1
|
Jiang W, Pan J, Lin T, Wang Y, Wang Y, Zhang R, Zhou X, Zhang Y. Mutational features of chromids and chromosomes in Pseudoalteromonas provide new insights into the evolution of secondary replicons. Microbiol Spectr 2025; 13:e0212724. [PMID: 40130865 PMCID: PMC12053903 DOI: 10.1128/spectrum.02127-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/05/2025] [Indexed: 03/26/2025] Open
Abstract
The genomes of multi-replicon bacteria are composed of a primary replicon (the chromosome) and secondary replicons (chromids). Currently, there is a lack of understanding of the mutation features and evolutionary patterns of these different replicons. Specifically, in the genus Pseudoalteromonas, the chromids of multi-replicon species exhibit both unidirectional and bidirectional replication. Here, we investigated the similarities and differences between chromosomes and chromids in sequence composition and gene synteny of Pseudoalteromonas species by comparative genomic analysis, as well as the spontaneous mutation features of different replicons by mutation accumulation (MA) experiments combined with whole-genome sequencing strategy (MA-WGS). MA-WGS analysis revealed that there was no significant difference between chromids and chromosomes in the mutation rate or mutation spectrum of P. sp. LC0214 (where the chromid is unidirectional in replication) and P. sp. JCM12884T (where the chromid is bidirectional in replication). In addition, the context-dependence and variation pattern of the base-pair substitutions (BPSs) rates of the entire replicons exhibited differences that may be caused by the different replication directions of the chromids. The results of this study provide a new theoretical foundation for an in-depth understanding of the origin and evolution of chromids in multi-replicon bacterial species and facilitate further exploration of the complex mechanisms of bacterial diversity.IMPORTANCEDe novo mutations are a critical driving force in species evolution. Currently, there is a lack of sufficient research on the influence of replicon types on the occurrence of genomic mutations in bacteria. Moreover, the scarcity in systematic analysis and comparison of spontaneous mutation features between different replicons results in the limited information on the evolutionary dynamics of multi-replicon species. The diversity of replication direction in the multi-replicon species of the genus Pseudoalteromonas provides a unique opportunity for studying the impact of replication direction on the patterns of mutation. In addition to the composition characteristics between chromosomes and chromids, the spontaneous mutation rates in the context-dependence and variation pattern of the base-pair substitutions (BPSs) across different replicons within Pseudoalteromonas species revealed in this study provide valuable insights into the evolutionary dynamics of bacterial secondary replicons.
Collapse
Affiliation(s)
- Wanyue Jiang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Jiao Pan
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Tongtong Lin
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Yaohai Wang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
| | - Yanze Wang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
| | - Rongxiao Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
| | - Xiaoming Zhou
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
| | - Yu Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
- School of Mathematics Science, Ocean University of China, Qingdao, Shandong, China
| |
Collapse
|
2
|
Vega-Baray B, Hernández-Valle J, Poggio S, Camarena L. Repression of ctrA and chpT by a transcriptional regulator of the Xre family that is expressed by RpoN3 and its cognate activator protein in Cereibacter sphaeroides. PLoS One 2025; 20:e0321186. [PMID: 40233053 PMCID: PMC11999139 DOI: 10.1371/journal.pone.0321186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/03/2025] [Indexed: 04/17/2025] Open
Abstract
Cereibacter sphaeroides is an α-proteobacteria that has two flagellar systems. Fla1 directs the assembly of a single subpolar flagellum, and Fla2 directs the assembly of multiple polar flagella. The fla2 genes are controlled by the two-component system CckA/ChpT/CtrA. In the wild-type strain, the fla2 genes are not expressed under the growth conditions commonly used in the laboratory, and thus far, their expression has only been reported in strains carrying either a gain-of-function version of CckA or a null mutation in osp, a negative regulator of CckA. In this work, the differential swimming response of two Fla2 + strains in response to the inclusion of a divalent ion in the culture medium was investigated. This analysis led to identifying a new transcriptional regulator of the XRE family, XrpA. This protein severely reduces the expression of ctrA and, consequently, the expression of the genes activated by this transcription factor. We show that XrpA binds to the control region of ctrA and chpT, suggesting that XrpA directly represses their expression. Additionally, we determined that RpoN3, one of the four RpoN paralogues of RpoN present in C. sphaeroides, and its cognate activator protein AprX are required for the expression of xrpA. XrpA is conserved in several species of Rhodobacterales and a σ54 promoter consensus sequence is present in its control region and a homologue of AprX cooccurs with it. These results support the idea that these proteins form a novel regulatory module that controls the TCS CckA/ChpT/CtrA in C. sphaeroides and other related species.
