1
|
Hurben AK, Zhang Q, Galligan JJ, Tretyakova N, Erber L. Endogenous Cellular Metabolite Methylglyoxal Induces DNA-Protein Cross-Links in Living Cells. ACS Chem Biol 2024; 19:1291-1302. [PMID: 38752800 PMCID: PMC11353540 DOI: 10.1021/acschembio.4c00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Methylglyoxal (MGO) is an electrophilic α-oxoaldehyde generated endogenously through metabolism of carbohydrates and exogenously due to autoxidation of sugars, degradation of lipids, and fermentation during food and drink processing. MGO can react with nucleophilic sites within proteins and DNA to form covalent adducts. MGO-induced advanced glycation end-products such as protein and DNA adducts are thought to be involved in oxidative stress, inflammation, diabetes, cancer, renal failure, and neurodegenerative diseases. Additionally, MGO has been hypothesized to form toxic DNA-protein cross-links (DPC), but the identities of proteins participating in such cross-linking in cells have not been determined. In the present work, we quantified DPC formation in human cells exposed to MGO and identified proteins trapped on DNA upon MGO exposure using mass spectrometry-based proteomics. A total of 265 proteins were found to participate in MGO-derived DPC formation including gene products engaged in telomere organization, nucleosome assembly, and gene expression. In vitro experiments confirmed DPC formation between DNA and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), as well as histone proteins H3.1 and H4. Collectively, our study provides the first evidence for MGO-mediated DNA-protein cross-linking in living cells, prompting future studies regarding the relevance of these toxic lesions in cancer, diabetes, and other diseases linked to elevated MGO levels.
Collapse
Affiliation(s)
- Alexander K. Hurben
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States; Present Address: Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Qi Zhang
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - James J. Galligan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Natalia Tretyakova
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Luke Erber
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Ghodke PP, Matse JH, Dawson S, Guengerich FP. Nucleophilic Thiol Proteins Bind Covalently to Abasic Sites in DNA. Chem Res Toxicol 2022; 35:1805-1808. [PMID: 35482010 DOI: 10.1021/acs.chemrestox.2c00068] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the course of studies on the enhancement of 1,2-dibromoethane-induced DNA base pair mutations by O6-alkylguanine-DNA alkyltransferase (AGT, MGMT), we discovered the facile reaction of AGT with an abasic site in DNA, leading to covalent cross-linking. The binding of AGT differs from the mechanism reported for the protein HMCES; instead it appears to involve formation of a stable thioglycoside. Facile cross-linking was also observed with the protease papain, which like AGT has a low pKa cysteine, and the tripeptide glutathione.
Collapse
Affiliation(s)
- Pratibha P Ghodke
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Johannes H Matse
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Scott Dawson
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
3
|
Ghodke PP, Gonzalez-Vasquez G, Wang H, Johnson KM, Sedgeman CA, Guengerich FP. Enzymatic bypass of an N 6-deoxyadenosine DNA-ethylene dibromide-peptide cross-link by translesion DNA polymerases. J Biol Chem 2021; 296:100444. [PMID: 33617883 PMCID: PMC8024977 DOI: 10.1016/j.jbc.2021.100444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/25/2022] Open
Abstract
Unrepaired DNA-protein cross-links, due to their bulky nature, can stall replication forks and result in genome instability. Large DNA-protein cross-links can be cleaved into DNA-peptide cross-links, but the extent to which these smaller fragments disrupt normal replication is not clear. Ethylene dibromide (1,2-dibromoethane) is a known carcinogen that can cross-link the repair protein O6-alkylguanine-DNA alkyltransferase (AGT) to the N6 position of deoxyadenosine (dA) in DNA, as well as four other positions in DNA. We investigated the effect of a 15-mer peptide from the active site of AGT, cross-linked to the N6 position of dA, on DNA replication by human translesion synthesis DNA polymerases (Pols) η, ⍳, and κ. The peptide-DNA cross-link was bypassed by the three polymerases at different rates. In steady-state kinetics, the specificity constant (kcat/Km) for incorporation of the correct nucleotide opposite to the adduct decreased by 220-fold with Pol κ, tenfold with pol η, and not at all with Pol ⍳. Pol η incorporated all four nucleotides across from the lesion, with the preference dT > dC > dA > dG, while Pol ⍳ and κ only incorporated the correct nucleotide. However, LC-MS/MS analysis of the primer-template extension product revealed error-free bypass of the cross-linked 15-mer peptide by Pol η. We conclude that a bulky 15-mer peptide cross-linked to the N6 position of dA can retard polymerization and cause miscoding but that overall fidelity is not compromised because only correct pairs are extended.
Collapse
Affiliation(s)
- Pratibha P Ghodke
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | - Hui Wang
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Kevin M Johnson
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Carl A Sedgeman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
4
|
Khodyreva S, Lavrik O. Non-canonical interaction of DNA repair proteins with intact and cleaved AP sites. DNA Repair (Amst) 2020; 90:102847. [DOI: 10.1016/j.dnarep.2020.102847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/06/2020] [Accepted: 03/24/2020] [Indexed: 02/01/2023]
|
5
|
Kosova AA, Khodyreva SN, Lavrik OI. Role of Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) in DNA Repair. BIOCHEMISTRY (MOSCOW) 2017; 82:643-654. [PMID: 28601074 DOI: 10.1134/s0006297917060013] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is widely known as a glycolytic enzyme. Nevertheless, various functions of GAPDH have been found that are unrelated to glycolysis. Some of these functions presume interaction of GAPDH with DNA, but the mechanism of its translocation to the nucleus is not fully understood. When in the nucleus, GAPDH participates in the initiation of apoptosis and transcription of genes involved in antiapoptotic pathways and cell proliferation and plays a role in the regulation of telomere length. Several authors have shown that GAPDH displays the uracil-DNA glycosylase activity and interacts with some types of DNA damages, such as apurinic/apyrimidinic sites, nucleotide analogs, and covalent DNA adducts with alkylating agents. Moreover, GAPDH can interact with proteins participating in DNA repair, such as APE1, PARP1, HMGB1, and HMGB2. In this review, the functions of GAPDH associated with DNA repair are discussed in detail.
