1
|
Becker HF, L'Hermitte-Stead C, Myllykallio H. Diversity of circular RNAs and RNA ligases in archaeal cells. Biochimie 2019; 164:37-44. [PMID: 31212038 DOI: 10.1016/j.biochi.2019.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/13/2019] [Indexed: 01/16/2023]
Abstract
Circular RNAs (circRNAs) differ structurally from other types of RNAs and are resistant against exoribonucleases. Although they have been detected in all domains of life, it remains unclear how circularization affects or changes functions of these ubiquitous nucleic acid circles. The biogenesis of circRNAs has been mostly described as a backsplicing event, but in archaea, where RNA splicing is a rare phenomenon, a second pathway for circRNA formation was described in the cases of rRNAs processing, tRNA intron excision, and Box C/D RNAs formation. At least in some archaeal species, circRNAs are formed by a ligation step catalyzed by an atypic homodimeric RNA ligase belonging to Rnl3 family. In this review, we describe archaeal circRNA transcriptomes obtained using high throughput sequencing technologies on Sulfolobus solfataricus, Pyrococcus abyssi and Nanoarchaeum equitans cells. We will discuss the distribution of circular RNAs among the different RNA categories and present the Rnl3 ligase family implicated in the circularization activity. Special focus is given for the description of phylogenetic distributions, protein structures, and substrate specificities of archaeal RNA ligases.
Collapse
Affiliation(s)
- Hubert F Becker
- LOB, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128, Palaiseau, France; Sorbonne Université, Faculté des Sciences et Ingénierie, 75005, Paris, France.
| | | | - Hannu Myllykallio
- LOB, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128, Palaiseau, France
| |
Collapse
|
2
|
Gago-Zachert S. Viroids, infectious long non-coding RNAs with autonomous replication. Virus Res 2015; 212:12-24. [PMID: 26319312 DOI: 10.1016/j.virusres.2015.08.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/20/2015] [Accepted: 08/22/2015] [Indexed: 10/23/2022]
Abstract
Transcriptome deep-sequencing studies performed during the last years confirmed that the vast majority of the RNAs transcribed in higher organisms correspond to several types of non-coding RNAs including long non-coding RNAs (lncRNAs). The study of lncRNAs and the identification of their functions, is still an emerging field in plants but the characterization of some of them indicate that they play an important role in crucial regulatory processes like flowering regulation, and responses to abiotic stress and plant hormones. A second group of lncRNAs present in plants is formed by viroids, exogenous infectious subviral plant pathogens well known since many years. Viroids are composed of circular RNA genomes without protein-coding capacity and subvert enzymatic activities of their hosts to complete its own biological cycle. Different aspects of viroid biology and viroid-host interactions have been elucidated in the last years and some of them are the main topic of this review together with the analysis of the state-of-the-art about the growing field of endogenous lncRNAs in plants.
Collapse
Affiliation(s)
- Selma Gago-Zachert
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany.
| |
Collapse
|
3
|
Martínez-Macías MI, Córdoba-Cañero D, Ariza RR, Roldán-Arjona T. The DNA repair protein XRCC1 functions in the plant DNA demethylation pathway by stimulating cytosine methylation (5-meC) excision, gap tailoring, and DNA ligation. J Biol Chem 2013; 288:5496-505. [PMID: 23316050 DOI: 10.1074/jbc.m112.427617] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
DNA methylation patterns are the dynamic outcome of antagonist methylation and demethylation mechanisms, but the latter are still poorly understood. Active DNA demethylation in plants is mediated by a family of DNA glycosylases typified by Arabidopsis ROS1 (repressor of silencing 1). ROS1 and its homologs remove 5-methylcytosine and incise the sugar backbone at the abasic site, thus initiating a base excision repair pathway that finally inserts an unmethylated cytosine. The DNA 3'-phosphatase ZDP processes some of the incision products generated by ROS1, allowing subsequent DNA polymerization and ligation steps. In this work, we examined the possible role of plant XRCC1 (x-ray cross-complementing group protein 1) in DNA demethylation. We found that XRCC1 interacts in vitro with ROS1 and ZDP and stimulates the enzymatic activity of both proteins. Furthermore, extracts from xrcc1 mutant plants exhibit a reduced capacity to complete DNA demethylation initiated by ROS1. An anti-XRCC1 antibody inhibits removal of the blocking 3'-phosphate in the single-nucleotide gap generated during demethylation and reduces the capacity of Arabidopsis cell extracts to ligate a nicked DNA intermediate. Our results suggest that XRCC1 is a component of plant base excision repair and functions at several stages during active DNA demethylation in Arabidopsis.
