1
|
Bombyx mori β1,4-N-acetylgalactosaminyltransferase possesses relaxed donor substrate specificity in N-glycan synthesis. Sci Rep 2021; 11:5505. [PMID: 33750826 PMCID: PMC7943597 DOI: 10.1038/s41598-021-84771-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
N-Glycosylation is one of the most important post-translational protein modifications in eukaryotic cells. Although more than 200 N-glycogenes contributing to N-glycan biosynthesis have been identified and characterized, the information on insect N-glycosylation is still limited. Here, focusing on insect N-glycosylation, we characterized Bombyx mori N-acetylgalactosaminyltransferase (BmGalNAcT) participating in complex N-glycan biosynthesis in mammals. BmGalNAcT localized at the Golgi and was ubiquitously expressed in every organ and in the developmental stage of the middle silk gland of fifth instar larvae. Analysis of recombinant BmGalNAcT expressed in Sf9 cells showed that BmGalNAcT transferred GalNAc to non-reducing terminals of GlcNAcβ1,2-R with β1,4-linkage. In addition, BmGalNAcT mediated transfer of galactose and N-acetylglucosamine residues but not transfer of either glucose or glucuronic acid from the UDP-sugar donor substrate to the N-glycan. Despite this tri-functional sugar transfer activity, however, most of the endogenous glycoproteins of insect cells were present without GalNAc, Gal, or GlcNAc residues at the non-reducing terminal of β1,2-GlcNAc residue(s). Moreover, overexpression of BmGalNAcT in insect cells had no effect on N-acetylgalactosaminylation, galactosylation, or N-acetylglucosaminylation of the major N-glycan during biosynthesis. These results suggested that B. mori has a novel multifunctional glycosyltransferase, but the N-glycosylation is highly and strictly regulated by the endogenous N-glycosylation machineries.
Collapse
|
2
|
Li T, Li M, Hou L, Guo Y, Wang L, Sun G, Chen L. Identification and characterization of a core fucosidase from the bacterium Elizabethkingia meningoseptica. J Biol Chem 2017; 293:1243-1258. [PMID: 29196602 DOI: 10.1074/jbc.m117.804252] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 11/28/2017] [Indexed: 12/31/2022] Open
Abstract
All reported α-l-fucosidases catalyze the removal of nonreducing terminal l-fucoses from oligosaccharides or their conjugates, while having no capacity to hydrolyze core fucoses in glycoproteins directly. Here, we identified an α-fucosidase from the bacterium Elizabethkingia meningoseptica with catalytic activity against core α-1,3-fucosylated substrates, and we named it core fucosidase I (cFase I). Using site-specific mutational analysis, we found that three acidic residues (Asp-242, Glu-302, and Glu-315) in the predicted active pocket are critical for cFase I activity, with Asp-242 and Glu-315 acting as a pair of classic nucleophile and acid/base residues and Glu-302 acting in an as yet undefined role. These findings suggest a catalytic mechanism for cFase I that is different from known α-fucosidase catalytic models. In summary, cFase I exhibits glycosidase activity that removes core α-1,3-fucoses from substrates, suggesting cFase I as a new tool for glycobiology, especially for studies of proteins with core fucosylation.
Collapse
Affiliation(s)
- Tiansheng Li
- From the Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of the Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032 and
| | - Mengjie Li
- From the Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of the Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032 and
| | - Linlin Hou
- From the Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of the Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032 and
| | - Yameng Guo
- From the Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of the Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032 and
| | - Lei Wang
- From the Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of the Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032 and
| | - Guiqin Sun
- the College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Li Chen
- From the Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of the Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032 and
| |
Collapse
|
3
|
Calderon AD, Li L, Wang PG. FUT8: from biochemistry to synthesis of core-fucosylated N-glycans. PURE APPL CHEM 2017; 89:911-920. [DOI: 10.1515/pac-2016-0923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Abstract
Glycosylation is a major posttranslational modification of proteins. Modification in structure on N-glycans leads to many diseases. One of such modifications is core α-1,6 fucosylation, which is only found in eukaryotes. For this reason, lots of research has been done on approaches to synthesize core-fucosylated N-glycans both chemically and enzymatically, in order to have well defined structures that can be used as probes for glycan analysis and identifying functions of glycan-binding proteins. This review will focus on FUT8, the enzyme responsible for core fucosylation in mammals and the strategies that have been developed for the synthesis of core fucosylated N-glycans have been synthesized so far.
Collapse
Affiliation(s)
- Angie D. Calderon
- Department of Chemistry and Center for Diagnostics and Therapeutics , Georgia State University , Atlanta , GA 30303 , USA
| | - Lei Li
- Department of Chemistry and Center for Diagnostics and Therapeutics , Georgia State University , Atlanta , GA 30303 , USA
| | - Peng G. Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics , Georgia State University , Atlanta , GA 30303 , USA
| |
Collapse
|
4
|
Walski T, De Schutter K, Van Damme EJM, Smagghe G. Diversity and functions of protein glycosylation in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 83:21-34. [PMID: 28232040 DOI: 10.1016/j.ibmb.2017.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 01/27/2017] [Accepted: 02/10/2017] [Indexed: 05/28/2023]
Abstract
The majority of proteins is modified with carbohydrate structures. This modification, called glycosylation, was shown to be crucial for protein folding, stability and subcellular location, as well as protein-protein interactions, recognition and signaling. Protein glycosylation is involved in multiple physiological processes, including embryonic development, growth, circadian rhythms, cell attachment as well as maintenance of organ structure, immunity and fertility. Although the general principles of glycosylation are similar among eukaryotic organisms, insects synthesize a distinct repertoire of glycan structures compared to plants and vertebrates. Consequently, a number of unique insect glycans mediate functions specific to this class of invertebrates. For instance, the core α1,3-fucosylation of N-glycans is absent in vertebrates, while in insects this modification is crucial for the development of wings and the nervous system. At present, most of the data on insect glycobiology comes from research in Drosophila. Yet, progressively more information on the glycan structures and the importance of glycosylation in other insects like beetles, caterpillars, aphids and bees is becoming available. This review gives a summary of the current knowledge and recent progress related to glycan diversity and function(s) of protein glycosylation in insects. We focus on N- and O-glycosylation, their synthesis, physiological role(s), as well as the molecular and biochemical basis of these processes.