Collapse
Affiliation(s)
- A A Kosova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | | | |
Collapse
|
6
|
Sedgeman CA, Su Y, Guengerich FP. Formation of S-[2-(N 6-Deoxyadenosinyl)ethyl]glutathione in DNA and Replication Past the Adduct by Translesion DNA Polymerases. Chem Res Toxicol 2017; 30:1188-1196. [PMID: 28395138 DOI: 10.1021/acs.chemrestox.7b00022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
1,2-Dibromoethane (DBE, ethylene dibromide) is a potent carcinogen due at least in part to its DNA cross-linking effects. DBE cross-links glutathione (GSH) to DNA, notably to sites on 2'-deoxyadenosine and 2'-deoxyguanosine ( Cmarik , J. L. , et al. ( 1991 ) J. Biol. Chem. 267 , 6672 - 6679 ). Adduction at the N6 position of 2'-deoxyadenosine (dA) had not been detected, but this is a site for the linkage of O6-alkylguanine DNA alkyltransferase ( Chowdhury , G. , et al. ( 2013 ) Angew. Chem. Int. Ed. 52 , 12879 - 12882 ). We identified and quantified a new adduct, S-[2-(N6-deoxyadenosinyl)ethyl]GSH, in calf thymus DNA using LC-MS/MS. Replication studies were performed in duplex oligonucleotides containing this adduct with human DNA polymerases (hPols) η, ι, and κ, as well as with Sulfolobus solfataricus Dpo4, Escherichia coli polymerase I Klenow fragment, and bacteriophage T7 polymerase. hPols η and ι, Dpo4, and Klenow fragment were able to bypass the adduct with only slight impedance; hPol η and ι showed increased misincorporation opposite the adduct compared to that of unmodified 2'-deoxyadenosine. LC-MS/MS analysis of full-length primer extension products by hPol η confirmed the incorporation of dC opposite S-[2-(N6-deoxyadenosinyl)ethyl]GSH and also showed the production of a -1 frameshift. These results reveal the significance of N6-dA GSH-DBE adducts in blocking replication, as well as producing mutations, by human translesion synthesis DNA polymerases.
Collapse
Affiliation(s)
- Carl A Sedgeman
- Department of Biochemistry, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | - Yan Su
- Department of Biochemistry, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
7
|
Groehler A, Degner A, Tretyakova NY. Mass Spectrometry-Based Tools to Characterize DNA-Protein Cross-Linking by Bis-Electrophiles. Basic Clin Pharmacol Toxicol 2017; 121 Suppl 3:63-77. [PMID: 28032943 DOI: 10.1111/bcpt.12751] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/14/2016] [Indexed: 12/14/2022]
Abstract
DNA-protein cross-links (DPCs) are unusually bulky DNA adducts that form in cells as a result of exposure to endogenous and exogenous agents including reactive oxygen species, ultraviolet light, ionizing radiation, environmental agents (e.g. transition metals, formaldehyde, 1,2-dibromoethane, 1,3-butadiene) and common chemotherapeutic agents. Covalent DPCs are cytotoxic and mutagenic due to their ability to interfere with faithful DNA replication and to prevent accurate gene expression. Key to our understanding of the biological significance of DPC formation is identifying the proteins most susceptible to forming these unusually bulky and complex lesions and quantifying the extent of DNA-protein cross-linking in cells and tissues. Recent advances in bottom-up mass spectrometry-based proteomics have allowed for an unbiased assessment of the whole protein DPC adductome after in vitro and in vivo exposures to cross-linking agents. This MiniReview summarizes current and emerging methods for DPC isolation and analysis by mass spectrometry-based proteomics. We also highlight several examples of successful applications of these novel methodologies to studies of DPC lesions induced by bis-electrophiles such as formaldehyde, 1,2,3,4-diepoxybutane, nitrogen mustards and cisplatin.
Collapse
Affiliation(s)
- Arnold Groehler
- Department of Medicinal Chemistry, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Amanda Degner
- Department of Medicinal Chemistry, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Natalia Y Tretyakova
- Department of Medicinal Chemistry, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
8
|
Wickramaratne S, Ji S, Mukherjee S, Su Y, Pence MG, Lior-Hoffmann L, Fu I, Broyde S, Guengerich FP, Distefano M, Schärer OD, Sham YY, Tretyakova N. Bypass of DNA-Protein Cross-links Conjugated to the 7-Deazaguanine Position of DNA by Translesion Synthesis Polymerases. J Biol Chem 2016; 291:23589-23603. [PMID: 27621316 DOI: 10.1074/jbc.m116.745257] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Indexed: 12/22/2022] Open
Abstract
DNA-protein cross-links (DPCs) are bulky DNA lesions that form both endogenously and following exposure to bis-electrophiles such as common antitumor agents. The structural and biological consequences of DPCs have not been fully elucidated due to the complexity of these adducts. The most common site of DPC formation in DNA following treatment with bis-electrophiles such as nitrogen mustards and cisplatin is the N7 position of guanine, but the resulting conjugates are hydrolytically labile and thus are not suitable for structural and biological studies. In this report, hydrolytically stable structural mimics of N7-guanine-conjugated DPCs were generated by reductive amination reactions between the Lys and Arg side chains of proteins/peptides and aldehyde groups linked to 7-deazaguanine residues in DNA. These model DPCs were subjected to in vitro replication in the presence of human translesion synthesis DNA polymerases. DPCs containing full-length proteins (11-28 kDa) or a 23-mer peptide blocked human polymerases η and κ. DPC conjugates to a 10-mer peptide were bypassed with nucleotide insertion efficiency 50-100-fold lower than for native G. Both human polymerase (hPol) κ and hPol η inserted the correct base (C) opposite the 10-mer peptide cross-link, although small amounts of T were added by hPol η. Molecular dynamics simulation of an hPol κ ternary complex containing a template-primer DNA with dCTP opposite the 10-mer peptide DPC revealed that this bulky lesion can be accommodated in the polymerase active site by aligning with the major groove of the adducted DNA within the ternary complex of polymerase and dCTP.