Collapse
Affiliation(s)
- María Isabel Martínez-Macías
- Department of Genetics, University of Córdoba/Maimónides Institute of Biomedical Research (IMIBIC), 14071 Córdoba, Spain
| | | | | | | |
Collapse
|
4
|
Nohales MÁ, Flores R, Daròs JA. Viroid RNA redirects host DNA ligase 1 to act as an RNA ligase. Proc Natl Acad Sci U S A 2012; 109:13805-10. [PMID: 22869737 PMCID: PMC3427106 DOI: 10.1073/pnas.1206187109] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viroids are a unique class of noncoding RNAs: composed of only a circular, single-stranded molecule of 246-401 nt, they manage to replicate, move, circumvent host defenses, and frequently induce disease in higher plants. Viroids replicate through an RNA-to-RNA rolling-circle mechanism consisting of transcription of oligomeric viroid RNA intermediates, cleavage to unit-length strands, and circularization. Though the host RNA polymerase II (redirected to accept RNA templates) mediates RNA synthesis and a type-III RNase presumably cleavage of Potato spindle tuber viroid (PSTVd) and closely related members of the family Pospiviroidae, the host enzyme catalyzing the final circularization step, has remained elusive. In this study we propose that PSTVd subverts host DNA ligase 1, converting it to an RNA ligase, for the final step. To support this hypothesis, we show that the tomato (Solanum lycopersicum L.) DNA ligase 1 specifically and efficiently catalyzes circularization of the genuine PSTVd monomeric linear replication intermediate opened at position G95-G96 and containing 5'-phosphomonoester and 3'-hydroxyl terminal groups. Moreover, we also show a decreased PSTVd accumulation and a reduced ratio of monomeric circular to total monomeric PSTVd forms in Nicotiana benthamiana Domin plants in which the endogenous DNA ligase 1 was silenced. Thus, in a remarkable example of parasitic strategy, viroids reprogram for their replication the template and substrate specificity of a DNA-dependent RNA polymerase and a DNA ligase to act as RNA-dependent RNA polymerase and RNA ligase, respectively.
Collapse
Affiliation(s)
- María-Ángeles Nohales
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| |
Collapse
|
5
|
Molina-Serrano D, Marqués J, Nohales MÁ, Flores R, Daròs JA. A chloroplastic RNA ligase activity analogous to the bacterial and archaeal 2´-5' RNA ligase. RNA Biol 2012; 9:326-33. [PMID: 22336712 DOI: 10.4161/rna.19218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Bacteria and archaea contain a 2'-5' RNA ligase that seals in vitro 2',3'-cyclic phosphodiester and 5'-hydroxyl RNA termini, generating a 2',5'-phosphodiester bond. In our search for an RNA ligase able to circularize the monomeric linear replication intermediates of viroids belonging to the family Avsunviroidae, which replicate in the chloroplast, we have identified in spinach (Spinacea oleracea L.) chloroplasts a new RNA ligase activity whose properties resemble those of the bacterial and archaeal 2'-5' RNA ligase. The spinach chloroplastic RNA ligase recognizes the 5'-hydroxyl and 2',3'-cyclic phosphodiester termini of Avocado sunblotch viroid and Eggplant latent viroid RNAs produced by hammerhead-mediated self-cleavage, yielding circular products linked through an atypical, most likely 2',5'-phosphodiester, bond. The enzyme neither requires divalent cations as cofactors, nor NTPs as substrate. The reaction apparently reaches equilibrium at a low ratio between the final circular product and the linear initial substrate. Even if its involvement in viroid replication seems unlikely, the identification of a 2'-5' RNA ligase activity in higher plant chloroplasts, with properties very similar to an analogous enzyme widely distributed in bacterial and archaeal proteomes, is intriguing and suggests an important biological role so far unknown.