Collapse
Affiliation(s)
- Tomasz Walski
- Department of Crop Protection, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Kristof De Schutter
- Department of Crop Protection, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Els J M Van Damme
- Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Guy Smagghe
- Department of Crop Protection, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
5
|
Ihara H, Hanashima S, Okada T, Ito R, Yamaguchi Y, Taniguchi N, Ikeda Y. Fucosylation of chitooligosaccharides by human 1,6-fucosyltransferase requires a nonreducing terminal chitotriose unit as a minimal structure. Glycobiology 2010; 20:1021-33. [DOI: 10.1093/glycob/cwq064] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
6
|
Comparison of the N-linked glycosylation of human beta1,3-N-acetylglucosaminyltransferase 2 expressed in insect cells and silkworm larvae. J Biotechnol 2009; 143:27-33. [PMID: 19540883 DOI: 10.1016/j.jbiotec.2009.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 05/30/2009] [Accepted: 06/09/2009] [Indexed: 10/20/2022]
Abstract
N-Glycosylation of human beta1,3N-acetylglucosaminyltransferase 2 (beta3GnT2) is essential for its biological function. beta3GnT2 fused to GFP(uv) (GFP(uv)-beta3GnT2) was produced by non-virus expression systems in stably transformed insect cells and silkworm larvae using a recombinant BmNPV bacmid, and purified for analysis of N-glycosylation. The N-glycan structure of beta3GnT2 was identified by glycoamidase A digestion, labeling with 2-aminopyridine (PA), and HPLC mapping. The paucimannosidic N-glycan structure (73.2%) was predominant in stably transformed Trichoplusia ni cells. In contrast, N-glycan with Gal (21.3%) and GlcNAc (16.2%) terminal residues linked to Manalpha(1,3) branch were detected on beta3GnT2 expressed in silkworm larvae. The presence of terminal Gal and bisecting GlcNAc residues such as Galbeta1, 4GlcNAcbeta1, 2Manalpha1,3(GlcNAcbeta1,4)(Manalpha1,6)Manbeta1, 4GlcNAc is not typical structure for lepidopteran insect N-glycosylation. Although allergenic alpha1,3-fucose residues have been found in T. ni cells, only alpha1,6-fucose residues were attached to the beta3GnT2 glycan in silkworm larvae. Therefore, silkworm larvae might be a useful host for producing human glycoproteins.
Collapse
|
7
|
Kanie Y, Yamamoto-Hino M, Karino Y, Yokozawa H, Nishihara S, Ueda R, Goto S, Kanie O. Insight into the regulation of glycan synthesis in Drosophila chaoptin based on mass spectrometry. PLoS One 2009; 4:e5434. [PMID: 19415110 PMCID: PMC2672165 DOI: 10.1371/journal.pone.0005434] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 03/24/2009] [Indexed: 11/19/2022] Open
Abstract
Background A variety of N-glycans attached to protein are known to involve in many important biological functions. Endoplasmic reticulum (ER) and Golgi localized enzymes are responsible to this template-independent glycan synthesis resulting glycoforms at each asparagine residues. The regulation mechanism such glycan synthesis remains largely unknown. Methodology/Principal Findings In order to investigate the relationship between glycan structure and protein conformation, we analyzed a glycoprotein of Drosophila melanogaster, chaoptin (Chp), which is localized in photoreceptor cells and is bound to the cell membrane via a glycosylphosphatidylinositol anchor. Detailed analysis based on mass spectrometry revealed the presence of 13 N-glycosylation sites and the composition of the glycoform at each site. The synthetic pathway of glycans was speculated from the observed glycan structures and the composition at each N-glycosylation site, where the presence of novel routes were suggested. The distribution of glycoforms on a Chp polypeptide suggested that various processing enzymes act on the exterior of Chp in the Golgi apparatus, although virtually no enzyme can gain access to the interior of the horseshoe-shaped scaffold, hence explaining the presence of longer glycans within the interior. Furthermore, analysis of Chp from a mutant (RNAi against dolichyl-phosphate α-d-mannosyltransferase), which affects N-glycan synthesis in the ER, revealed that truncated glycan structures were processed. As a result, the distribution of glycoforms was affected for the high-mannose-type glycans only, whereas other types of glycans remained similar to those observed in the control and wild-type. Conclusions/Significance These results indicate that glycan processing depends largely on the backbone structure of the parent polypeptide. The information we obtained can be applied to other members of the LRR family of proteins.
Collapse
Affiliation(s)
- Yoshimi Kanie
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), Machida, Tokyo, Japan
| | - Miki Yamamoto-Hino
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), Machida, Tokyo, Japan
| | - Yayoi Karino
- Mitsubishi Chemical Group Science and Technology Research Center Inc., Yokohama, Japan
| | - Hiroki Yokozawa
- Mitsubishi Chemical Group Science and Technology Research Center Inc., Yokohama, Japan
| | - Shoko Nishihara
- Division of Cell Biology, Soka University, Hachioji, Tokyo, Japan
| | - Ryu Ueda
- Invertebrate Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Satoshi Goto
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), Machida, Tokyo, Japan
| | - Osamu Kanie
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), Machida, Tokyo, Japan
- * E-mail:
| |
Collapse
|
8
|
Tomiya N. Humanization of recombinant glycoproteins expressed in insect cells. TRENDS GLYCOSCI GLYC 2009. [DOI: 10.4052/tigg.21.71] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Abstract
One of the major advantages of the baculovirus-insect cell system is that it is a eukaryotic system that can provide posttranslational modifications, such as protein N-glycosylation. However, this is a vastly oversimplified view, which reflects a poor understanding of insect glycobiology. In general, insect protein glycosylation pathways are far simpler than the corresponding pathways of higher eukaryotes. Paradoxically, it is increasingly clear that various insects encode and can express more elaborate protein glycosylation functions in restricted fashion. Thus, the information gathered in a wide variety of studies on insect protein N-glycosylation during the past 25 years has provided what now appears to be a reasonably detailed, comprehensive, and accurate understanding of the protein N-glycosylation capabilities of the baculovirus-insect cell system. In this chapter, we discuss the models of insect protein N-glycosylation that have emerged from these studies and how this impacts the use of baculovirus-insect cell systems for recombinant glycoprotein production. We also discuss the use of these models as baselines for metabolic engineering efforts leading to the development of new baculovirus-insect cell systems with humanized protein N-glycosylation pathways, which can be used to produce more authentic recombinant N-glycoproteins for drug development and other biomedical applications.