Collapse
Affiliation(s)
- Benjamín Vega-Baray
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Hernández-Valle
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sebastián Poggio
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Laura Camarena
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
3
|
Yang W, Wu K, Chen H, Huang J, Yu Z. Emerging role of rare earth elements in biomolecular functions. THE ISME JOURNAL 2025; 19:wrae241. [PMID: 39657633 PMCID: PMC11845868 DOI: 10.1093/ismejo/wrae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/27/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
The importance of rare earth elements is increasingly recognized due to the increased demand for their mining and separation. This demand is driving research on the biology of rare earth elements. Biomolecules associated with rare earth elements include rare earth element-dependent enzymes (methanol dehydrogenase XoxF, ethanol dehydrogenase ExaF/PedH), rare earth element-binding proteins, and the relevant metallophores. Traditional (chemical) separation methods for rare earth elements harvesting and separation are typically inefficient, while causing environmental problems, whereas bioharvesting, potentially, offers more efficient, more green platforms. Here, we review the current state of research on the biological functions of rare earth element-dependent biomolecules, and the characteristics of the relevant proteins, including the specific amino acids involved in rare earth metal binding. We also provide an outlook at strategies for further understanding of biological processes and the potential applications of rare earth element-dependent enzymes and other biomolecules.
Collapse
Affiliation(s)
- Wenyu Yang
- Human Microbiome and Health Group, Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Kaijuan Wu
- Human Microbiome and Health Group, Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Hao Chen
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Jing Huang
- Human Microbiome and Health Group, Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Zheng Yu
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
4
|
Nie X, Luo J, Chen H, Pu H, Luo Q, Wang X, Yu X, Liu D, Zhao Z. The potential correlations between cell-free extracts from Rhodobacter sphaeroides grown under low-oxygen conditions and volatile organic compounds in Chinese-style sausage. Food Chem X 2024; 24:101967. [PMID: 39629282 PMCID: PMC11612774 DOI: 10.1016/j.fochx.2024.101967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 12/07/2024] Open
Abstract
Limited research has explored the use of Rhodobacter sphaeroides cell-free extracts (RCFE) in meat processing. To examine the potential application of RCFE in improving the flavor quality of Chinese-style sausage, in this study, we investigated the effects and mechanisms of RCFE grown under low-oxygen conditions on the flavor development of Chinese-style sausage, using GC-MS and 4D label-free proteomics. The GC-MS analysis detected 60 volatile organic compounds, with significant increases in acids, esters, and alcohols following the addition of RCFE (p < 0.01). Fifteen differential flavor compounds were identified as potential biomarkers to distinguish sausages. From a total of 2689 proteins, 364 differentially expressed proteins were identified (p < 0.05, |Log2FC| > 1, and VIP > 1,) in RCFE grown under low- and high-oxygen conditions. KEGG pathway analysis suggested that the RCFE grown under low-oxygen conditions may enhance alcohol and acid levels by upregulating the expression of related enzymes, which subsequently increases ester levels in the sausage.