Collapse
Affiliation(s)
| | - Shaofei Ji
- From the Masonic Cancer Center and.,the Departments of Chemistry
| | | | - Yan Su
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Matthew G Pence
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Lee Lior-Hoffmann
- Department of Biology, New York University, New York, New York 10003-6688, and
| | - Iwen Fu
- Department of Biology, New York University, New York, New York 10003-6688, and
| | - Suse Broyde
- Department of Biology, New York University, New York, New York 10003-6688, and
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | | | - Orlando D Schärer
- Chemistry, Stony Brook University, Stony Brook, New York 11794.,Departments of Pharmacological Sciences and
| | | | - Natalia Tretyakova
- From the Masonic Cancer Center and .,Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
9
|
Savreux-Lenglet G, Depauw S, David-Cordonnier MH. Protein Recognition in Drug-Induced DNA Alkylation: When the Moonlight Protein GAPDH Meets S23906-1/DNA Minor Groove Adducts. Int J Mol Sci 2015; 16:26555-81. [PMID: 26556350 PMCID: PMC4661830 DOI: 10.3390/ijms161125971] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/25/2015] [Accepted: 10/27/2015] [Indexed: 12/11/2022] Open
Abstract
DNA alkylating drugs have been used in clinics for more than seventy years. The diversity of their mechanism of action (major/minor groove; mono-/bis-alkylation; intra-/inter-strand crosslinks; DNA stabilization/destabilization, etc.) has undoubtedly major consequences on the cellular response to treatment. The aim of this review is to highlight the variety of established protein recognition of DNA adducts to then particularly focus on glyceraldehyde-3-phosphate dehydrogenase (GAPDH) function in DNA adduct interaction with illustration using original experiments performed with S23906-1/DNA adduct. The introduction of this review is a state of the art of protein/DNA adducts recognition, depending on the major or minor groove orientation of the DNA bonding as well as on the molecular consequences in terms of double-stranded DNA maintenance. It reviews the implication of proteins from both DNA repair, transcription, replication and chromatin maintenance in selective DNA adduct recognition. The main section of the manuscript is focusing on the implication of the moonlighting protein GAPDH in DNA adduct recognition with the model of the peculiar DNA minor groove alkylating and destabilizing drug S23906-1. The mechanism of action of S23906-1 alkylating drug and the large variety of GAPDH cellular functions are presented prior to focus on GAPDH direct binding to S23906-1 adducts.
Collapse
Affiliation(s)
- Gaëlle Savreux-Lenglet
- UMR-S1172-Jean-Pierre Aubert Research Centre (JPARC), INSERM, University of Lille, Lille Hospital, Institut pour la Recherche sur le Cancer de Lille, Place de Verdun F-59045 Lille cedex, France.
| | - Sabine Depauw
- UMR-S1172-Jean-Pierre Aubert Research Centre (JPARC), INSERM, University of Lille, Lille Hospital, Institut pour la Recherche sur le Cancer de Lille, Place de Verdun F-59045 Lille cedex, France.
| | - Marie-Hélène David-Cordonnier
- UMR-S1172-Jean-Pierre Aubert Research Centre (JPARC), INSERM, University of Lille, Lille Hospital, Institut pour la Recherche sur le Cancer de Lille, Place de Verdun F-59045 Lille cedex, France.
| |
Collapse
|
10
|
Abstract
Apurinic/apyrimidinic (AP) sites are some of the most frequent DNA damages and the key intermediates of base excision repair. Certain proteins can interact with the deoxyribose of the AP site to form a Schiff base, which can be stabilized by NaBH4 treatment. Several types of DNA containing the AP site were used to trap proteins in human cell extracts by this method. In the case of single-stranded AP DNA and AP DNA duplex with both 5' and 3' dangling ends, the major crosslinking product had an apparent molecular mass of 45 kDa. Using peptide mass mapping based on mass spectrometry data, we identified the protein forming this adduct as an isoform of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) called "uracil-DNA glycosylase". GAPDH is a glycolytic enzyme with many additional putative functions, which include interaction with nucleic acids, different DNA damages and DNA repair enzymes. We investigated interaction of GAPDH purified from HeLa cells and rabbit muscles with different AP DNAs. In spite of the ability to form a Schiff-base intermediate with the deoxyribose of the AP site, GAPDH does not display the AP lyase activity. In addition, along with the borohydride-dependent adducts with AP DNAs containing single-stranded regions, GAPDH was also shown to form the stable borohydride-independent crosslinks with these AP DNAs. GAPDH was proven to crosslink preferentially to AP DNAs cleaved via the β-elimination mechanism (spontaneously or by AP lyases) as compared to DNAs containing the intact AP site. The level of GAPDH-AP DNA adduct formation depends on oxidation of the protein SH-groups; disulfide bond reduction in GAPDH leads to the loss of its ability to form the adducts with AP DNA. A possible role of formation of the stable adducts with AP sites by GAPDH is discussed.
Collapse
|
11
|
Wickramaratne S, Tretyakova NY. Structure elucidation of DNA-protein crosslinks by using reductive desulfurization and liquid chromatography-tandem mass spectrometry. Chembiochem 2014; 15:353-5. [PMID: 24436288 DOI: 10.1002/cbic.201300757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Indexed: 11/12/2022]
Abstract
Easier with ethyl: Guengerich and co-workers have developed a powerful new approach to the structure elucidation of hydrolytically stable AGT-DNA crosslinks by reductive desulfurization of the thioether linkage between AGT and DNA to convert cysteine DPCs to the corresponding ethyl-DNA adducts, which can be readily characterized by LC-MSn.