Collapse
Affiliation(s)
- Xianzong Shi
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071
- Chesapeake-PERL, Inc. 8510A Corridor Rd, Savage, MD 20763, USA
| | - Donald L. Jarvis
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071
| |
Collapse
|
10
|
Gutternigg M, Bürgmayr S, Pöltl G, Rudolf J, Staudacher E. Neutral N-glycan patterns of the gastropods Limax maximus, Cepaea hortensis, Planorbarius corneus, Arianta arbustorum and Achatina fulica. Glycoconj J 2007; 24:475-89. [PMID: 17516162 DOI: 10.1007/s10719-007-9040-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Revised: 02/27/2007] [Accepted: 04/11/2007] [Indexed: 11/28/2022]
Abstract
The N-glycosylation potentials of Limax maximus, Cepaea hortensis, Planorbarius corneus, Arianta arbustorum and Achatina fulica were analysed by investigation of the N-glycan structures of the skin and viscera glycoproteins by a combination of HPLC and mass-spectrometry methods. It is one of the first steps to enlarge the knowledge on the glycosylation abilities of gastropods, which may help to establish new cell culture systems, to uncover new means for pest control for some species, and to identify carbohydrate-epitopes which may be relevant for immune response. All snails analysed contained mainly oligomannosidic and small paucimannosidic structures, often terminated with 3-O-methylated mannoses. The truncated structures carried modifications by beta1-2-linked xylose to the beta-mannose residue, and/or an alpha-fucosylation, mainly alpha1,6-linked to the innermost N-acetylglucosaminyl residue of the core. Many of these structures were missing the terminal N-acetylglucosamine, which has been shown to be a prerequisite for processing to complex N-glycans in the Golgi. In some species (Planorbarius corneus and Achatina fulica) traces of large structures, terminated by 3-O-methylated galactoses and carrying xylose and/or fucose residues, were also detected. In Planorbarius viscera low amounts of terminal alpha1-2-fucosylation were determined. Combining these results, gastropods seem to be capable to produce all kinds of structures ranging from those typical in mammals through to structures similar to those found in plants, insects or nematodes. The detailed knowledge of this very complex glycosylation system of the gastropods will be a valuable tool to understand the principle rules of glycosylation in all organisms.
Collapse
Affiliation(s)
- Martin Gutternigg
- Department of Chemistry, University of Natural Resources and Applied Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | | | | | | | | |
Collapse
|
11
|
Ihara H, Ikeda Y, Toma S, Wang X, Suzuki T, Gu J, Miyoshi E, Tsukihara T, Honke K, Matsumoto A, Nakagawa A, Taniguchi N. Crystal structure of mammalian α1,6-fucosyltransferase, FUT8. Glycobiology 2006; 17:455-66. [PMID: 17172260 DOI: 10.1093/glycob/cwl079] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mammalian alpha1,6-fucosyltransferase (FUT8) catalyses the transfer of a fucose residue from a donor substrate, guanosine 5'-diphosphate-beta-L-fucose to the reducing terminal N-acetylglucosamine (GlcNAc) of the core structure of an asparagine-linked oligosaccharide. Alpha1,6-fucosylation, also referred to as core fucosylation, plays an essential role in various pathophysiological events. Our group reported that FUT8 null mice showed severe growth retardation and emphysema-like lung-destruction as a result of the dysfunction of epidermal growth factor and transforming growth factor-beta receptors. To elucidate the molecular basis of FUT8 with respect to pathophysiology, the crystal structure of human FUT8 was determined at 2.6 A resolution. The overall structure of FUT8 was found to consist of three domains: an N-terminal coiled-coil domain, a catalytic domain, and a C-terminal SH3 domain. The catalytic region appears to be similar to GT-B glycosyltransferases rather than GT-A. The C-terminal part of the catalytic domain of FUT8 includes a Rossmann fold with three regions that are conserved in alpha1,6-, alpha1,2-, and protein O-fucosyltransferases. The SH3 domain of FUT8 is similar to other SH3 domain-containing proteins, although the significance of this domain remains to be elucidated. The present findings of FUT8 suggest that the conserved residues in the three conserved regions participate in the Rossmann fold and act as the donor binding site, or in catalysis, thus playing key roles in the fucose-transferring reaction.
Collapse
Affiliation(s)
- Hideyuki Ihara
- Department of Disease Glycomics, Research Institute for Microbial Diseases, Osaka University, Taniguchi Research Group, 4th Floor, Center for Advanced Science & Innovation, Osaka University, 2-1, Yamadaoka Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Harrison RL, Jarvis DL. Protein N-glycosylation in the baculovirus-insect cell expression system and engineering of insect cells to produce "mammalianized" recombinant glycoproteins. Adv Virus Res 2006; 68:159-91. [PMID: 16997012 DOI: 10.1016/s0065-3527(06)68005-6] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Baculovirus expression vectors are frequently used to express glycoproteins, a subclass of proteins that includes many products with therapeutic value. The insect cells that serve as hosts for baculovirus vector infection are capable of transferring oligosaccharide side chains (glycans) to the same sites in recombinant proteins as those that are used for native protein N-glycosylation in mammalian cells. However, while mammalian cells produce compositionally more complex N-glycans containing terminal sialic acids, insect cells mostly produce simpler N-glycans with terminal mannose residues. This structural difference between insect and mammalian N-glycans compromises the in vivo bioactivity of glycoproteins and can potentially induce allergenic reactions in humans. These features obviously compromise the biomedical value of recombinant glycoproteins produced in the baculovirus expression vector system. Thus, much effort has been expended to characterize the potential and limits of N-glycosylation in insect cell systems. Discoveries from this research have led to the engineering of insect N-glycosylation pathways for assembly of mammalian-style glycans on baculovirus-expressed glycoproteins. This chapter summarizes our knowledge of insect N-glycosylation pathways and describes efforts to engineer baculovirus vectors and insect cell lines to overcome the limits of insect cell glycosylation. In addition, we consider other possible strategies for improving glycosylation in insect cells.
Collapse
Affiliation(s)
- Robert L Harrison
- Insect Biocontrol Laboratory, USDA Agricultural Research Service, Plant Sciences Institute, 10300 Baltimore Avenue, Beltsville, Maryland 20705, USA
| | | |
Collapse
|
13
|
Abstract
Fucosylated carbohydrate structures are involved in a variety of biological and pathological processes in eukaryotic organisms including tissue development, angiogenesis, fertilization, cell adhesion, inflammation, and tumor metastasis. In contrast, fucosylation appears less common in prokaryotic organisms and has been suggested to be involved in molecular mimicry, adhesion, colonization, and modulating the host immune response. Fucosyltransferases (FucTs), present in both eukaryotic and prokaryotic organisms, are the enzymes responsible for the catalysis of fucose transfer from donor guanosine-diphosphate fucose to various acceptor molecules including oligosaccharides, glycoproteins, and glycolipids. To date, several subfamilies of mammalian FucTs have been well characterized; these enzymes are therefore delineated and used as models. Non-mammalian FucTs that possess different domain construction or display distinctive acceptor substrate specificity are highlighted. It is noteworthy that the glycoconjugates from plants and schistosomes contain some unusual fucose linkages, suggesting the presence of novel FucT subfamilies as yet to be characterized. Despite the very low sequence homology, striking functional similarity is exhibited between mammalian and Helicobacter pylori alpha1,3/4 FucTs, implying that these enzymes likely share a conserved mechanistic and structural basis for fucose transfer; such conserved functional features might also exist when comparing other FucT subfamilies from different origins. Fucosyltranferases are promising tools used in synthesis of fucosylated oligosaccharides and glycoconjugates, which show great potential in the treatment of infectious and inflammatory diseases and tumor metastasis.
