1
|
Qiao R, Li S, Zhou M, Chen P, Liu Z, Tang M, Zhou J. In-depth analysis of the synaptic plasma membrane proteome of small hippocampal slices using an integrated approach. Neuroscience 2017; 353:119-132. [PMID: 28435053 DOI: 10.1016/j.neuroscience.2017.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/24/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
Abstract
Comprehensive knowledge of the synaptic plasma membrane (SPM) proteome of a distinct brain region in a defined pathological state would greatly advance the understanding of the underlying biology of synaptic plasticity. The development of innovative approaches for studying the SPM proteome of small brain tissues is highly desired. This study presents a suitable protocol that integrates biotinylation-based affinity capture of cell surface-exposed proteins, isolation of synaptosomes, and biochemical extraction of SPM proteins from biotinylated hippocampal slices. The effectiveness of this integrated method was initially confirmed using immunoblot analysis of synaptic markers. Subsequently, we used highly sensitive mass spectrometry and streamlined bioinformatics to analyze the obtained SPM protein-enriched fraction. Our workflow positively identified 241 SPM proteins comprising 85 previously reported classical proteins from the pre- and/or post-synaptic membrane and 156 nonclassical proteins that localized to both the plasma membrane and synapse, and have not been previously reported as SPM proteins. Further analyses revealed considerable similarities in the physicochemical and functional properties of these proteins. Analysis of the interaction network using STRING indicated that the two groups showed a relatively strong functional correlation. Using MCODE analysis, we observed that 65 nonclassical SPM proteins formed 12 highly interconnected clusters with 47 classical SPM proteins, suggesting that they were the more likely SPM candidates. Taken together, the results of this study provide an integrated tool for analyzing the SPM proteome of small brain tissues, as well as a dataset of putative novel SPM proteins to improve the understanding of hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Rui Qiao
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Shuiming Li
- Shenzhen Key Laboratory of Microbiology and Gene Engineering, Shenzhen University, Shenzhen 518060, China
| | - Mi Zhou
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Penghui Chen
- Department of Neurobiology, The Third Military Medical University, Chongqing 400038, China
| | - Zhao Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Min Tang
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Jian Zhou
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China.
| |
Collapse
|
3
|
Zhou J, Liu Z, Yu J, Han X, Fan S, Shao W, Chen J, Qiao R, Xie P. Quantitative Proteomic Analysis Reveals Molecular Adaptations in the Hippocampal Synaptic Active Zone of Chronic Mild Stress-Unsusceptible Rats. Int J Neuropsychopharmacol 2015; 19:pyv100. [PMID: 26364272 PMCID: PMC4772275 DOI: 10.1093/ijnp/pyv100] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/31/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND While stressful events are recognized as an important cause of major depressive disorder, some individuals exposed to life stressors maintain normal psychological functioning. The molecular mechanism(s) underlying this phenomenon remain unclear. Abnormal transmission and plasticity of hippocampal synapses have been implied to play a key role in the pathoetiology of major depressive disorder. METHODS A chronic mild stress protocol was applied to separate susceptible and unsusceptible rat subpopulations. Proteomic analysis using an isobaric tag for relative and absolute quantitation coupled with tandem mass spectrometry was performed to identify differential proteins in enriched hippocampal synaptic junction preparations. RESULTS A total of 4318 proteins were quantified, and 89 membrane proteins were present in differential amounts. Of these, SynaptomeDB identified 81 (91%) having a synapse-specific localization. The unbiased profiles identified several candidate proteins within the synaptic junction that may be associated with stress vulnerability or insusceptibility. Subsequent functional categorization revealed that protein systems particularly involved in membrane trafficking at the synaptic active zone exhibited a positive strain as potential molecular adaptations in the unsusceptible rats. Moreover, through STRING and immunoblotting analysis, membrane-associated GTP-bound Rab3a and Munc18-1 appear to coregulate syntaxin-1/SNAP25/VAMP2 assembly at the hippocampal presynaptic active zone of unsusceptible rats, facilitating SNARE-mediated membrane fusion and neurotransmitter release, and may be part of a stress-protection mechanism in actively maintaining an emotional homeostasis. CONCLUSIONS The present results support the concept that there is a range of potential protein adaptations in the hippocampal synaptic active zone of unsusceptible rats, revealing new investigative targets that may contribute to a better understanding of stress insusceptibility.
Collapse
Affiliation(s)
- Jian Zhou
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Chongqing Key Laboratory of Neurobiology, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Drs Liu, Han, Fan, Shao, and Xie)
| | - Zhao Liu
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Chongqing Key Laboratory of Neurobiology, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Drs Liu, Han, Fan, Shao, and Xie)
| | - Jia Yu
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Chongqing Key Laboratory of Neurobiology, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Drs Liu, Han, Fan, Shao, and Xie)
| | - Xin Han
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Chongqing Key Laboratory of Neurobiology, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Drs Liu, Han, Fan, Shao, and Xie)
| | - Songhua Fan
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Chongqing Key Laboratory of Neurobiology, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Drs Liu, Han, Fan, Shao, and Xie)
| | - Weihua Shao
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Chongqing Key Laboratory of Neurobiology, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Drs Liu, Han, Fan, Shao, and Xie)
| | - Jianjun Chen
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Chongqing Key Laboratory of Neurobiology, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Drs Liu, Han, Fan, Shao, and Xie)
| | - Rui Qiao
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Chongqing Key Laboratory of Neurobiology, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Drs Liu, Han, Fan, Shao, and Xie)
| | - Peng Xie
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Chongqing Key Laboratory of Neurobiology, Chongqing, China (Drs Zhou, Liu, Yu, Han, Fan, Shao, Chen, Qiao, and Xie); Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Drs Liu, Han, Fan, Shao, and Xie).
