was studied using a Waters QTOF2 mass spectrometer operating in MS and MS(2) modes. RESULTS Twenty-three peptides were obtained following high-performance liquid chromatography and studied by negative-ion mass spectrometry covering 73% of the amino-acid residues of ricin D. Five disulfide-containing peptides were identified, three intermolecular and two intramolecular disulfide-containing peptides. The [M-H](-) anions of the intermolecular disulfides undergo facile cleavage of the disulfide units to produce fragment peptides. In negative-ion collision-induced dissociation (CID) these source-formed anions undergo backbone cleavages, which provide sequencing information. The two intramolecular disulfides were converted proteolytically into intermolecular disulfides, which were identified as outlined above. CONCLUSIONS The positions of the five disulfide groups in ricin D may be determined by characteristic negative-ion cleavage of the disulfide groups, while sequence information may be determined using the standard negative-ion backbone cleavages of the resulting cleaved peptides. Negative-ion mass spectrometry can also be used to provide partial sequencing information for other peptides (i.e. those not containing Cys) using the standard negative-ion backbone cleavages of these peptides.
Collapse
Affiliation(s)
- T T Nha Tran
- Department of Chemistry, The University of Adelaide, South Australia, Australia, 5005
| | | | | |
Collapse
|
30
|
Bozza WP, Tolleson WH, Rivera Rosado LA, Zhang B. Ricin detection: Tracking active toxin. Biotechnol Adv 2015; 33:117-123. [DOI: 10.1016/j.biotechadv.2014.11.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/22/2014] [Accepted: 11/30/2014] [Indexed: 12/11/2022]
|
31
|
Fredriksson SÅ, Artursson E, Bergström T, Östin A, Nilsson C, Åstot C. Identification of RIP-II Toxins by Affinity Enrichment, Enzymatic Digestion and LC-MS. Anal Chem 2014; 87:967-74. [DOI: 10.1021/ac5032918] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sten-Åke Fredriksson
- Swedish Defence Research Agency (FOI), CBRN Defence and Security, SE-901 82 Umeå, Sweden
| | - Elisabet Artursson
- Swedish Defence Research Agency (FOI), CBRN Defence and Security, SE-901 82 Umeå, Sweden
| | - Tomas Bergström
- Swedish Defence Research Agency (FOI), CBRN Defence and Security, SE-901 82 Umeå, Sweden
| | - Anders Östin
- Swedish Defence Research Agency (FOI), CBRN Defence and Security, SE-901 82 Umeå, Sweden
| | - Calle Nilsson
- Swedish Defence Research Agency (FOI), CBRN Defence and Security, SE-901 82 Umeå, Sweden
| | - Crister Åstot
- Swedish Defence Research Agency (FOI), CBRN Defence and Security, SE-901 82 Umeå, Sweden
| |
Collapse
|
32
|
Ma X, Tang J, Li C, Liu Q, Chen J, Li H, Guo L, Xie J. Identification and quantification of ricin in biomedical samples by magnetic immunocapture enrichment and liquid chromatography electrospray ionization tandem mass spectrometry. Anal Bioanal Chem 2014; 406:5147-55. [DOI: 10.1007/s00216-014-7710-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 02/10/2014] [Accepted: 02/19/2014] [Indexed: 10/25/2022]
|
33
|
Tevell Åberg A, Björnstad K, Hedeland M. Mass Spectrometric Detection of Protein-Based Toxins. Biosecur Bioterror 2013; 11 Suppl 1:S215-26. [DOI: 10.1089/bsp.2012.0072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Annica Tevell Åberg
- Annica Tevell Åberg, PhD, is a Senior Researcher; Kristian Björnstad, PhD, is a Senior Researcher; and Mikael Hedeland, PhD, is an Associate Professor and Deputy Head of Department; all at the Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute (SVA), Uppsala, Sweden. Dr. Åberg and Dr. Hedeland are also affiliated with the Division of Analytical Pharmaceutical Chemistry, Uppsala University, Uppsala, Sweden
| | - Kristian Björnstad
- Annica Tevell Åberg, PhD, is a Senior Researcher; Kristian Björnstad, PhD, is a Senior Researcher; and Mikael Hedeland, PhD, is an Associate Professor and Deputy Head of Department; all at the Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute (SVA), Uppsala, Sweden. Dr. Åberg and Dr. Hedeland are also affiliated with the Division of Analytical Pharmaceutical Chemistry, Uppsala University, Uppsala, Sweden
| | - Mikael Hedeland