Collapse
Affiliation(s)
- Bing Ma
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | |
Collapse
|
14
|
Sarkar M, Leventis PA, Silvescu CI, Reinhold VN, Schachter H, Boulianne GL. Null Mutations in Drosophila N-Acetylglucosaminyltransferase I Produce Defects in Locomotion and a Reduced Life Span. J Biol Chem 2006; 281:12776-85. [PMID: 16522637 DOI: 10.1074/jbc.m512769200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UDP-GlcNAc:alpha3-D-mannoside beta1,2-N-acetylglucosaminyltransferase I (encoded by Mgat1) controls the synthesis of hybrid, complex, and paucimannose N-glycans. Mice make hybrid and complex N-glycans but little or no paucimannose N-glycans. In contrast, Drosophila melanogaster and Caenorhabditis elegans make paucimannose N-glycans but little or no hybrid or complex N-glycans. To determine the functional requirement for beta1,2-N-acetylglucosaminyltransferase I in Drosophila, we generated null mutations by imprecise excision of a nearby transposable element. Extracts from Mgat1(1)/Mgat1(1) null mutants showed no beta1,2-N-acetylglucosaminyltransferase I enzyme activity. Moreover, mass spectrometric analysis of these extracts showed dramatic changes in N-glycans compatible with lack of beta1,2-N-acetylglucosaminyltransferase I activity. Interestingly, Mgat1(1)/Mgat1(1) null mutants are viable but exhibit pronounced defects in adult locomotory activity when compared with Mgat1(1)/CyO-GFP heterozygotes or wild type flies. In addition, in null mutants males are sterile and have a severely reduced mean and maximum life span. Microscopic examination of mutant adult fly brains showed the presence of fused beta lobes. The removal of both maternal and zygotic Mgat1 also gave rise to embryos that no longer express the horseradish peroxidase antigen within the central nervous system. Taken together, the data indicate that beta1,2-N-acetylglucosaminyltransferase I-dependent N-glycans are required for locomotory activity, life span, and brain development in Drosophila.
Collapse
Affiliation(s)
- Mohan Sarkar
- Program in Structural Biology and Biochemistry, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
15
|
Léonard R, Rendic D, Rabouille C, Wilson IBH, Préat T, Altmann F. The Drosophila fused lobes Gene Encodes an N-Acetylglucosaminidase Involved in N-Glycan Processing. J Biol Chem 2006; 281:4867-75. [PMID: 16339150 DOI: 10.1074/jbc.m511023200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most processed, e.g. fucosylated, N-glycans on insect glycoproteins terminate in mannose, yet the relevant modifying enzymes require the prior action of N-acetylglucosaminyltransferase I. This led to the hypothesis that a hexosaminidase acts during the course of N-glycan maturation. To determine whether the Drosophila melanogaster genome indeed encodes such an enzyme, a cDNA corresponding to fused lobes (fdl), a putative beta-N-acetylglucosaminidase with a potential transmembrane domain, was cloned. When expressed in Pichia pastoris, the enzyme exhibited a substrate specificity similar to that previously described for a hexosaminidase activity from Sf-9 cells, i.e. it hydrolyzed exclusively the GlcNAc residue attached to the alpha1,3-linked mannose of the core pentasaccharide of N-glycans. It also hydrolyzed p-nitrophenyl-N-acetyl-beta-glucosaminide, but not chitooligosaccharides; in contrast, Drosophila HEXO1 and HEXO2 expressed in Pichia cleaved both these substrates but not N-glycans. The localization of recombinant FDL tagged with green fluorescent protein in Drosophila S2 cells by immunoelectron microscopy showed that this enzyme transits through the Golgi, is present on the plasma membrane and in multivesicular bodies, and is secreted. Finally, the N-glycans of two lines of fdl mutant flies were analyzed by mass spectrometry and reversed-phase high-performance liquid chromatography. The ratio of structures with terminal GlcNAc over those without (i.e. paucimannosidic N-glycans) was drastically increased in the fdl-deficient flies. Therefore, we conclude that the fdl gene encodes a novel hexosaminidase responsible for the occurrence of paucimannosidic N-glycans in Drosophila.
Collapse
Affiliation(s)
- Renaud Léonard
- Glycobiology Group, Department of Chemistry, University of Natural Resources and Applied Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
16
|
Ihara H, Ikeda Y, Taniguchi N. Reaction mechanism and substrate specificity for nucleotide sugar of mammalian alpha1,6-fucosyltransferase--a large-scale preparation and characterization of recombinant human FUT8. Glycobiology 2005; 16:333-42. [PMID: 16344263 DOI: 10.1093/glycob/cwj068] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
FUT8, mammalian alpha1,6-fucosyltransferase, catalyzes the transfer of a fucose residue from the donor substrate, guanosine 5'-diphosphate (GDP)-beta-L-fucose, to the reducing terminal GlcNAc of the core structure of asparagine-linked oligosaccharide via an alpha1,6-linkage. FUT8 is a typical type II membrane protein, which is localized in the Golgi apparatus. We have previously shown that two neighboring arginine residues that are conserved among alpha1,2-, alpha1,6-, and protein O-fucosyltransferases play an important role in donor substrate binding. However, details of the catalytic and reaction mechanisms and the ternary structure of FUT8 are not understood except for the substrate specificity of the acceptor. To develop a better understanding of FUT8, we established a large-scale production system for recombinant human FUT8, in which the enzyme is produced in soluble form by baculovirus-infected insect cells. Kinetic analyses and inhibition studies using derivatives of GDP-beta-L-fucose revealed that FUT8 catalyzes the reaction which depends on a rapid equilibrium random mechanism and strongly recognizes the base portion and diphosphoryl group of GDP-beta-L-fucose. These results may also be applicable to other fucosyltransferases and glycosyltransferases.