Collapse
Affiliation(s)
- Susith Wickramaratne
- University of Minnesota Masonic Cancer Center and the Department of Chemistry, 2231 6th Street SE, Room 2-220 CCRB, Minneapolis, MN 55455 (USA)
| | | |
Collapse
|
12
|
Protein recognition of the S23906-1-DNA adduct by nuclear proteins: direct involvement of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Biochem J 2013; 452:147-59. [PMID: 23409959 DOI: 10.1042/bj20120860] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In a view to develop new DNA alkylating antitumour drugs, evaluating the precise mechanism of action and the molecular/cellular consequences of the alkylation is a point of major interest. The benzo-b-acronycine derivative S23906-1 alkylates guanine nucleobases in the minor groove of the DNA helix and presents an original ability to locally open the double helix of DNA, which appears to be associated with its cytotoxic activity. However, the molecular mechanism linking adduct formation to cellular consequences is not precisely known. The objective of the present study was to identify proteins involved in the recognition and mechanism of action of S23906-DNA adducts. We found that GAPDH (glyceraldehyde-3-phosphate dehydrogenase) is a protein that binds to S23906-alkylated single-stranded, double-stranded and telomeric sequences in a drug-dependent and DNA sequence/structure-dependent manner. We used the CASTing (cyclic amplification of sequence targeting) method to identify GAPDH DNA-binding selectivity and then evaluated its binding to such selected S23906-alkylated sequences. At the cellular level, alkylation of S23906-1 results in an increase in the binding of GAPDH and its protein partner HMG (high-mobility group) B1 to the chromatin. Regarding the multiple roles of GAPDH in apoptosis and DNA repair, the cytotoxic and apoptotic activities of GAPDH were evaluated and present opposite effects in two different cellular models.
Collapse
|
13
|
Cho SH, Guengerich FP. Replication past the butadiene diepoxide-derived DNA adduct S-[4-(N(6)-deoxyadenosinyl)-2,3-dihydroxybutyl]glutathione by DNA polymerases. Chem Res Toxicol 2013; 26:1005-13. [PMID: 23701509 DOI: 10.1021/tx400145e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
1,2,3,4-Diepoxybutane (DEB), a metabolite of the carcinogen butadiene, has been shown to cause glutathione (GSH)-dependent base substitution mutations, especially A:T to G:C mutations in Salmonella typhimurium TA1535 [Cho, S. H., et al. (2010) Chem. Res. Toxicol. 23, 1544] and Escherichia coli TRG8 cells [Cho, S. H., and Guengerich, F. P. (2012) Chem. Res. Toxicol. 25, 1522]. We previously identified S-[4-(N(6)-deoxyadenosinyl)-2,3-dihydroxybutyl]GSH [N(6)dA-(OH)2butyl-GSH] as a major adduct in the reaction of S-(2-hydroxy-3,4-epoxybutyl)glutathione (DEB-GSH conjugate) with nucleosides and calf thymus DNA and in vivo in livers of mice and rats treated with DEB [Cho, S. H., and Guengerich, F. P. (2012) Chem. Res. Toxicol. 25, 706]. For investigation of the miscoding potential of the major DEB-GSH conjugate-derived DNA adduct [N(6)dA-(OH)2butyl-GSH] and the effect of GSH conjugation on replication of DEB, extension studies were performed in duplex DNA substrates containing the site-specifically incorporated N(6)dA-(OH)2butyl-GSH adduct, N(6)-(2,3,4-trihydroxybutyl)deoxyadenosine adduct (N(6)dA-butanetriol), or unmodified deoxyadenosine (dA) by human DNA polymerases (Pol) η, ι, and κ, bacteriophage polymerase T7, and Sulfolobus solfataricus polymerase Dpo4. Although dTTP incorporation was the most preferred addition opposite the N(6)dA-(OH)2butyl-GSH adduct, N(6)dA-butanetriol adduct, or unmodified dA for all polymerases, the dCTP misincorporation frequency opposite N(6)dA-(OH)2butyl-GSH was significantly higher than that opposite the N(6)dA-butanetriol adduct or unmodified dA with Pol κ or Pol T7. LC-MS/MS analysis of full-length primer extension products confirmed that Pol κ or Pol T7 incorporated the incorrect base C opposite the N(6)dA-(OH)2butyl-GSH lesion. These results indicate the relevance of GSH-containing adducts for the A:T to G:C mutations produced by DEB.
Collapse
Affiliation(s)
- Sung-Hee Cho
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | |
Collapse
|
14
|
Tretyakova NY, Michaelson-Richie ED, Gherezghiher TB, Kurtz J, Ming X, Wickramaratne S, Campion M, Kanugula S, Pegg AE, Campbell C. DNA-reactive protein monoepoxides induce cell death and mutagenesis in mammalian cells. Biochemistry 2013; 52:3171-81. [PMID: 23566219 DOI: 10.1021/bi400273m] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although cytotoxic alkylating agents possessing two electrophilic reactive groups are thought to act by cross-linking cellular biomolecules, their exact mechanisms of action have not been established. In cells, these compounds form a mixture of DNA lesions, including nucleobase monoadducts, interstrand and intrastrand cross-links, and DNA-protein cross-links (DPCs). Interstrand DNA-DNA cross-links block replication and transcription by preventing DNA strand separation, contributing to toxicity and mutagenesis. In contrast, potential contributions of drug-induced DPCs are poorly understood. To gain insight into the biological consequences of DPC formation, we generated DNA-reactive protein reagents and examined their toxicity and mutagenesis in mammalian cells. Recombinant human O(6)-alkylguanine DNA alkyltransferase (AGT) protein or its variants (C145A and K125L) were treated with 1,2,3,4-diepoxybutane to yield proteins containing 2-hydroxy-3,4-epoxybutyl groups on cysteine residues. Gel shift and mass spectrometry experiments confirmed that epoxide-functionalized AGT proteins formed covalent DPC but no other types of nucleobase damage when incubated with duplex DNA. Introduction of purified AGT monoepoxides into mammalian cells via electroporation generated AGT-DNA cross-links and induced cell death and mutations at the hypoxanthine-guanine phosphoribosyltransferase gene. Smaller numbers of DPC lesions and reduced levels of cell death were observed when using protein monoepoxides generated from an AGT variant that fails to accumulate in the cell nucleus (K125L), suggesting that nuclear DNA damage is required for toxicity. Taken together, these results indicate that AGT protein monoepoxides produce cytotoxic and mutagenic DPC lesions within chromosomal DNA. More generally, these data suggest that covalent DPC lesions contribute to the cytotoxic and mutagenic effects of bis-electrophiles.