- Annica Tevell Åberg, PhD, is a Senior Researcher; Kristian Björnstad, PhD, is a Senior Researcher; and Mikael Hedeland, PhD, is an Associate Professor and Deputy Head of Department; all at the Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute (SVA), Uppsala, Sweden. Dr. Åberg and Dr. Hedeland are also affiliated with the Division of Analytical Pharmaceutical Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
34
|
Alam SI, Kumar B, Kamboj DV. Multiplex Detection of Protein Toxins Using MALDI-TOF-TOF Tandem Mass Spectrometry: Application in Unambiguous Toxin Detection from Bioaerosol. Anal Chem 2012; 84:10500-7. [DOI: 10.1021/ac3028678] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Syed Imteyaz Alam
- Biotechnology Division, Defence Research and Development Establishment, Gwalior-474002, India
| | - Bhoj Kumar
- Biotechnology Division, Defence Research and Development Establishment, Gwalior-474002, India
| | - Dev Vrat Kamboj
- Biotechnology Division, Defence Research and Development Establishment, Gwalior-474002, India
| |
Collapse
|
35
|
Seyer A, Fenaille F, Féraudet-Tarisse C, Volland H, Popoff MR, Tabet JC, Junot C, Becher F. Rapid Quantification of Clostridial Epsilon Toxin in Complex Food and Biological Matrixes by Immunopurification and Ultraperformance Liquid Chromatography-Tandem Mass Spectrometry. Anal Chem 2012; 84:5103-9. [DOI: 10.1021/ac300880x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Nagatsuka T, Uzawa H, Sato K, Ohsawa I, Seto Y, Nishida Y. Glycotechnology for decontamination of biological agents: a model study using ricin and biotin-tagged synthetic glycopolymers. ACS APPLIED MATERIALS & INTERFACES 2012; 4:832-837. [PMID: 22214533 DOI: 10.1021/am201493q] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Two types of biotin-tagged glycopolymers carrying lactose or glucose in clusters along the polyacrylamide backbone were prepared and subjected to decontamination analyses with the plant toxin ricin. A buffer solution containing the toxin was treated with one glycopolymer followed by streptavidin-magnetic particles. Supernatant solutions were analyzed with surface plasmon resonance and capillary electrophoresis, and revealed that the lactose glycopolymer "captured" this toxin more effectively than the glucose polymer. Free toxin was not detectable in the supernatant after treatment with the glycopolymer and magnetic particles; >99% decontamination was achieved for this potentially fatal biological toxin.
Collapse
Affiliation(s)
- Takehiro Nagatsuka
- Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Worbs S, Köhler K, Pauly D, Avondet MA, Schaer M, Dorner MB, Dorner BG. Ricinus communis intoxications in human and veterinary medicine-a summary of real cases. Toxins (Basel) 2011; 3:1332-72. [PMID: 22069699 PMCID: PMC3210461 DOI: 10.3390/toxins3101332] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 09/26/2011] [Accepted: 09/30/2011] [Indexed: 12/11/2022] Open
Abstract
Accidental and intended Ricinus communis intoxications in humans and animals have been known for centuries but the causative agent remained elusive until 1888 when Stillmark attributed the toxicity to the lectin ricin. Ricinus communis is grown worldwide on an industrial scale for the production of castor oil. As by-product in castor oil production ricin is mass produced above 1 million tons per year. On the basis of its availability, toxicity, ease of preparation and the current lack of medical countermeasures, ricin has gained attention as potential biological warfare agent. The seeds also contain the less toxic, but highly homologous Ricinus communis agglutinin and the alkaloid ricinine, and especially the latter can be used to track intoxications. After oil extraction and detoxification, the defatted press cake is used as organic fertilizer and as low-value feed. In this context there have been sporadic reports from different countries describing animal intoxications after uptake of obviously insufficiently detoxified fertilizer. Observations in Germany over several years, however, have led us to speculate that the detoxification process is not always performed thoroughly and controlled, calling for international regulations which clearly state a ricin threshold in fertilizer. In this review we summarize knowledge on intended and unintended poisoning with ricin or castor seeds both in humans and animals, with a particular emphasis on intoxications due to improperly detoxified castor bean meal and forensic analysis.