| |
Collapse
|
7
|
Wang F, Wang L, Xu Z, Liang G. Identification and analysis of multi-protein complexes in placenta. PLoS One 2013; 8:e62988. [PMID: 23638173 PMCID: PMC3639281 DOI: 10.1371/journal.pone.0062988] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 03/27/2013] [Indexed: 12/13/2022] Open
Abstract
Placental malfunction induces pregnancy disorders which contribute to life-threatening complications for both the mother and the fetus. Identification and characterization of placental multi-protein complexes is an important step to integratedly understand the protein-protein interaction networks in placenta which determine placental function. In this study, blue native/sodium dodecyl sulfate polyacrylamide gel electrophoresis (BN/SDS-PAGE) and Liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to screen the multi-protein complexes in placenta. 733 unique proteins and 34 known and novel heterooligomeric multi-protein complexes including mitochondrial respiratory chain complexes, integrin complexes, proteasome complexes, histone complex, and heat shock protein complexes were identified. A novel protein complex, which involves clathrin and small conductance calcium-activated potassium (SK) channel protein 2, was identified and validated by antibody based gel shift assay, co-immunoprecipitation and immunofluorescence staining. These results suggest that BN/SDS-PAGE, when integrated with LC-MS/MS, is a very powerful and versatile tool for the investigation of placental protein complexes. This work paves the way for deeper functional characterization of the placental protein complexes associated with pregnancy disorders.
Collapse
Affiliation(s)
- Fuqiang Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China
- State Key Laboratory of Reproductive Medicine, Analysis Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ling Wang
- State Key Laboratory of Reproductive Medicine, Analysis Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhiyang Xu
- State Key Laboratory of Reproductive Medicine, Analysis Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Gaolin Liang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China
- * E-mail:
| |
Collapse
|
9
|
Monteiro KM, Cardoso MB, Follmer C, da Silveira NP, Vargas DM, Kitajima EW, Zaha A, Ferreira HB. Echinococcus granulosus antigen B structure: subunit composition and oligomeric states. PLoS Negl Trop Dis 2012; 6:e1551. [PMID: 22413028 PMCID: PMC3295803 DOI: 10.1371/journal.pntd.0001551] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 01/12/2012] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Antigen B (AgB) is the major protein secreted by the Echinococcus granulosus metacestode and is involved in key host-parasite interactions during infection. The full comprehension of AgB functions depends on the elucidation of several structural aspects that remain unknown, such as its subunit composition and oligomeric states. METHODOLOGY/PRINCIPAL FINDINGS The subunit composition of E. granulosus AgB oligomers from individual bovine and human cysts was assessed by mass spectrometry associated with electrophoretic analysis. AgB8/1, AgB8/2, AgB8/3 and AgB8/4 subunits were identified in all samples analyzed, and an AgB8/2 variant (AgB8/2v8) was found in one bovine sample. The exponentially modified protein abundance index (emPAI) was used to estimate the relative abundance of the AgB subunits, revealing that AgB8/1 subunit was relatively overrepresented in all samples. The abundance of AgB8/3 subunit varied between bovine and human cysts. The oligomeric states formed by E. granulosus AgB and recombinant subunits available, rAgB8/1, rAgB8/2 and rAgB8/3, were characterized by native PAGE, light scattering and microscopy. Recombinant subunits showed markedly distinct oligomerization behaviors, forming oligomers with a maximum size relation of rAgB8/3>rAgB8/2>rAgB8/1. Moreover, the oligomeric states formed by rAgB8/3 subunit were more similar to those observed for AgB purified from hydatid fluid. Pressure-induced dissociation experiments demonstrated that the molecular assemblies formed by the more aggregative subunits, rAgB8/2 and rAgB8/3, also display higher structural stability. CONCLUSIONS/SIGNIFICANCE For the first time, AgB subunit composition was analyzed in samples from single hydatid cysts, revealing qualitative and quantitative differences between samples. We showed that AgB oligomers are formed by different subunits, which have distinct abundances and oligomerization properties. Overall, our findings have significantly contributed to increase the current knowledge on AgB expression and structure, highlighting issues that may help to understand the parasite adaptive response during chronic infection.
Collapse
Affiliation(s)
- Karina M. Monteiro
- Laboratório de Biologia Molecular de Cestódeos and Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mateus B. Cardoso
- Laboratório Nacional de Luz Síncrotron (LNLS), Campinas, São Paulo, Brazil
| | - Cristian Follmer
- Departamento de Físico-Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nádya P. da Silveira
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daiani M. Vargas
- Laboratório de Biologia Molecular de Cestódeos and Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Elliot W. Kitajima
- Departamento de Entomologia, Fitopatologia e Zoologia Agrícola, Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Arnaldo Zaha
- Laboratório de Biologia Molecular de Cestódeos and Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Henrique B. Ferreira
- Laboratório de Biologia Molecular de Cestódeos and Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| |
Collapse
|