Collapse
Affiliation(s)
- Xin Nie
- Culinary Science Key Laboratory of Sichuan Provincial Universities, College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
| | - Jingjing Luo
- Culinary Science Key Laboratory of Sichuan Provincial Universities, College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
| | - Hongfan Chen
- Culinary Science Key Laboratory of Sichuan Provincial Universities, College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu Univeristy, Chengdu 610106, China
| | - Haomou Pu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Qiqi Luo
- Culinary Science Key Laboratory of Sichuan Provincial Universities, College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
| | - Xinhui Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu Univeristy, Chengdu 610106, China
| | - Xiaoping Yu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Dayu Liu
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu Univeristy, Chengdu 610106, China
| | - Zhiping Zhao
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu Univeristy, Chengdu 610106, China
| |
Collapse
|
5
|
Stock EK, Terrell KJ, Rayyan AA, Kyndt JA. Complete genome sequence of Cereibacter sphaeroides f. sp. denitrificans strain IL106. Microbiol Resour Announc 2024; 13:e0039224. [PMID: 39016595 PMCID: PMC11321003 DOI: 10.1128/mra.00392-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/09/2024] [Indexed: 07/18/2024] Open
Abstract
Cereibacter sphaeroides is a non-sulfur purple bacterium, one of the most versatile and thoroughly studied species of its kind, can grow on a variety of compounds photoheterotrophically, and is often used in bioremediation. We present the complete genome of Cereibacter sphaeroides f. sp. denitrificans underscoring its unique features.
Collapse
Affiliation(s)
- Emma K. Stock
- College of Science and Technology, Bellevue University, Bellevue, Nebraska, USA
| | - Kaziah J. Terrell
- College of Science and Technology, Bellevue University, Bellevue, Nebraska, USA
| | - Amiera A. Rayyan
- College of Science and Technology, Bellevue University, Bellevue, Nebraska, USA
| | - John A. Kyndt
- College of Science and Technology, Bellevue University, Bellevue, Nebraska, USA
| |
Collapse
|
6
|
Phi MT, Singer H, Zäh F, Haisch C, Schneider S, Op den Camp HJM, Daumann LJ. Assessing Lanthanide-Dependent Methanol Dehydrogenase Activity: The Assay Matters. Chembiochem 2024; 25:e202300811. [PMID: 38269599 DOI: 10.1002/cbic.202300811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Artificial dye-coupled assays have been widely adopted as a rapid and convenient method to assess the activity of methanol dehydrogenases (MDH). Lanthanide(Ln)-dependent XoxF-MDHs are able to incorporate different lanthanides (Lns) in their active site. Dye-coupled assays showed that the earlier Lns exhibit a higher enzyme activity than the late Lns. Despite widespread use, there are limitations: oftentimes a pH of 9 and activators are required for the assay. Moreover, Ln-MDH variants are not obtained by isolation from the cells grown with the respective Ln, but by incubation of an apo-MDH with the Ln. Herein, we report the cultivation of Ln-dependent methanotroph Methylacidiphilum fumariolicum SolV with nine different Lns, the isolation of the respective MDHs and the assessment of the enzyme activity using the dye-coupled assay. We compare these results with a protein-coupled assay using its physiological electron acceptor cytochrome cGJ (cyt cGJ ). Depending on the assay, two distinct trends are observed among the Ln series. The specific enzyme activity of La-, Ce- and Pr-MDH, as measured by the protein-coupled assay, exceeds that measured by the dye-coupled assay. This suggests that early Lns also have a positive effect on the interaction between XoxF-MDH and its cyt cGJ thereby increasing functional efficiency.
Collapse
Affiliation(s)
- Manh Tri Phi
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Helena Singer
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Felix Zäh
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Christoph Haisch
- Faculty of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Sabine Schneider
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Huub J M Op den Camp
- Department of Microbiology, Research Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Lena J Daumann
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
- Chair of Bioinorganic Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
7
|
Armitage JP. Twists and turns: 40 years of investigating how and why bacteria swim. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001432. [PMID: 38363121 PMCID: PMC10924463 DOI: 10.1099/mic.0.001432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Fifty years of research has transformed our understanding of bacterial movement from one of description, based on a limited number of electron micrographs and some low-magnification studies of cells moving towards or away from chemical effectors, to probably the best understood behavioural system in biology. We have a molecular understanding of how bacteria sense and respond to changes in their environment and detailed structural insights into the workings of one of the most complex motor structures we know of. Thanks to advances in genomics we also understand how, through evolution, different species have tuned and adapted a core shared system to optimize behaviour in their specific environment. In this review, I will highlight some of the unexpected findings we made during my over 40-year career, how those findings changed some of our understanding of bacterial behaviour and biochemistry and some of the battles to have those observations accepted.