Collapse
Affiliation(s)
- Sylvia Worbs
- Centre for Biological Security, Microbial Toxins (ZBS3), Robert Koch-Institut, Nordufer 20, Berlin 13353, Germany; (S.W.); (D.P.); (M.B.D.)
| | - Kernt Köhler
- Institute of Veterinary Pathology, Justus Liebig University Giessen, Frankfurter Street 96, Giessen 35392, Germany;
| | - Diana Pauly
- Centre for Biological Security, Microbial Toxins (ZBS3), Robert Koch-Institut, Nordufer 20, Berlin 13353, Germany; (S.W.); (D.P.); (M.B.D.)
| | - Marc-André Avondet
- Biology and Chemistry Section, Federal Department of Defence, Civil Protection and Sports DDPS SPIEZ LABORATORY, Austrasse 1, Spiez CH-3700, Switzerland; (M.-A.A.); (M.S.)
| | - Martin Schaer
- Biology and Chemistry Section, Federal Department of Defence, Civil Protection and Sports DDPS SPIEZ LABORATORY, Austrasse 1, Spiez CH-3700, Switzerland; (M.-A.A.); (M.S.)
| | - Martin B. Dorner
- Centre for Biological Security, Microbial Toxins (ZBS3), Robert Koch-Institut, Nordufer 20, Berlin 13353, Germany; (S.W.); (D.P.); (M.B.D.)
| | - Brigitte G. Dorner
- Centre for Biological Security, Microbial Toxins (ZBS3), Robert Koch-Institut, Nordufer 20, Berlin 13353, Germany; (S.W.); (D.P.); (M.B.D.)
| |
Collapse
|
38
|
Kanamori-Kataoka M, Kato H, Uzawa H, Ohta S, Takei Y, Furuno M, Seto Y. Determination of ricin by nano liquid chromatography/mass spectrometry after extraction using lactose-immobilized monolithic silica spin column. JOURNAL OF MASS SPECTROMETRY : JMS 2011; 46:821-829. [PMID: 21834021 DOI: 10.1002/jms.1953] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Ricin is a glycosylated proteinous toxin that is registered as toxic substance by Chemical Weapons convention. Current detection methods can result in false negatives and/or positives, and their criteria are not based on the identification of the protein amino acid sequences. In this study, lactose-immobilized monolithic silica extraction followed by tryptic digestion and liquid chromatography/mass spectrometry (LC/MS) was developed as a method for rapid and accurate determination of ricin. Lactose, which was immobilized on monolithic silica, was used as a capture ligand for ricin extraction from the sample solution, and the silica was supported in a disk-packed spin column. Recovery of ricin was more than 40%. After extraction, the extract was digested with trypsin and analyzed by LC/MS. The accurate masses of molecular ions and MS/MS spectra of the separated peptide peaks were measured by Fourier transform-MS and linear iontrap-MS, respectively. Six peptides, which were derived from the ricin A-(m/z 537.8, 448.8 and 586.8) and B-chains (m/z 701.3, 647.8 and 616.8), were chosen as marker peptides for the identification of ricin. Among these marker peptides, two peptides were ricin-specific. This method was applied to the determination of ricin from crude samples. The monolithic silica extraction removed most contaminant peaks from the total ion chromatogram of the sample, and the six marker peptides were clearly detected by LC/MS. It takes about 5 h for detection and identification of more than 8 ng/ml of ricin through the whole handling, and this procedure will be able to deal with the terrorism using chemical weapon.