Collapse
Affiliation(s)
- Diego Molina-Serrano
- Instituto de Biología Molecular y Celular de Plantas-Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Avenida de los Naranjos, Valencia, Spain
| | | | | | | | | |
Collapse
|
6
|
Córdoba-Cañero D, Roldán-Arjona T, Ariza RR. Arabidopsis ARP endonuclease functions in a branched base excision DNA repair pathway completed by LIG1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:693-702. [PMID: 21781197 DOI: 10.1111/j.1365-313x.2011.04720.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Base excision repair (BER) is an essential cellular defence mechanism against DNA damage, but it is poorly understood in plants. We used an assay that monitors repair of damaged bases and abasic (apurinic/apyrimidinic, AP) sites in Arabidopsis to characterize post-excision events during plant BER. We found that Apurinic endonuclease-redox protein (ARP) is the major AP endonuclease activity in Arabidopsis cell extracts, and is required for AP incision during uracil BER in vitro. Mutant plants that are deficient in ARP grow normally but are hypersensitive to 5-fluorouracil, a compound that favours mis-incorporation of uracil into DNA. We also found that, after AP incision, the choice between single-nucleotide or long-patch DNA synthesis (SN- or LP-BER) is influenced by the 5' end of the repair gap. When the 5' end is blocked and not amenable to β-elimination, the SN sub-pathway is abrogated, and repair is accomplished through LP-BER only. Finally, we provide evidence that Arabidopsis DNA ligase I (LIG1) is required for both SN- and LP-BER. lig1 RNAi-silenced lines show very reduced uracil BER, and anti-LIG1 antibody abolishes repair in wild-type cell extracts. In contrast, knockout lig4(-/-) mutants exhibit normal BER and nick ligation levels. Our results suggest that a branched BER pathway completed by a member of the DNA ligase I family may be an ancient feature in eukaryotic species.
Collapse
|
7
|
Strzalka W, Ziemienowicz A. Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation. ANNALS OF BOTANY 2011; 107:1127-40. [PMID: 21169293 PMCID: PMC3091797 DOI: 10.1093/aob/mcq243] [Citation(s) in RCA: 516] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND PCNA (proliferating cell nuclear antigen) has been found in the nuclei of yeast, plant and animal cells that undergo cell division, suggesting a function in cell cycle regulation and/or DNA replication. It subsequently became clear that PCNA also played a role in other processes involving the cell genome. SCOPE This review discusses eukaryotic PCNA, with an emphasis on plant PCNA, in terms of the protein structure and its biochemical properties as well as gene structure, organization, expression and function. PCNA exerts a tripartite function by operating as (1) a sliding clamp during DNA synthesis, (2) a polymerase switch factor and (3) a recruitment factor. Most of its functions are mediated by its interactions with various proteins involved in DNA synthesis, repair and recombination as well as in regulation of the cell cycle and chromatid cohesion. Moreover, post-translational modifications of PCNA play a key role in regulation of its functions. Finally, a phylogenetic comparison of PCNA genes suggests that the multi-functionality observed in most species is a product of evolution. CONCLUSIONS Most plant PCNAs exhibit features similar to those found for PCNAs of other eukaryotes. Similarities include: (1) a trimeric ring structure of the PCNA sliding clamp, (2) the involvement of PCNA in DNA replication and repair, (3) the ability to stimulate the activity of DNA polymerase δ and (4) the ability to interact with p21, a regulator of the cell cycle. However, many plant genomes seem to contain the second, probably functional, copy of the PCNA gene, in contrast to PCNA pseudogenes that are found in mammalian genomes.