Collapse
Affiliation(s)
- Hideyuki Ihara
- Department of Biochemistry, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | | | | |
Collapse
|
17
|
Tomiya N, Narang S, Lee YC, Betenbaugh MJ. Comparing N-glycan processing in mammalian cell lines to native and engineered lepidopteran insect cell lines. Glycoconj J 2005; 21:343-60. [PMID: 15514482 DOI: 10.1023/b:glyc.0000046275.28315.87] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the past decades, a large number of studies in mammalian cells have revealed that processing of glycoproteins is compartmentalized into several subcellular organelles that process N-glycans to generate complex-type oligosaccharides with terminal N -acetlyneuraminic acid. Recent studies also suggested that processing of N-glycans in insect cells appear to follow a similar initial pathway but diverge at subsequent processing steps. N-glycans from insect cell lines are not usually processed to terminally sialylated complex-type structures but are instead modified to paucimannosidic or oligomannose structures. These differences in processing between insect cells and mammalian cells are due to insufficient expression of multiple processing enzymes including glycosyltransferases responsible for generating complex-type structures and metabolic enzymes involved in generating appropriate sugar nucleotides. Recent genomics studies suggest that insects themselves may include many of these complex transferases and metabolic enzymes at certain developmental stages but expression is lost or limited in most lines derived for cell culture. In addition, insect cells include an N -acetylglucosaminidase that removes a terminal N -acetylglucosamine from the N-glycan. The innermost N -acetylglucosamine residue attached to asparagine residue is also modified with alpha(1,3)-linked fucose, a potential allergenic epitope, in some insect cells. In spite of these limitations in N-glycosylation, insect cells have been widely used to express various recombinant proteins with the baculovirus expression vector system, taking advantage of their safety, ease of use, and high productivity. Recently, genetic engineering techniques have been applied successfully to insect cells in order to enable them to produce glycoproteins which include complex-type N-glycans. Modifications to insect N-glycan processing include the expression of missing glycosyltransferases and inclusion of the metabolic enzymes responsible for generating the essential donor sugar nucleotide, CMP- N -acetylneuraminic acid, required for sialylation. Inhibition of N -acetylglucosaminidase has also been applied to alter N-glycan processing in insect cells. This review summarizes current knowledge on N-glycan processing in lepidopteran insect cell lines, and recent progress in glycoengineering lepidopteran insect cells to produce glycoproteins containing complex N-glycans.
Collapse
Affiliation(s)
- Noboru Tomiya
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA.
| | | | | | | |
Collapse
|
18
|
Paschinger K, Staudacher E, Stemmer U, Fabini G, Wilson IBH. Fucosyltransferase substrate specificity and the order of fucosylation in invertebrates. Glycobiology 2004; 15:463-74. [PMID: 15604090 DOI: 10.1093/glycob/cwi028] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Core alpha1,6-fucosylation is a conserved feature of animal N-linked oligosaccharides being present in both invertebrates and vertebrates. To prove that the enzymatic basis for this modification is also evolutionarily conserved, cDNAs encoding the catalytic regions of the predicted Caenorhabditis elegans and Drosophila melanogaster homologs of vertebrate alpha1,6-fucosyltransferases (E.C. 2.4.1.68) were engineered for expression in the yeast Pichia pastoris. Recombinant forms of both enzymes were found to display core fucosyltransferase activity as shown by a variety of methods. Unsubstituted nonreducing terminal GlcNAc residues appeared to be an obligatory feature of the substrate for the recombinant Caenorhabditis and Drosophila alpha1,6-fucosyltransferases, as well as for native Caenorhabditis and Schistosoma mansoni core alpha1,6-fucosyltransferases. On the other hand, these alpha1,6-fucosyltransferases could not act on N-glycopeptides already carrying core alpha1,3-fucose residues, whereas recombinant Drosophila and native Schistosoma core alpha1,3-fucosyltransferases were able to use core alpha1,6-fucosylated glycans as substrates. Lewis-type fucosylation was observed with native Schistosoma extracts and could take place after core alpha1,3-fucosylation, whereas prior Lewis-type fucosylation precluded the action of the Schistosoma core alpha1,3-fucosyltransferase. Overall, we conclude that the strict order of fucosylation events, previously determined for fucosyltransferases in crude extracts from insect cell lines (core alpha1,6 before core alpha1,3), also applies for recombinant Drosophila core alpha1,3- and alpha1,6-fucosyltransferases as well as for core fucosyltransferases in schistosomal egg extracts.
Collapse
Affiliation(s)
- Katharina Paschinger
- Department für Chemie der Universität für Bodenkultur, Muthgasse 18, 1190 Wien, Austria
| | | | | | | | | |
Collapse
|
19
|
Gutternigg M, Ahrer K, Grabher-Meier H, Bürgmayr S, Staudacher E. Neutral N-glycans of the gastropod Arion lusitanicus. ACTA ACUST UNITED AC 2004; 271:1348-56. [PMID: 15030485 DOI: 10.1111/j.1432-1033.2004.04045.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The neutral N-glycan structures of Arion lusitanicus (gastropod) skin, viscera and egg glycoproteins were examined after proteolytic digestion, release of the glycans from the peptides, fluorescent labelling with 2-aminopyridine and fractionation by charge, size and hydrophobicity to obtain pure glycan structures. The positions and linkages of the sugars in the glycan were analysed by two dimensional HPLC (size and hydrophobicity) and MALDI-TOF mass spectrometry before and after digestion with specific exoglycosidases. The most striking feature in the adult tissues was the high amount of oligomannosidic and small paucimannosidic glycans terminated with 3-O-methylated mannoses. The truncated structures often contained modifications of the inner core by beta1,2-linked xylose to the beta-mannose residue and/or an alpha-fucosylation (mainly alpha1,6-) of the innermost GlcNAc residue. Skin and viscera showed predominantly the same glycans, however, in different amounts. Traces of large structures carrying 3-O-methylated galactoses were also detected. The egg glycans contained mainly (approximately 75%) oligomannosidic structures and some paucimannosidic structures modified by xylose or alpha1,6-fucose, but in this case no methylation of any monosaccharide was detected. Thus, gastropods seem to be capable of producing many types of structures ranging from those typical in human to structures similar to those found in nematodes, and therefore will be a valuable model to understand the regulation of glycosylation. Furthermore, this opens the way for using this organism as a host for the production of recombinant proteins. The detailed knowledge on glycosylation also may help to identify targets for pest control.
Collapse
Affiliation(s)
- Martin Gutternigg
- Department für Chemie, Universität für Bodenkultur Wien, Vienna, Austria
| | | | | | | | | |
Collapse
|
20
|
Knight PJK, Carroll J, Ellar DJ. Analysis of glycan structures on the 120 kDa aminopeptidase N of Manduca sexta and their interactions with Bacillus thuringiensis Cry1Ac toxin. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:101-112. [PMID: 14976987 DOI: 10.1016/j.ibmb.2003.09.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The Bacillus thuringiensis Cry1Ac toxin specifically binds to a 120 kDa aminopeptidase N (APN) receptor in Manduca sexta. The binding interaction is mediated by GalNAc, presumably covalently attached to the APN as part of an undefined glycan structure. Here we detail a simple, rapid and specific chemical deglycosylation technique, applicable to glycoproteins immobilized on Western blots. We used the technique to directly and unambiguously demonstrate that carbohydrates attached to 120 kDA APN are in fact binding epitopes for Cry1Ac toxin. This technique is generally applicable to all putative Cry toxin/receptor combinations. We analyzed the various glycans on the 120 kDA APN using carbohydrate compositional analysis and lectin binding. The data indicate that in the average APN molecule, 2 of 4 possible N-glycosylation sites are occupied with fucosylated paucimannose [Man(2-3)(Fuc(1-2)GlcNAc(2)-peptide] type N-glycans. Additionally, we identified 13 probable O-glycosylation sites, 10 of which are located in the Thr/Pro rich C-terminal "stalk" region of the protein. It is likely that 5-6 of the 13 sites are occupied, probably with simple [GalNAc-peptide] type O-glycans. This O-glycosylated C-terminal stalk, being GalNAc-rich, is the most likely binding site for Cry1Ac.