Collapse
Affiliation(s)
- Mieko Kanamori-Kataoka
- Fourth Chemistry Section, National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan.
| | | | | | | | | | | | | |
Collapse
|
39
|
Schieltz DM, McGrath SC, McWilliams LG, Rees J, Bowen MD, Kools JJ, Dauphin LA, Gomez-Saladin E, Newton BN, Stang HL, Vick MJ, Thomas J, Pirkle JL, Barr JR. Analysis of active ricin and castor bean proteins in a ricin preparation, castor bean extract, and surface swabs from a public health investigation. Forensic Sci Int 2011; 209:70-9. [PMID: 21251774 DOI: 10.1016/j.forsciint.2010.12.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 11/29/2010] [Accepted: 12/15/2010] [Indexed: 11/20/2022]
Abstract
In late February 2008, law enforcement officials in Las Vegas, Nevada, discovered in a hotel room, a copy of The Anarchist Cookbook, suspected castor beans and a "white powder" thought to be a preparation of ricin. Ricin is a deadly toxin from the seed of the castor bean plant (Ricinus communis). The United States regulates the possession, use, and transfer of ricin and it is the only substance considered a warfare agent in both the Chemical and the Biological Weapons Conventions. Six samples obtained from the hotel room were analyzed by laboratories at the Centers for Disease Control and Prevention using a panel of biological and mass spectrometric assays. The biological assays (real time-PCR, time resolved fluorescence and cytotoxicity) provided presumptive evidence of active ricin in each of the samples. This initial screen was followed by an in-depth analysis using a novel, state-of-the-art mass spectrometry-based ricin functional assay and high sensitivity tandem mass spectrometry for protein identification. Mass spectrometric analysis positively identified ricin and confirmed that in each of the samples it was enzymatically active. The tandem mass spectrometry analysis used here is the most selective method available to detect ricin toxin. In each sample, ricin was unequivocally identified along with other R. communis plant proteins, including the highly homologous protein RCA120. Although database searches using tandem mass spectra acquired from the samples indicated that additional controlled substances were not present in these samples, the mass spectrometric results did provide extensive detail about the sample contents. To the best of our knowledge following a review of the available literature, this report describes the most detailed analysis of a white powder for a public health or forensic investigation involving ricin.
Collapse
Affiliation(s)
- David M Schieltz
- Emergency Response and Air Toxicants Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
McGrath SC, Schieltz DM, McWilliams LG, Pirkle JL, Barr JR. Detection and Quantification of Ricin in Beverages Using Isotope Dilution Tandem Mass Spectrometry. Anal Chem 2011; 83:2897-905. [DOI: 10.1021/ac102571f] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sara C. McGrath
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, Atlanta, Georgia 30341, United States
| | - David M. Schieltz
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, Atlanta, Georgia 30341, United States
| | - Lisa G. McWilliams
- Battelle (on Contract with the Division of Laboratory Sciences), 4770 Buford Highway, Atlanta, Georgia 30341, United States
| | - James L. Pirkle
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, Atlanta, Georgia 30341, United States
| | - John R. Barr
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, Atlanta, Georgia 30341, United States
| |
Collapse
|
41
|
He L, Rodda T, Haynes CL, Deschaines T, Strother T, Diez-Gonzalez F, Labuza TP. Detection of a Foreign Protein in Milk Using Surface-Enhanced Raman Spectroscopy Coupled with Antibody-Modified Silver Dendrites. Anal Chem 2011; 83:1510-3. [DOI: 10.1021/ac1032353] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lili He
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, St. Paul, Minnesota 55108, United States
| | - Tom Rodda
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, St. Paul, Minnesota 55108, United States
| | - Christy L. Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Timothy Deschaines
- Raman Spectroscopy Group, Thermo Fisher Scientific, 5225 Verona Road, Building 4, Madison, Wisconsin 53711, United States
| | - Todd Strother
- Raman Spectroscopy Group, Thermo Fisher Scientific, 5225 Verona Road, Building 4, Madison, Wisconsin 53711, United States
| | - Francisco Diez-Gonzalez
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, St. Paul, Minnesota 55108, United States
| | - Theodore P. Labuza
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, St. Paul, Minnesota 55108, United States