Collapse
|
8
|
Belmok A, de Almeida FM, Rocha RT, Vizzotto CS, Tótola MR, Ramada MHS, Krüger RH, Kyaw CM, Pappas GJ. Genomic and physiological characterization of Novosphingobium terrae sp. nov., an alphaproteobacterium isolated from Cerrado soil containing a mega-sized chromid. Braz J Microbiol 2023; 54:239-258. [PMID: 36701110 PMCID: PMC9944591 DOI: 10.1007/s42770-022-00900-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 10/02/2022] [Indexed: 01/27/2023] Open
Abstract
A novel bacterial strain, designated GeG2T, was isolated from soils of the native Cerrado, a highly biodiverse savanna-like Brazilian biome. 16S rRNA gene analysis of GeG2T revealed high sequence identity (100%) to the alphaproteobacterium Novosphingobium rosa; however, comparisons with N. rosa DSM 7285T showed several distinctive features, prompting a full characterization of the new strain in terms of physiology, morphology, and, ultimately, its genome. GeG2T cells were Gram-stain-negative bacilli, facultatively anaerobic, motile, positive for catalase and oxidase activities, and starch hydrolysis. Strain GeG2T presented planktonic-sessile dimorphism and cell aggregates surrounded by extracellular matrix and nanometric spherical structures were observed, suggesting the production of exopolysaccharides (EPS) and outer membrane vesicles (OMVs). Despite high 16S rDNA identity, strain GeG2T showed 90.38% average nucleotide identity and 42.60% digital DNA-DNA hybridization identity with N. rosa, below species threshold. Whole-genome assembly revealed four circular replicons: a 4.1 Mb chromosome, a 2.7 Mb extrachromosomal megareplicon, and two plasmids (212.7 and 68.6 kb). The megareplicon contains a few core genes and plasmid-type replication/maintenance systems, consistent with its classification as a chromid. Genome annotation shows a vast repertoire of carbohydrate-active enzymes and genes involved in the degradation of aromatic compounds, highlighting the biotechnological potential of the new isolate. Chemotaxonomic features, including polar lipid and fatty acid profiles, as well as physiological, molecular, and whole-genome comparisons showed significant differences between strain GeG2T and N. rosa, indicating that it represents a novel species, for which the name Novosphingobium terrae is proposed. The type strain is GeG2T (= CBMAI 2313T = CBAS 753 T).
Collapse
Affiliation(s)
- Aline Belmok
- Laboratório de Microbiologia, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil.
| | - Felipe Marques de Almeida
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - Rodrigo Theodoro Rocha
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - Carla Simone Vizzotto
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental, Faculdade de Tecnologia, Universidade de Brasília, Brasilia, DF, Brazil
- Laboratório de Enzimologia, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - Marcos Rogério Tótola
- Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Marcelo Henrique Soller Ramada
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasilia, DF, Brazil
- Programa de Pós-Graduação em Gerontologia, Universidade Católica de Brasília, Brasilia, DF, Brazil
| | - Ricardo Henrique Krüger
- Laboratório de Enzimologia, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - Cynthia Maria Kyaw
- Laboratório de Microbiologia, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil.
| | - Georgios J Pappas
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil.
| |
Collapse
|
9
|
Armitage JP. Swimming Using a Unidirectionally Rotating, Single Stopping Flagellum in the Alpha Proteobacterium Rhodobacter sphaeroides. Front Microbiol 2022; 13:893524. [PMID: 35722353 PMCID: PMC9198570 DOI: 10.3389/fmicb.2022.893524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Rhodobacter sphaeroides has 2 flagellar operons, one, Fla2, encoding a polar tuft that is not expressed under laboratory conditions and a second, Fla1, encoding a single randomly positioned flagellum. This single flagellum, unlike the flagella of other species studied, only rotates in a counterclockwise direction. Long periods of smooth swimming are punctuated by short stops, caused by the binding of one of 3 competing CheY homologs to the motor. During a stop, the motor is locked, not freely rotating, and the flagellar filament changes conformation to a short wavelength, large amplitude structure, reforming into a driving helix when the motor restarts. The cell has been reoriented during the brief stop and the next period of smooth swimming is a new direction.