Collapse
Affiliation(s)
- Peter J K Knight
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4
| | | | | |
Collapse
|
21
|
Léonard R, Costa G, Darrambide E, Lhernould S, Fleurat-Lessard P, Carlué M, Gomord V, Faye L, Maftah A. The presence of Lewis a epitopes in Arabidopsis thaliana glycoconjugates depends on an active alpha4-fucosyltransferase gene. Glycobiology 2002; 12:299-306. [PMID: 12070072 DOI: 10.1093/glycob/12.5.299] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The presence of an alpha4-fucosyltransferase in plants was first deduced from the characterization of Lewis-a glycoepitopes in some N-glycans. The first plant gene encoding an alpha4-fucosyltransferase was recently cloned in Beta vulgaris. In the present paper we provide evidence for the presence of an alpha4-fucosyltransferase in A. thaliana by measurement of this glycosyltransferase activity from a purified microsomal preparation and by immunolocalization of Le(a) epitopes on glycans N-linked to glycoproteins located to the Golgi apparatus and on the cell surface. The corresponding gene AtFT4 (AY026941) was characterized. A unique copy of this gene was found in A. thaliana genome, and a single AtFT4 transcript was revealed in leaves, in roots, and at a lower extent in flowers. The coding sequence of AtFT4 gene is interrupted by two introns spanning 465 bp and 84 bp, respectively. The putative 393-amino-acid protein (44 kDa, pI: 6.59) contains an N-terminal hydrophobic region and one potential N-glycosylation site, but AtFT4 has poor homology (less than 30%) to the other alpha3/4-fucosyltransferases except for motif II. When expressed in COS 7 cells the protein is able to transfer Fuc from GDP-Fuc to a type 1 acceptor substrate, but this transferase activity is detected only in the culture medium of transfected cells
Collapse
Affiliation(s)
- R Léonard
- Equipe de Glycobiologie et Biotechnologie (EA 3176), Institut des Sciences de la Vie et de la Santé, Université de Limoges, Faculté des Sciences, 123, Avenue Albert Thomas, 87060 Limoges, France
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Fabini G, Freilinger A, Altmann F, Wilson IB. Identification of core alpha 1,3-fucosylated glycans and cloning of the requisite fucosyltransferase cDNA from Drosophila melanogaster. Potential basis of the neural anti-horseadish peroxidase epitope. J Biol Chem 2001; 276:28058-67. [PMID: 11382750 DOI: 10.1074/jbc.m100573200] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
For many years, polyclonal antibodies raised against the plant glycoprotein horseradish peroxidase have been used to specifically stain the neural and male reproductive tissue of Drosophila melanogaster. This epitope is considered to be of carbohydrate origin, but no glycan structure from Drosophila has yet been isolated that could account for this cross-reactivity. Here we report that N-glycan core alpha1,3-linked fucose is, as judged by preabsorption experiments, indispensable for recognition of Drosophila embryonic nervous system by anti-horseradish peroxidase antibody. Further, we describe the identification by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry and high performance liquid chromatography of two Drosophila N-glycans that, as already detected in other insects, carry both alpha1,3- and alpha1,6-linked fucose residues on the proximal core GlcNAc. Moreover, we have isolated three cDNAs encoding alpha1,3-fucosyltransferase homologues from Drosophila. One of the cDNAs, when transformed into Pichia pastoris, was found to direct expression of core alpha1,3-fucosyltransferase activity. This recombinant enzyme preferred as substrate a biantennary core alpha1,6-fucosylated N-glycan carrying two non-reducing N-acetylglucosamine residues (GnGnF6; Km 11 microm) over the same structure lacking a core fucose residue (GnGn; Km 46 microm). The Drosophila core alpha1,3-fucosyltransferase enzyme was also shown to be able to fucosylate N-glycan structures of human transferrin in vitro, this modification correlating with the acquisition of binding to anti-horseradish peroxidase antibody.
Collapse
Affiliation(s)
- G Fabini
- Glycobiology Division, Institut für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
| | | | | | | |
Collapse
|
23
|
Abstract
Contemporary glycobiology reflects the intense interest in glycoproteins and their biological roles. Addition of saccharides by N- or O-glycosylation is precise rather than random and forms a uniquely interactive molecular surface. We designate these well conserved glycomotifs as glycomodules to emphasize their functional significance. Thus, elucidation of the glycosylation codes that determine saccharide addition is a significant goal. The focus here is on the Hyp O-glycosylation of cell wall proteins. This involves two consecutive posttranslational modifications, proline hydroxylation and glycosylation. Peptide sequence rather than conformation seems to determine these modifications. Hyp glycosylation occurs in two distinct modes: Hyp arabinosylation and Hyp galactosylation. The Hyp contiguity hypothesis predicts arabinosylation of contiguous Hyp residues and galactosylation of clustered non-contiguous Hyp. Elucidation of Hyp glycosylation codes involves the design and expression of putative glycomotifs as simple repetitive peptides. Thus, repetitive (Ser-Hyp), directed Hyp galactosylation resulting in the exclusive addition of arabinogalactan polysaccharide to all the non-contiguous Hyp residues. and a new AGP. Another repetitive peptide from gum arabic glycoprotein, containing both contiguous and non-contiguous Hyp, directed both modes of Hyp glycosylation. Furthermore, expression of the (Ser-Hypx)n series confirmed the arabinosylation of contiguous Hyp. Thus, the Hyp contiguity hypothesis is a useful predictive tool in the functional genomics toolbox.