Collapse
Affiliation(s)
- Natalia Y Tretyakova
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gherezghiher TB, Ming X, Villalta PW, Campbell C, Tretyakova NY. 1,2,3,4-Diepoxybutane-induced DNA-protein cross-linking in human fibrosarcoma (HT1080) cells. J Proteome Res 2013; 12:2151-64. [PMID: 23506368 DOI: 10.1021/pr3011974] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
1,2,3,4-Diepoxybutane (DEB) is the key carcinogenic metabolite of 1,3-butadiene (BD), an important industrial and environmental chemical present in urban air and in cigarette smoke. DEB is a genotoxic bis-electrophile capable of cross-linking cellular biomolecules to form DNA-DNA and DNA-protein cross-links (DPCs). In the present work, mass spectrometry-based proteomics was employed to characterize DEB-mediated DNA-protein cross-linking in human fibrosarcoma (HT1080) cells. Over 150 proteins including histones, high mobility group proteins, transcription factors, splicing factors, and tubulins were found among those covalently cross-linked to chromosomal DNA in the presence of DEB. A large portion of the cross-linked proteins are known factors involved in DNA binding, transcriptional regulation, cell signaling, DNA repair, and DNA damage response. HPLC-ESI(+)-MS/MS analysis of total proteolytic digests revealed the presence of 1-(S-cysteinyl)-4-(guan-7-yl)-2,3-butanediol conjugates, confirming that DEB forms DPCs between cysteine thiols within proteins and the N-7 guanine positions within DNA. However, relatively high concentrations of DEB were required to achieve significant DPC formation, indicating that it is a poor cross-linking agent as compared to antitumor nitrogen mustards and platinum compounds.
Collapse
Affiliation(s)
- Teshome B Gherezghiher
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
16
|
Fang Q. DNA-protein crosslinks processed by nucleotide excision repair and homologous recombination with base and strand preference in E. coli model system. Mutat Res 2013; 741-742:1-10. [PMID: 23500083 DOI: 10.1016/j.mrfmmm.2013.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 01/24/2013] [Accepted: 02/28/2013] [Indexed: 10/27/2022]
Abstract
Bis-electrophiles including dibromoethane and epibromohydrin can react with O(6)-alkylguanine-DNA alkyltransferase (AGT) and form AGT-DNA crosslinks in vitro and in vivo. The presence of human AGT (hAGT) paradoxically increases the mutagenicity and cytotoxicity of bis-electrophiles in cells. Here we establish a bacterial system to study the repair mechanism and cellular responses to DNA-protein crosslinks (DPCs) in vivo. Results show that both nucleotide excision repair (NER) and homologous recombination (HR) pathways can process hAGT-DNA crosslinks with HR playing a dominant role. Mutation spectra show that HR has no strand preference but NER favors processing of the DPCs in the transcribed strand; UvrA, UvrB and Mfd can interfere with small size DPCs but only UvrA can interfere with large size DPCs in the transcribed strand processed by HR. Further, we found that DPCs at TA deoxynucleotide sites are very inefficiently processed by NER and the presence of NER can interfere with these DNA lesions processed by HR. These data indicate that NER and HR can process DPCs cooperatively and competitively and NER processes DPCs with base and strand preference. Therefore, the formation of hAGT-DNA crosslinks can be a plausible and specific system to study the repair mechanism and effects of DPCs precisely in vivo.
Collapse
Affiliation(s)
- Qingming Fang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
17
|
Elfarra AA, Zhang XY. Alcohol dehydrogenase- and rat liver cytosol-dependent bioactivation of 1-chloro-2-hydroxy-3-butene to 1-chloro-3-buten-2-one, a bifunctional alkylating agent. Chem Res Toxicol 2012; 25:2600-7. [PMID: 23110628 DOI: 10.1021/tx300369b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
1,3-Butadiene (BD) is an air pollutant whose toxicity and carcinogenicity have been considered primarily mediated by its reactive metabolites, 3,4-epoxy-1-butene and 1,2,3,4-diepoxybutane, formed in liver and extrahepatic tissues by cytochromes P450s. A possible alternative metabolic pathway in bone marrow and immune cells is the conversion of BD to the chlorinated allylic alcohol 1-chloro-2-hydroxy-3-butene (CHB) by myeloperoxidase in the presence of hydrogen peroxide and chloride ion. In the present study, we investigated the in vitro bioactivation of CHB by alcohol dehydrogenases (ADH) under in vitro physiological conditions (pH 7.4, 37 °C). The results provide clear evidence for CHB being converted to 1-chloro-3-buten-2-one (CBO) by purified horse liver ADH and rat liver cytosol. CBO readily reacted with glutathione (GSH) under assay conditions to form three products: two CBO-mono-GSH conjugates [1-chloro-4-(S-glutathionyl)butan-2-one (3) and 1-(S-glutathionyl)-3-buten-2-one (4)] and one CBO-di-GSH conjugate [1,4-bis(S-glutathionyl)butan-2-one (5)]. CHB bioactivation and the ratios of the three GSH conjugates formed were dependent upon incubation time, GSH and CHB concentrations, and the presence of ADH or rat liver cytosol. The ADH enzymatic reaction followed Michaelis-Menten kinetics with a K(m) at 3.5 mM and a k(cat) at 0.033 s(-1). After CBO was incubated with freshly isolated mouse erythrocytes, globin dimers were detected using SDS-PAGE and silver staining, providing evidence that CBO can act as a protein cross-linking agent. Collectively, the results provide clear evidence for CHB bioactivation by ADH and rat liver cytosol to yield CBO. The bifunctional alkylating ability of CBO suggests that it may play a role in BD toxicity and/or carcinogenicity.