Collapse
Affiliation(s)
- Wojciech Strzalka
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Alicja Ziemienowicz
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- For correspondence. E-mail
| |
Collapse
|
8
|
|
9
|
Waterworth WM, Kozak J, Provost CM, Bray CM, Angelis KJ, West CE. DNA ligase 1 deficient plants display severe growth defects and delayed repair of both DNA single and double strand breaks. BMC PLANT BIOLOGY 2009; 9:79. [PMID: 19558640 PMCID: PMC2708163 DOI: 10.1186/1471-2229-9-79] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 06/26/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND DNA ligase enzymes catalyse the joining of adjacent polynucleotides and as such play important roles in DNA replication and repair pathways. Eukaryotes possess multiple DNA ligases with distinct roles in DNA metabolism, with clear differences in the functions of DNA ligase orthologues between animals, yeast and plants. DNA ligase 1, present in all eukaryotes, plays critical roles in both DNA repair and replication and is indispensable for cell viability. RESULTS Knockout mutants of atlig1 are lethal. Therefore, RNAi lines with reduced levels of AtLIG1 were generated to allow the roles and importance of Arabidopsis DNA ligase 1 in DNA metabolism to be elucidated. Viable plants were fertile but displayed a severely stunted and stressed growth phenotype. Cell size was reduced in the silenced lines, whilst flow cytometry analysis revealed an increase of cells in S-phase in atlig1-RNAi lines relative to wild type plants. Comet assay analysis of isolated nuclei showed atlig1-RNAi lines displayed slower repair of single strand breaks (SSBs) and also double strand breaks (DSBs), implicating AtLIG1 in repair of both these lesions. CONCLUSION Reduced levels of Arabidopsis DNA ligase 1 in the silenced lines are sufficient to support plant development but result in retarded growth and reduced cell size, which may reflect roles for AtLIG1 in both replication and repair. The finding that DNA ligase 1 plays an important role in DSB repair in addition to its known function in SSB repair, demonstrates the existence of a previously uncharacterised novel pathway, independent of the conserved NHEJ. These results indicate that DNA ligase 1 functions in both DNA replication and in repair of both ss and dsDNA strand breaks in higher plants.
Collapse
Affiliation(s)
- Wanda M Waterworth
- CPS, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Jaroslav Kozak
- Institute of Experimental Botany AS CR, Na Karlovce 1, 160 00 Praha 6, Czech Republic
| | - Claire M Provost
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Clifford M Bray
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Karel J Angelis
- Institute of Experimental Botany AS CR, Na Karlovce 1, 160 00 Praha 6, Czech Republic
| | - Christopher E West
- CPS, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
10
|
Repair and tolerance of oxidative DNA damage in plants. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2009; 681:169-179. [DOI: 10.1016/j.mrrev.2008.07.003] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 07/11/2008] [Accepted: 07/17/2008] [Indexed: 11/19/2022]
|
11
|
Bonatto D, Brendel M, Henriques JAP. A new group of plant-specific ATP-dependent DNA ligases identified by protein phylogeny, hydrophobic cluster analysis and 3-dimensional modelling. FUNCTIONAL PLANT BIOLOGY : FPB 2005; 32:161-174. [PMID: 32689120 DOI: 10.1071/fp04143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 01/06/2005] [Indexed: 06/11/2023]
Abstract
The eukaryotic ATP-dependent DNA ligases comprise a group of orthologous proteins that have distinct roles in DNA metabolism. In contrast with the well-known DNA ligases of animal cells, the DNA ligases of plant cells are poorly described. Until now, only two DNA ligases (I and IV) genes of Arabidopsis thaliana (L.) Heynh were isolated and characterised. Use of the complete genomic sequences of Oryza sativa L. and A. thaliana, as well as the partially assembled genomic data of Medicago truncatula L. and Brassica spp., allowed us to identify a new family of ATP-dependent DNA ligases that are found only in the Viridiplantae kingdom. An in-depth phylogenetic analysis of protein sequences showed that this family composes a distinct clade, which shares a last universal common ancestor with DNA ligases I. In silico sequence studies indicate that these proteins have distinct physico-chemical properties when compared with those of animal and fungal DNA ligases. Moreover, hydrophobic cluster analysis and 3-dimensional modelling allowed us to map two conserved domains within these DNA ligases I-like proteins. Additional data of microsynteny analysis indicate that these DNA ligases I-like genes are linked to the S and SLL2 loci of Brassica spp. and A. thaliana, respectively. Combining the results of all analyses, we propose the creation of the DNA ligases VI (LIG6) family, which is composed by plant-specific DNA ligases.