Collapse
Affiliation(s)
- M J Kieliszewski
- Department of Chemistry and Biochemistry, Ohio University, Athens 45701, USA.
| |
Collapse
|
24
|
Javaud C, Dupuy F, Maftah A, Michalski JC, Oriol R, Petit JM, Julien R. Ancestral exonic organization of FUT8, the gene encoding the alpha6-fucosyltransferase, reveals successive peptide domains which suggest a particular three-dimensional core structure for the alpha6-fucosyltransferase family. Mol Biol Evol 2000; 17:1661-72. [PMID: 11070054 DOI: 10.1093/oxfordjournals.molbev.a026265] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Based on PCR strategies and expression studies, we define the genomic organization of the FUT8b gene. This gene encodes the only known mammalian enzyme transferring fucose in an alpha1-->6 linkage on the asparagine-branched GlcNAc residue of the chitobiose unit of complex N:-glycans. The intron/exon organization of the bovine coding sequence determines five successive functional domains. The first exon encodes a domain homologous to cytoskeleton proteins, the second presents a proline-rich region including a motif XPXPPYXP similar to the peptide ligand of the SH3-domain proteins, the third encodes a gyrase-like domain (an enzyme which can bind nucleotides), and the fourth encodes a peptide sequence homologous to the catalytic domain of proteins transferring sugars. Finally, the last exon encodes a domain homologous to the SH3 conserved motif of the SH2-SH3 protein family. This organization suggests that intramolecular interactions might give a tulip-shaped scaffolding, including the catalytic pocket of the enzyme in the Golgi lumen. Deduced from the published sequence of chromosome 14 (AL109847), the human gene organization of FUT8 seems to be similar to that of bovine FUT8b, although the exon partition is more pronounced (bovine exons 1 and 2 correspond to human exons 1-6). The mosaicism and phylogenetic positions of the alpha6-fucosyltransferase genes are compared with those of other fucosyltransferase genes.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Blotting, Southern
- COS Cells
- Cattle
- DNA/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Evolution, Molecular
- Exons/genetics
- Fucosyltransferases/chemistry
- Fucosyltransferases/genetics
- Gene Expression Regulation, Enzymologic
- Genes/genetics
- Humans
- Molecular Sequence Data
- Phylogeny
- Protein Structure, Tertiary
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Swine
- Tissue Distribution
Collapse
Affiliation(s)
- C Javaud
- Unité de Génétique Moléculaire Animale-UR 1061 (INRA/Université de Limoges), Institut des Sciences de la Vie et de la Santé, Faculté des Sciences, Limoges, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Schachter H. Branching of N‐Glycans: N‐Acetylglucosaminyltransferases. CARBOHYDRATES IN CHEMISTRY AND BIOLOGY 2000:145-173. [DOI: 10.1002/9783527618255.ch48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
26
|
Struppe E, Staudacher E. Occurence of GDP-L-fucose: beta-N-acetylglucosamine (Fuc to asn-linked GlcNAc) alpha 1,6-fucosyltransferases in porcine, sheep, bovine, rabbit and chicken tissues. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1475:360-8. [PMID: 10913837 DOI: 10.1016/s0304-4165(00)00092-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transgenic animals are a promising source of pharmaceutically-relevant proteins or as a source of organs for xenotransplantation. Beside other posttranslational modifications, glycosylation has been shown to be a critical parameter for the correct function of several glycoproteins. To analyse the contribution of alpha 1,6-fucosylation to N-glycan variability, we partly purified alpha 1,6-fucosyltransferase (alpha 1,6-Fuc-T) activities from various tissues (brain, lung, heart, liver) of agriculturally-relevant animals (porcine, sheep, bovine, rabbit, chicken) and compared some of their biochemical properties. All tissues displayed alpha1,6-Fuc-T activity, although at different levels. No differences were observed in their stability against chemicals, temperature or time, whereas the activities were distinguishable by their pH-optima and their cation preferences. Similarities were found for tissues between species. Lung and heart enzymes showed a narrow pH-optimum around pH 6.0 and an enhanced activity in the presence of divalent cations. alpha 1,6-Fuc-T activities in brain and liver were characterised by a broad pH-optimum from 5.5 to 8.0. Some activities of these tissues were decreased by the addition of EDTA, while others did not show any influence of EDTA or divalent cations. From the significant differences of the alpha 1,6-Fuc-T activities in the tissues, it is possible to hypothesise the presence of more than one single alpha 1, 6-Fuc-T in mammalian tissues.
Collapse
Affiliation(s)
- E Struppe
- Institut für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Vienna, Austria
| | | |
Collapse
|
27
|
Staudacher E, Altmann F, Wilson IB, März L. Fucose in N-glycans: from plant to man. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1473:216-36. [PMID: 10580141 DOI: 10.1016/s0304-4165(99)00181-6] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fucosylated oligosaccharides occur throughout nature and many of them play a variety of roles in biology, especially in a number of recognition processes. As reviewed here, much of the recent emphasis in the study of the oligosaccharides in mammals has been on their potential medical importance, particularly in inflammation and cancer. Indeed, changes in fucosylation patterns due to different levels of expression of various fucosyltransferases can be used for diagnoses of some diseases and monitoring the success of therapies. In contrast, there are generally at present only limited data on fucosylation in non-mammalian organisms. Here, the state of current knowledge on the fucosylation abilities of plants, insects, snails, lower eukaryotes and prokaryotes will be summarised.
Collapse
Affiliation(s)
- E Staudacher
- Institut für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190, Vienna, Austria.
| | | | | | | |
Collapse
|
28
|
van Tetering A, Schiphorst WE, van den Eijnden DH, van Die I. Characterization of a core alpha1-->3-fucosyltransferase from the snail Lymnaea stagnalis that is involved in the synthesis of complex-type N-glycans. FEBS Lett 1999; 461:311-4. [PMID: 10567717 DOI: 10.1016/s0014-5793(99)01489-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have identified a core alpha1-->3-fucosyltransferase activity in the albumin and prostate glands of the snail Lymnaea stagnalis. Incubation of albumin gland extracts with GDP-[(14)C]Fuc and asialo/agalacto-glycopeptides from human fibrinogen resulted in a labeled product in 50% yield. Analysis of the product by 400 MHz (1)H-NMR spectroscopy showed the presence of a Fuc residue alpha1-->3-linked to the Asn-linked GlcNAc. Therefore, the enzyme can be identified as a GDP-Fuc:GlcNAc (Asn-linked) alpha1-->3-fucosyltransferase. The enzyme acts efficiently on asialo/agalacto-glycopeptides from both human fibrinogen and core alpha1-->6-fucosylated human IgG, whereas bisected asialo/agalacto-glycopeptide could not serve as an acceptor. We propose that the enzyme functions in the synthesis of core alpha1-->3-fucosylated complex-type glycans in L. stagnalis. Core alpha1-->3-fucosylation of the asparagine-linked GlcNAc of plant- and insect-derived glycoproteins is often associated with the allergenicity of such glycoproteins. Since allergic reactions have been reported after consumption of snails, the demonstration of core alpha1-->3-fucosylation in L. stagnalis may be clinically relevant.