Collapse
Affiliation(s)
- Adnan A Elfarra
- Department of Comparative Biosciences and the Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | |
Collapse
|
18
|
Cho SH, Guengerich FP. Conjugation of butadiene diepoxide with glutathione yields DNA adducts in vitro and in vivo. Chem Res Toxicol 2012; 25:706-12. [PMID: 22181695 DOI: 10.1021/tx200471x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
1,2,3,4-Diepoxybutane (DEB) is reported to be the most potent mutagenic metabolite of 1,3-butadiene, an important industrial chemical and environmental pollutant. DEB is capable of inducing the formation of monoalkylated DNA adducts and DNA-DNA and DNA-protein cross-links. We previously reported that DEB forms a conjugate with glutathione (GSH) and that the conjugate is considerably more mutagenic than several other butadiene-derived epoxides, including DEB, in the base pair tester strain Salmonella typhimurium TA1535 [Cho et al. (2010) Chem. Res. Toxicol. 23, 1544-1546]. In the present study, we determined steady-state kinetic parameters of the conjugation of the three DEB stereoisomers-R,R, S,S, and meso (all formed by butadiene oxidation)-with GSH by six GSH transferases. Only small differences (<3-fold) were found in the catalytic efficiency of conjugate formation (k(cat)/K(m)) with all three DEB stereoisomers and the six GSH transferases. The three stereochemical DEB-GSH conjugates had similar mutagenicity. Six DNA adducts (N(3)-adenyl, N(6)-adenyl, N(7)-guanyl, N(1)-guanyl, N(4)-cytidyl, and N(3)-thymidyl) were identified in the reactions of DEB-GSH conjugate with nucleosides and calf thymus DNA using LC-MS and UV and NMR spectroscopy. N(6)-Adenyl and N(7)-guanyl GSH adducts were identified and quantitated in vivo in the livers of mice and rats treated with DEB ip. These results indicate that such DNA adducts are formed from the DEB-GSH conjugate, are mutagenic regardless of sterochemistry, and are therefore expected to contribute to the carcinogenicity of DEB.
Collapse
Affiliation(s)
- Sung-Hee Cho
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, Tennessee 37232-0146, USA
| | | |
Collapse
|
19
|
Wen Y, Zhang PP, An J, Yu YX, Wu MH, Sheng GY, Fu JM, Zhang XY. Diepoxybutane induces the formation of DNA-DNA rather than DNA-protein cross-links, and single-strand breaks and alkali-labile sites in human hepatocyte L02 cells. Mutat Res 2011; 716:84-91. [PMID: 21893073 DOI: 10.1016/j.mrfmmm.2011.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 08/10/2011] [Accepted: 08/22/2011] [Indexed: 05/18/2023]
Abstract
1,3-Butadiene (BD) is an air pollutant and a known carcinogen. 1,2,3,4-Diepoxybutane (DEB), one of the major in vivo metabolites of BD, is considered the ultimate culprit of BD mutagenicity/carcinogenicity. DEB is a bifunctional alkylating agent, being capable of inducing the formation of monoalkylated DNA adducts and DNA cross-links, including DNA-DNA and DNA-protein cross-links (DPC). In the present study, we investigated DEB-caused DNA cross-links and breaks in human hepatocyte L02 cells using comet assay. With alkaline comet assay, it was observed that DNA migration increased with the increase of DEB concentration at lower concentrations (10-200μM); however, at higher concentrations (200-1000μM), DNA migration decreased with the increase of DEB concentration. This result indicated the presence of cross-links at >200μM, which was confirmed by the co-treatment experiments using the second genotoxic agents, tert-butyl hydroperoxide and methyl methanesulfonate. At 200μM, which appeared as a threshold, the DNA migration-retarding effect of cross-links was just observable by the co-treatment experiments. At <200μM, the effect of cross-links was too weak to be detected. The DEB-induced cross-links were determined to be DNA-DNA ones rather than DPC through incubating the liberated DNA with proteinase K prior to unwinding and electrophoresis. However, at the highest DEB concentration tested (1000μM), a small proportion of DPC could be formed. In addition, the experiments using neutral and weakly alkaline comet assays showed that DEB did not cause double-strand breaks, but did induce single-strand breaks (SSB) and alkali-labile sites (ALS). Since SSB and ALS are repaired more rapidly than cross-links, the results suggested that DNA-DNA cross-links, rather than DPC, were probably responsible for mutagenicity/carcinogenicity of DEB.