| |
Collapse
|
42
|
Sehgal P, Kumar O, Kameswararao M, Ravindran J, Khan M, Sharma S, Vijayaraghavan R, Prasad GBKS. Differential toxicity profile of ricin isoforms correlates with their glycosylation levels. Toxicology 2011; 282:56-67. [PMID: 21255629 DOI: 10.1016/j.tox.2011.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 11/24/2022]
Abstract
Ricin is one of the most potent and deadly plant toxins from the seeds of Ricinus communis. In view of its high toxicity, ricin is being used as an immunotoxin in cancer therapy. Ricin also has several isoforms with differential glycosylation depending on the seed variety. Our study shows three isoforms designated 1, 2 and 3, which differed in their surface charge, resulting in a different behavior on cation exchange chromatography, two dimensional (pI 5.5-8.7) and native PAGE. The molecular masses of isoform-1, 2 and 3 were measured as 63.55 kDa, 64.03 kDa and 62.8 kDa, respectively, by MALDI-TOF/MS. In vitro studies with monkey kidney (Vero) cells showed a time dependent increase in cytotoxicity of the isoforms evaluated by extracellular lactate dehydrogenase activity and mitochondrial dehydrogenase assay. These isoforms also induce oxidative stress and DNA damage. Among the isoforms, isoform-3 was quick to generate reactive oxygen species (ROS), (in 90 min) and exhibited maximum cytotoxicity. Morphological changes, catalase activity and DNA fragmentation were significantly higher with isoform-3 treatment compared to others. The glycosylation studies by MALDI-TOF/MS showed that isoform-3 is highly glycosylated with high sugar levels containing more of hybrid/complex type glycopeptides with mannose as hexose units. These experimental evidences clearly suggest that isoform-3 is superior in its early ROS generation, potency to induce oxidative stress and cytotoxicity, that could be due to it's higher glycosylation levels which make isoform-3 as an ideal candidate for immunotoxin studies.
Collapse
Affiliation(s)
- Payal Sehgal
- Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior, India
| | | | | | | | | | | | | | | |
Collapse
|
43
|
LIU HZ, TANG JJ, MA XX, GUO L, XIE JW, WANG YX. Galactose-functionalized Magnetic Iron-oxide Nanoparticles for Enrichment and Detection of Ricin Toxin. ANAL SCI 2011; 27:19-24. [DOI: 10.2116/analsci.27.19] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- He-Zhu LIU
- Beijing Institute of Pharmacology and Toxicology
| | - Ji-Jun TANG
- Beijing Institute of Pharmacology and Toxicology
| | - Xiao-Xi MA
- Beijing Institute of Pharmacology and Toxicology
| | - Lei GUO
- Beijing Institute of Pharmacology and Toxicology
| | - Jian-Wei XIE
- Beijing Institute of Pharmacology and Toxicology
| | - Yu-Xia WANG
- Beijing Institute of Pharmacology and Toxicology
| |
Collapse
|
44
|
Mass spectrometry biotyper system identifies enteric bacterial pathogens directly from colonies grown on selective stool culture media. J Clin Microbiol 2010; 48:3888-92. [PMID: 20844226 DOI: 10.1128/jcm.01290-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We evaluated the performance and cost-effectiveness of a matrix-assisted laser desorption ionization time-of-flight mass spectrometry-based Biotyper system for the routine identification of common enteric bacterial pathogens seen in middle Tennessee from suspicious colonies grown on selective stool culture media. A total of 304 suspicious colonies were selected and further identified from 605 stool specimens. The suspicious colonies were analyzed by the Biotyper system, and the results were compared to those from routine phenotypic methods, which identified 22 Salmonella species, 39 Shigella species, 3 enterohemorrhagic Escherichia coli (EHEC) isolates, 2 Yersinia enterocolitica isolates, 2 Campylobacter species, and 236 gastrointestinal normal flora isolates. The Biotyper system correctly identified the Salmonella species, Yersinia enterocolitica, and Campylobacter species but failed to distinguish the Shigella species and EHEC isolates from E. coli. Among the 236 normal flora isolates, 233 (98.7%) and 228 (96.6%) agreed at the genus and species levels, respectively, between the phenotypic and Biotyper methods. Organism identification scores were insignificantly different between colonies directly from selective media and subsequently from pure subculture. The entire Biotyper identification procedure, from smear preparation to final result reporting, can be completed within 30 min. The Biotyper system provides a rapid and simple screening tool for identifying many, but not all, suspicious colonies grown on selective media within 24 h after inoculation, which shortens test turnaround time by 2 to 3 days.