Collapse
Affiliation(s)
- A van Tetering
- Department of Medical Chemistry, Vrije Universiteit, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
29
|
Leiter H, Mucha J, Staudacher E, Grimm R, Glössl J, Altmann F. Purification, cDNA cloning, and expression of GDP-L-Fuc:Asn-linked GlcNAc alpha1,3-fucosyltransferase from mung beans. J Biol Chem 1999; 274:21830-9. [PMID: 10419500 DOI: 10.1074/jbc.274.31.21830] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Substitution of the asparagine-linked GlcNAc by alpha1,3-linked fucose is a widespread feature of plant as well as of insect glycoproteins, which renders the N-glycan immunogenic. We have purified from mung bean seedlings the GDP-L-Fuc:Asn-linked GlcNAc alpha1,3-fucosyltransferase (core alpha1,3-fucosyltransferase) that is responsible for the synthesis of this linkage. The major isoform had an apparent mass of 54 kDa and isoelectric points ranging from 6. 8 to 8.2. From that protein, four tryptic peptides were isolated and sequenced. Based on an approach involving reverse transcriptase-polymerase chain reaction with degenerate primers and rapid amplification of cDNA ends, core alpha1,3-fucosyltransferase cDNA was cloned from mung bean mRNA. The 2200-base pair cDNA contained an open reading frame of 1530 base pairs that encoded a 510-amino acid protein with a predicted molecular mass of 56.8 kDa. Analysis of cDNA derived from genomic DNA revealed the presence of three introns within the open reading frame. Remarkably, from the four exons, only exon II exhibited significant homology to animal and bacterial alpha1,3/4-fucosyltransferases which, though, are responsible for the biosynthesis of Lewis determinants. The recombinant fucosyltransferase was expressed in Sf21 insect cells using a baculovirus vector. The enzyme acted on glycopeptides having the glycan structures GlcNAcbeta1-2Manalpha1-3(GlcNAcbeta1-2Manalpha1- 6)Manbeta1-4GlcNAcbet a1-4GlcNAcbeta1-Asn, GlcNAcbeta1-2Manalpha1-3(GlcNAcbeta1-2Manalpha1- 6)Manbeta1-4GlcNAcbet a1-4(Fucalpha1-6)GlcNAcbeta1-Asn, and GlcNAcbeta1-2Manalpha1-3[Manalpha1-3(Manalpha1-6 )Manalpha1-6]Manbeta1 -4GlcNAcbeta1-4GlcNAcbeta1-Asn but not on, e.g. N-acetyllactosamine. The structure of the core alpha1,3-fucosylated product was verified by high performance liquid chromatography of the pyridylaminated glycan and by its insensitivity to N-glycosidase F as revealed by matrix-assisted laser desorption/ionization time of flight mass spectrometry.
Collapse
Affiliation(s)
- H Leiter
- Institute of Chemistry, Universität für Bodenkultur, Muthgasse 18, 1190 Wien, Austria.
| | | | | | | | | | | |
Collapse
|
30
|
Oriol R, Mollicone R, Cailleau A, Balanzino L, Breton C. Divergent evolution of fucosyltransferase genes from vertebrates, invertebrates, and bacteria. Glycobiology 1999; 9:323-34. [PMID: 10089206 DOI: 10.1093/glycob/9.4.323] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
On the basis of function and sequence similarities, the vertebrate fucosyltransferases can be classified into three groups: alpha-2-, alpha-3-, and alpha-6-fucosyltransferases. Thirty new putative fucosyltransferase genes from invertebrates and bacteria and six conserved peptide motifs have been identified in DNA and protein databanks. Two of these motifs are specific of alpha-3-fucosyltransferases, one is specific of alpha-2-fucosyltransferases, another is specific of alpha-6-fucosyltransferases, and two are shared by both alpha-2- and alpha-6-fucosyltranserases. Based on these data, literature data, and the phylogenetic analysis of the conserved peptide motifs, a model for the evolution offucosyltransferase genes by successive duplications, followed by divergent evolution is proposed, with either two different ancestors, one for the alpha-2/6-fucosyltransferases and one for the alpha-3-fucosyltransferases or a single common ancestor for the two families. The expected properties of such an hypothetical ancestor suggest that the plant or insect alpha-3-fucosyltransferases using chitobiose as acceptor might be the present forms of this ancestor, since fucosyltransferases using chitobiose as acceptor are expected to be of earlier appearance in evolution than enzymes using N -acetyllactosamine. However, an example of convergent evolution of fucosyltransferase genes is suggested for the appearance of the Leaepitopes found in plants and primates.
Collapse
Affiliation(s)
- R Oriol
- INSERM U504, University of Paris South XI, 94807 Villejuif Cedex, France and CERMAV-CNRS, BP 53, 38041 Grenoble Cedex 9, France
| | | | | | | | | |
Collapse
|
31
|
Altmann F, Staudacher E, Wilson IB, März L. Insect cells as hosts for the expression of recombinant glycoproteins. Glycoconj J 1999; 16:109-23. [PMID: 10612411 DOI: 10.1023/a:1026488408951] [Citation(s) in RCA: 242] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Baculovirus-mediated expression in insect cells has become well-established for the production of recombinant glycoproteins. Its frequent use arises from the relative ease and speed with which a heterologous protein can be expressed on the laboratory scale and the high chance of obtaining a biologically active protein. In addition to Spodoptera frugiperda Sf9 cells, which are probably the most widely used insect cell line, other mainly lepidopteran cell lines are exploited for protein expression. Recombinant baculovirus is the usual vector for the expression of foreign genes but stable transfection of - especially dipteran - insect cells presents an interesting alternative. Insect cells can be grown on serum free media which is an advantage in terms of costs as well as of biosafety. For large scale culture, conditions have been developed which meet the special requirements of insect cells. With regard to protein folding and post-translational processing, insect cells are second only to mammalian cell lines. Evidence is presented that many processing events known in mammalian systems do also occur in insects. In this review, emphasis is laid, however, on protein glycosylation, particularly N-glycosylation, which in insects differs in many respects from that in mammals. For instance, truncated oligosaccharides containing just three or even only two mannose residues and sometimes fucose have been found on expressed proteins. These small structures can be explained by post-synthetic trimming reactions. Indeed, cell lines having a low level of N-acetyl-beta-glucosaminidase, e.g. Estigmene acrea cells, produce N- glycans with non-reducing terminal N-acetylglucosamine residues. The Trichoplusia ni cell line TN-5B1-4 was even found to produce small amounts of galactose terminated N-glycans. However, there appears to be no significant sialylation of N-glycans in insect cells. Insect cells expressed glycoproteins may, though, be alpha1,3-fucosylated on the reducing-terminal GlcNAc residue. This type of fucosylation renders the N-glycans on one hand resistant to hydrolysis with PNGase F and on the other immunogenic. Even in the absence of alpha1,3-fucosylation, the truncated N-glycans of glycoproteins produced in insect cells constitute a barrier to their use as therapeutics. Attempts and strategies to "mammalianise" the N-glycosylation capacity of insect cells are discussed.
Collapse
Affiliation(s)
- F Altmann
- Institut für Chemie der Universität für Bodenkultur Wien.
| | | | | | | |
Collapse
|