Collapse
Affiliation(s)
- Ying Wen
- Institute of Environmental Pollution and Health, Shanghai University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Ponte F, Carvalho F, Porto B. Protective effect of acetyl-l-carnitine and α-lipoic acid against the acute toxicity of diepoxybutane to human lymphocytes. Toxicology 2011; 289:52-58. [PMID: 21807063 DOI: 10.1016/j.tox.2011.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 07/15/2011] [Accepted: 07/16/2011] [Indexed: 12/21/2022]
Abstract
The biotransformation and oxidative stress may contribute to 1,2:3,4-diepoxybutane (DEB)-induced toxicity to human lymphocytes of Fanconi Anemia (FA) patients. Thus, the identification of putative inhibitors of bioactivation, as well as the determination of the protective role of oxidant defenses, on DEB-induced toxicity, can help to understand what is failing in FA cells. In the present work we studied the contribution of several biochemical pathways for DEB-induced acute toxicity in human lymphocyte suspensions, by using inhibitors of epoxide hydrolases, inhibitors of protective enzymes as glutathione S-transferase and catalase, the depletion of glutathione (GSH), and the inhibition of protein synthesis; and a variety of putative protective compounds, including antioxidants, and mitochondrial protective agents. The present study reports two novel findings: (i) it was clearly evidenced, for the first time, that the acute exposure of freshly isolated human lymphocytes to DEB results in severe GSH depletion and loss of ATP, followed by cell death; (ii) acetyl-l-carnitine elicits a significant protective effect on DEB induced toxicity, which was potentiated by α-lipoic acid. Collectively, these findings contribute to increase our knowledge of DEB-induce toxicity and will be very useful when applied in studies with lymphocytes from FA patients, in order to find out a protective agent against spontaneous and DEB-induced chromosome instability.
Collapse
Affiliation(s)
- Filipa Ponte
- REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Anibal Cunha, 164, 4099-030 Porto, Portugal.
| | | | | |
Collapse
|
21
|
Pegg AE. Multifaceted roles of alkyltransferase and related proteins in DNA repair, DNA damage, resistance to chemotherapy, and research tools. Chem Res Toxicol 2011; 24:618-39. [PMID: 21466232 DOI: 10.1021/tx200031q] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
O(6)-Alkylguanine-DNA alkyltransferase (AGT) is a widely distributed, unique DNA repair protein that acts as a single agent to directly remove alkyl groups located on the O(6)-position of guanine from DNA restoring the DNA in one step. The protein acts only once, and its alkylated form is degraded rapidly. It is a major factor in counteracting the mutagenic, carcinogenic, and cytotoxic effects of agents that form such adducts including N-nitroso-compounds and a number of cancer chemotherapeutics. This review describes the structure, function, and mechanism of action of AGTs and of a family of related alkyltransferase-like proteins, which do not act alone to repair O(6)-alkylguanines in DNA but link repair to other pathways. The paradoxical ability of AGTs to stimulate the DNA-damaging ability of dihaloalkanes and other bis-electrophiles via the formation of AGT-DNA cross-links is also described. Other important properties of AGTs include the ability to provide resistance to cancer therapeutic alkylating agents, and the availability of AGT inhibitors such as O(6)-benzylguanine that might overcome this resistance is discussed. Finally, the properties of fusion proteins in which AGT sequences are linked to other proteins are outlined. Such proteins occur naturally, and synthetic variants engineered to react specifically with derivatives of O(6)-benzylguanine are the basis of a valuable research technique for tagging proteins with specific reagents.
Collapse
Affiliation(s)
- Anthony E Pegg
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine , Pennsylvania 17033, United States.
| |
Collapse
|
22
|
Michaelson-Richie ED, Loeber RL, Codreanu SG, Ming X, Liebler DC, Campbell C, Tretyakova NY. DNA-protein cross-linking by 1,2,3,4-diepoxybutane. J Proteome Res 2011; 9:4356-67. [PMID: 20666492 DOI: 10.1021/pr1000835] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
1,2,3,4-diepoxybutane (DEB) is a strongly genotoxic diepoxide hypothesized to be the ultimate carcinogenic metabolite of the common industrial chemical and environmental carcinogen 1,3-butadiene. DEB is a bis-electrophile capable of cross-linking cellular biomolecules to form DNA-DNA and DNA-protein cross-links (DPCs), which are thought to play a central role in its biological activity. Previous studies with recombinant proteins have shown that the biological outcomes of DEB-induced DPCs are strongly influenced by protein identities. The present work combines affinity capture methodology with mass spectrometry-based proteomics and immunological detection to identify the proteins that form DPCs in nuclear extracts from human cervical carcinoma (HeLa) cells. We identified 39 human proteins that form covalent DPCs in the presence of DEB. DNA-protein cross-linking efficiency following treatment with 25 mM DEB was 2-12%, depending on protein identity. High-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI+-MS/MS) analysis of the total proteolytic digests of cross-linked proteins revealed the presence of 1-(S-cysteinyl)-4-(guan-7-yl)-2,3-butanediol conjugates, suggesting that DEB forms DPCs between cysteine thiols within proteins and the N-7 guanine positions within DNA.