Collapse
Affiliation(s)
- Diego Bonatto
- Departamento de Biofísica/Centro de Biotecnologia, UFRGS, Av. Bento Gonçalves 9500, 91507-970 Porto Alegre, RS, Brazil
| | - Martin Brendel
- Departamento de Biofísica/Centro de Biotecnologia, UFRGS, Av. Bento Gonçalves 9500, 91507-970 Porto Alegre, RS, Brazil
| | - João Antonio Pêgas Henriques
- Departamento de Biofísica/Centro de Biotecnologia, UFRGS, Av. Bento Gonçalves 9500, 91507-970 Porto Alegre, RS, Brazil
| |
Collapse
|
12
|
van Attikum H, Bundock P, Overmeer RM, Lee LY, Gelvin SB, Hooykaas PJJ. The Arabidopsis AtLIG4 gene is required for the repair of DNA damage, but not for the integration of Agrobacterium T-DNA. Nucleic Acids Res 2003; 31:4247-55. [PMID: 12853643 PMCID: PMC165973 DOI: 10.1093/nar/gkg458] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2002] [Revised: 02/06/2003] [Accepted: 05/13/2003] [Indexed: 11/13/2022] Open
Abstract
The joining of breaks in the chromosomal DNA backbone by ligases in processes of replication, recombination and repair plays a crucial role in the maintenance of genomic stability. Four ATP-dependent ligases, designated DNA ligases I-IV, have been identified in higher eukaryotes, and each one has distinct functions. In mammals and yeast, DNA ligase IV is exclusively involved in the repair of DNA double-strand breaks by non-homologous end joining. Recently, an Arabidopsis thaliana orthologue of the yeast and mammalian DNA ligase IV gene was found and termed AtLIG4. Here we describe the isolation and functional characterisation of a plant line with a T-DNA insertion in the AtLIG4 gene. Plants homozygous for the T-DNA insertion did not display any growth or developmental defects and were fertile. However, mutant seedlings were hypersensitive to the DNA-damaging agents methyl methanesulfonate and X-rays, demonstrating that AtLIG4 is required for the repair of DNA damage. Recently, we showed that a yeast lig4 mutant is deficient in Agrobacterium T-DNA integration. However, using tumorigenesis and germline transformation assays, we found that the plant AtLIG4 mutant is not impaired in T-DNA integration. Thus, in contrast to yeast, DNA ligase IV is not required for T-DNA integration in plants.
Collapse
Affiliation(s)
- Haico van Attikum
- Institute of Biology, Leiden University, Clusius Laboratory, Wassenaarseweg 64, 2333 AL, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
13
|
Reiss B. Homologous recombination and gene targeting in plant cells. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 228:85-139. [PMID: 14667043 DOI: 10.1016/s0074-7696(03)28003-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Gene targeting has become an indispensable tool for functional genomics in yeast and mouse; however, this tool is still missing in plants. This review discusses the gene targeting problem in plants in the context of general knowledge on recombination and gene targeting. An overview on the history of gene targeting is followed by a general introduction to genetic recombination of bacteria, yeast, and vertebrates. This abridged discussion serves as a guide to the following sections, which cover plant-specific aspects of recombination assay systems, the mechanism of recombination, plant recombination genes, the relationship of recombination to the environment, approaches to stimulate homologous recombination and gene targeting, and a description of two plant systems, the moss Physcomitrella patens and the chloroplast, that naturally have high efficiencies of gene targeting. The review concludes with a discussion of alternatives to gene targeting.
Collapse
Affiliation(s)
- Bernd Reiss
- Max-Planck-Institut für Zuechtungsforschung, Carl-von-Linne-Weg 10, D-50829 Köln, Germany
| |
Collapse
|
14
|
Hays JB. Arabidopsis thaliana, a versatile model system for study of eukaryotic genome-maintenance functions. DNA Repair (Amst) 2002; 1:579-600. [PMID: 12509283 DOI: 10.1016/s1568-7864(02)00093-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The genome of the model plant Arabidopsis thaliana encodes many orthologs of human genome-maintenance proteins, and in several important cases plant DNA repair and mutation-antagonism functions resemble their mammalian counterparts more closely than do those of established microbial models. These orthologs, in conjunction with the powerful tools now available for work with Arabidopsis and the practical advantages of its small size and rapid life cycle, now make it an attractive model system for study of eukaryotic DNA repair and mutagenesis. Already, null mutations that inactivate proteins involved in repair of DNA double-strand breaks or in DNA translesion synthesis and are lethal in mice have proved to be tolerated by plants. This review compares in some detail the genome-maintenance activities encoded by plants, mammals and microbes, and describes important Arabidopsis tools and life cycle characteristics. It concludes with selected examples that illustrate Arabidopsis advantages and/or reveal new insights into genome-maintenance functions of general interest.
Collapse
Affiliation(s)
- John B Hays
- Department of Environmental and Molecular Toxicology, 1007 ALS Building, Oregon State University, Corvallis, OR 97331-7301, USA.
| |
Collapse
|