Collapse
|
45
|
Brinkworth CS. Identification of ricin in crude and purified extracts from castor beans using on-target tryptic digestion and MALDI mass spectrometry. Anal Chem 2010; 82:5246-52. [PMID: 20486671 DOI: 10.1021/ac100650g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ricin is a toxic protein produced in the seeds of the castor bean plant. The toxicity of the protein and the ease in which it can be extracted from the seeds makes it a potential biological warfare agent. There has been extensive work in the development of analytical techniques that can identify the protein robustly and rapidly. On-target tryptic digestion and MALDI MS was used to distinguish ricin from bovine serum albumin and three other type 2 ribsome-inactivating proteins (RIPs), abrin, agglutinin (RCA(120)), and viscumin, using the peptide mass fingerprint. The sequence coverage obtained was enhanced using methanol-assisted tryptic digestion and was particularly useful for the detection of these toxins in complex matrixes. When used in conjunction with intact protein MALDI mass measurement, a positive identification of ricin (or any of the other RIPs) was achieved including confirmation of the integrity of the disulfide bond between the A and B chains. This applicability of this methodology was demonstrated by the identification of ricin in a typical "crude white powder" that may be illicitly produced in a clandestine lab. The analysis on the solubilized sample using this method can be undertaken in around an hour with minimal sample preparation.
Collapse
Affiliation(s)
- Craig S Brinkworth
- Human Protection and Performance Division, Defence Science and Technology Organisation, Fishermans Bend, Victoria, Australia, 3207.
| |
Collapse
|
46
|
Research Spotlight: Drug bioanalysis and biomarker discovery at the Commissariat à l’énergie atomique et aux énergies alternatives. Bioanalysis 2010; 2:713-7. [DOI: 10.4155/bio.10.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The bioanalysis group at the Saclay site of the Commissariat à l’énergie atomique et aux énergies alternatives focuses on MS for the discovery and quantification of biomarkers and drugs as well as metabolites. Key developments and achievements include intracellular pharmacokinetics of anti-HIV drugs, metabolomic studies, pioneering work in the bioanalysis of recombinant proteins, antibodies, probes for in vitro blood–brain barrier models and bioanalytical approaches to the quantification of biomarkers relevant to the threat of bioterrorism. Our activities are based on industrial collaboration and are pursued within the framework of national and international collaborations and strong partnerships with the pharmaceutical industry and clinicians.