Collapse
Affiliation(s)
- Erin D Michaelson-Richie
- Department of Medicinal Chemistry and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Hou WR, Hou YL, Du YJ, Zhang T, Hao YZ. cDNA, genomic sequence cloning and overexpression of glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH) from the Giant Panda. Mol Biol 2010. [DOI: 10.1134/s0026893310020044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Ishii T, Ishikawa M, Miyoshi N, Yasunaga M, Akagawa M, Uchida K, Nakamura Y. Catechol Type Polyphenol Is a Potential Modifier of Protein Sulfhydryls: Development and Application of a New Probe for Understanding the Dietary Polyphenol Actions. Chem Res Toxicol 2009; 22:1689-98. [DOI: 10.1021/tx900148k] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Takeshi Ishii
- Laboratory of Food and Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan, Department of Food and Nutritional Sciences, and Global COE Program, University of Shizuoka, Shizuoka 422-8526, Japan, Department of Biological Chemistry, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan, and Department of Biofunctional Chemistry, Graduate School of Natural Science and Technology
| | - Miki Ishikawa
- Laboratory of Food and Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan, Department of Food and Nutritional Sciences, and Global COE Program, University of Shizuoka, Shizuoka 422-8526, Japan, Department of Biological Chemistry, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan, and Department of Biofunctional Chemistry, Graduate School of Natural Science and Technology
| | - Noriyuki Miyoshi
- Laboratory of Food and Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan, Department of Food and Nutritional Sciences, and Global COE Program, University of Shizuoka, Shizuoka 422-8526, Japan, Department of Biological Chemistry, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan, and Department of Biofunctional Chemistry, Graduate School of Natural Science and Technology
| | - Mayuko Yasunaga
- Laboratory of Food and Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan, Department of Food and Nutritional Sciences, and Global COE Program, University of Shizuoka, Shizuoka 422-8526, Japan, Department of Biological Chemistry, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan, and Department of Biofunctional Chemistry, Graduate School of Natural Science and Technology
| | - Mitsugu Akagawa
- Laboratory of Food and Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan, Department of Food and Nutritional Sciences, and Global COE Program, University of Shizuoka, Shizuoka 422-8526, Japan, Department of Biological Chemistry, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan, and Department of Biofunctional Chemistry, Graduate School of Natural Science and Technology
| | - Koji Uchida
- Laboratory of Food and Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan, Department of Food and Nutritional Sciences, and Global COE Program, University of Shizuoka, Shizuoka 422-8526, Japan, Department of Biological Chemistry, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan, and Department of Biofunctional Chemistry, Graduate School of Natural Science and Technology
| | - Yoshimasa Nakamura
- Laboratory of Food and Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan, Department of Food and Nutritional Sciences, and Global COE Program, University of Shizuoka, Shizuoka 422-8526, Japan, Department of Biological Chemistry, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan, and Department of Biofunctional Chemistry, Graduate School of Natural Science and Technology
| |
Collapse
|
25
|
Loecken EM, Dasari S, Hill S, Tabb DL, Guengerich FP. The bis-electrophile diepoxybutane cross-links DNA to human histones but does not result in enhanced mutagenesis in recombinant systems. Chem Res Toxicol 2009; 22:1069-76. [PMID: 19364102 PMCID: PMC2696559 DOI: 10.1021/tx900037u] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1,2-Dibromoethane and 1,3-butadiene are cancer suspects present in the environment and have been used widely in industry. The mutagenic properties of 1,2-dibromoethane and the 1,3-butadiene oxidation product diepoxybutane are thought to be related to the bis-electrophilic character of these chemicals. The discovery that overexpression of O(6)-alkylguanine alkyltransferase (AGT) enhances bis-electrophile-induced mutagenesis prompted a search for other proteins that may act by a similar mechanism. A human liver screen for nuclear proteins that cross-link with DNA in the presence of 1,2-dibromoethane identified histones H2b and H3 as candidate proteins. Treatment of isolated histones H2b and H3 with diepoxybutane resulted in DNA-protein cross-links and produced protein adducts, and DNA-histone H2b cross-links were identified (immunochemically) in Escherichia coli cells expressing histone H2b. However, heterologous expression of histone H2b in E. coli failed to enhance bis-electrophile-induced mutagenesis. These results are similar to those found with the cross-link candidate glyceraldehyde 3-phosphate dehydrogenase (GAPDH) [ Loecken , E. M. and Guengerich , F. P. ( 2008 ) Chem. Res. Toxicol. 21 , 453 - 458 ], but in contrast to GAPDH, histone H2b bound DNA with even higher affinity than AGT. The extent of DNA cross-linking of isolated histone H2b was similar to that of AGT, suggesting that differences in postcross-linking events explain the difference in mutagenesis.
Collapse
Affiliation(s)
| | | | - Salisha Hill
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232−0146 and Department of Biomedical Informatics, and the Proteomics Laboratory of the Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | | | - F. Peter Guengerich
- Address correspondence to: Prof. F. Peter Guengerich Department of Biochemistry and Center in Molecular Toxicology Vanderbilt University School of Medicine 638 Robinson Research Building 2200 Pierce Avenue Nashville, Tennessee 37232−0146 Telephone: (615) 322−2261 FAX: (615) 322−3141 E-mail:
| |
Collapse
|
26
|
Kalapila AG, Loktionova NA, Pegg AE. Alkyltransferase-mediated toxicity of 1,3-butadiene diepoxide. Chem Res Toxicol 2008; 21:1851-61. [PMID: 18712882 DOI: 10.1021/tx800178t] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human O(6)-alkylguanine-DNA alkyltransferase (hAGT) expression increases mutations and cytotoxicity following exposure to 1,3-butadiene diepoxide (BDO), and hAGT-DNA cross-links are formed in the presence of BDO. We have used hAGT mutants to investigate the mechanism of cross-link formation and genotoxicity. Formation of a hAGT-DNA conjugate in vitro was observed with C145S and C145A mutant proteins but was considerably diminished with the C145A/C150S double mutant confirming that cross-linking primarily involves either of these two cysteine residues, which are located in the active site pocket of the protein. Cross-link formation by BDO occurred both via (a) an initial reaction of BDO with hAGT followed by attack of the reactive hAGT complex on DNA, and (b) the initial reaction of BDO with DNA followed by a reaction between hAGT and the DNA adduct. These results differ from those with 1,2-dibromoethane (DBE) where Cys(145) is the only site of attachment and pathway (b) does not occur. The complex formed between hAGT at Cys(145) and BDO was very unstable in aqueous solution. However, the BDO-hAGT complex at Cys(150) exhibited stability for more than 1 h. The effect of hAGT and mutants on BDO-induced genotoxicity was studied in E. coli using the forward assay to rifampicin resistance. Both mutations and cell killing were greatly increased by wild type hAGT, and there was a smaller but significant effect with the C145A mutant. The R128A mutant and R128A/C145A and C145A/C150S double mutants were ineffective, supporting the hypothesis that the formation of hAGT-DNA cross-links is responsible for the enhanced genotoxicity detected in this biological system. In the absence of hAGT, there were equal proportions of G:C to A:T transitions, G:C to T:A transversions, and A:T to T:A transversions. Wild type hAGT expression yielded significantly greater G:C to A:T and A:T to G:C transitions, whereas C145A mutant expression resulted in more transitions and transversions at A:T base-pairs.
Collapse
Affiliation(s)
- Aley G Kalapila
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|