Collapse
|
47
|
HE XIAOHUA, McMAHON STEPHANIE, McKEON THOMASA, BRANDON DAVIDL. Development of a Novel Immuno-PCR Assay for Detection of Ricin in Ground Beef, Liquid Chicken Egg, and Milk. J Food Prot 2010; 73:695-700. [DOI: 10.4315/0362-028x-73.4.695] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reliable, sensitive, and high-throughput methods are essential for food defense, to detect foodborne contaminants and to facilitate remediation and recovery from potential toxin-related incidents. Ricin is a protein toxin that has been used for intentional contamination of foods in the past. In this study, we developed procedures for quantification of ricin in foods using immuno-PCR (IPCR). The direct adsorption of ricin onto the wells of a microtitration plate was compared with indirect immobilization via a capture antibody (sandwich IPCR). The latter procedure provided much greater sensitivity. We also compared a protocol with the immunoassay and PCR conducted in a single plate to a two-step procedure in which the PCR was conducted in a second plate, following release and transfer of the DNA marker. The two-step procedure proved 1,000-fold more sensitive for ricin detection, so this format was used to detect ricin in spiked samples of ground beef, chicken egg, and milk, and the results were compared with those obtained from enzyme-linked immunosorbent assay (ELISA). The IPCR had a limit of detection of 10 pg/ml in chicken egg and milk samples and 100 pg/ml in ground beef extracts. Comparable ELISA results were in the 1 to 10 ng/ml range. Thus, IPCR affords sensitivity that is 10-fold greater in the ground beef matrix, 100-fold greater in the milk, and 1,000-fold greater in the egg matrix than the sensitivity obtained by ELISA. Further optimization of the sandwich IPCR was performed by comparing various antibody combinations. Among the four formats investigated, the pAb-pAb combination yielded the lowest limit of detection (10 fg/ml).
Collapse
Affiliation(s)
- XIAOHUA HE
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710, USA
| | - STEPHANIE McMAHON
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710, USA
| | - THOMAS A. McKEON
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710, USA
| | - DAVID L. BRANDON
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710, USA
| |
Collapse
|
48
|
Kull S, Pauly D, Störmann B, Kirchner S, Stämmler M, Dorner MB, Lasch P, Naumann D, Dorner BG. Multiplex Detection of Microbial and Plant Toxins by Immunoaffinity Enrichment and Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal Chem 2010; 82:2916-24. [DOI: 10.1021/ac902909r] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Skadi Kull
- Biomedical Spectroscopy (P25), Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany and Microbial Toxins (ZBS3), Center for Biological Safety, Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany
| | - Diana Pauly
- Biomedical Spectroscopy (P25), Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany and Microbial Toxins (ZBS3), Center for Biological Safety, Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany
| | - Britta Störmann
- Biomedical Spectroscopy (P25), Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany and Microbial Toxins (ZBS3), Center for Biological Safety, Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany
| | - Sebastian Kirchner
- Biomedical Spectroscopy (P25), Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany and Microbial Toxins (ZBS3), Center for Biological Safety, Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany
| | - Maren Stämmler
- Biomedical Spectroscopy (P25), Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany and Microbial Toxins (ZBS3), Center for Biological Safety, Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany
| | - Martin B. Dorner
- Biomedical Spectroscopy (P25), Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany and Microbial Toxins (ZBS3), Center for Biological Safety, Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany
| | - Peter Lasch
- Biomedical Spectroscopy (P25), Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany and Microbial Toxins (ZBS3), Center for Biological Safety, Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany
| | - Dieter Naumann
- Biomedical Spectroscopy (P25), Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany and Microbial Toxins (ZBS3), Center for Biological Safety, Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany
| | - Brigitte G. Dorner
- Biomedical Spectroscopy (P25), Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany and Microbial Toxins (ZBS3), Center for Biological Safety, Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany
| |
Collapse
|
49
|
Chabre H, Gouyon B, Huet A, Boran-Bodo V, Nony E, Hrabina M, Fenaille F, Lautrette A, Bonvalet M, Maillère B, Bordas-Le Floch V, Van Overtvelt L, Jain K, Ezan E, Batard T, Moingeon P. Molecular variability of group 1 and 5 grass pollen allergens between Pooideae species: implications for immunotherapy. Clin Exp Allergy 2010; 40:505-19. [DOI: 10.1111/j.1365-2222.2009.03380.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Analysis of lysozyme in cheese by immunocapture mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:201-6. [DOI: 10.1016/j.jchromb.2009.07.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 07/28/2009] [Accepted: 07/30/2009] [Indexed: 10/20/2022]
|