Collapse
Affiliation(s)
- Judith P Armitage
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Le NTM, Le VV, Shin D, Park SM. Growth-promoting Effect of Alginate Oligosaccharides on Rhodobacter sphaeroides. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
A previously unrecognized membrane protein in the Rhodobacter sphaeroides LH1-RC photocomplex. Nat Commun 2021; 12:6300. [PMID: 34728609 PMCID: PMC8564508 DOI: 10.1038/s41467-021-26561-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/01/2021] [Indexed: 11/27/2022] Open
Abstract
Rhodobacter (Rba.) sphaeroides is the most widely used model organism in bacterial photosynthesis. The light-harvesting-reaction center (LH1-RC) core complex of this purple phototroph is characterized by the co-existence of monomeric and dimeric forms, the presence of the protein PufX, and approximately two carotenoids per LH1 αβ-polypeptides. Despite many efforts, structures of the Rba. sphaeroides LH1-RC have not been obtained at high resolutions. Here we report a cryo-EM structure of the monomeric LH1-RC from Rba. sphaeroides strain IL106 at 2.9 Å resolution. The LH1 complex forms a C-shaped structure composed of 14 αβ-polypeptides around the RC with a large ring opening. From the cryo-EM density map, a previously unrecognized integral membrane protein, referred to as protein-U, was identified. Protein-U has a U-shaped conformation near the LH1-ring opening and was annotated as a hypothetical protein in the Rba. sphaeroides genome. Deletion of protein-U resulted in a mutant strain that expressed a much-reduced amount of the dimeric LH1-RC, indicating an important role for protein-U in dimerization of the LH1-RC complex. PufX was located opposite protein-U on the LH1-ring opening, and both its position and conformation differed from that of previous reports of dimeric LH1-RC structures obtained at low-resolution. Twenty-six molecules of the carotenoid spheroidene arranged in two distinct configurations were resolved in the Rba. sphaeroides LH1 and were positioned within the complex to block its channels. Our findings offer an exciting new view of the core photocomplex of Rba. sphaeroides and the connections between structure and function in bacterial photocomplexes in general. Rhodobacter (Rba.) sphaeroides is a model organism for studying bacterial photosynthesis. Here, the authors present the 2.9 Å cryo-EM structure of the monomeric light-harvesting-reaction center core complex from Rba. sphaeroides strain IL106, which revealed the position and conformation of PufX and the presence of an additional component protein-U, an integral membrane protein.
Collapse
|
12
|
Jun D, Zhang S, Grzędowski AJ, Mahey A, Beatty JT, Bizzotto D. Correlating structural assemblies of photosynthetic reaction centers on a gold electrode and the photocurrent - potential response. iScience 2021; 24:102500. [PMID: 34113832 PMCID: PMC8170006 DOI: 10.1016/j.isci.2021.102500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/22/2021] [Accepted: 04/28/2021] [Indexed: 11/20/2022] Open
Abstract
The use of biomacromolecules is a nascent development in clean alternative energies. In applications of biosensors and biophotovoltaic devices, the bacterial photosynthetic reaction center (RC) is a protein-pigment complex that has been commonly interfaced with electrodes, in large part to take advantage of the long-lived and high efficiency of charge separation. We investigated assemblies of RCs on an electrode that range from monolayer to multilayers by measuring the photocurrent produced when illuminated by an intensity-modulated excitation light source. In addition, atomic force microscopy and modeling of the photocurrent with the Marcus-Hush-Chidsey theory detailed the reorganization energy for the electron transfer process, which also revealed changes in the RC local environment due to the adsorbed conformations. The local environment in which the RCs are embedded significantly influenced photocurrent generation, which has implications for electron transfer of other biomacromolecules deposited on a surface in sensor and photovoltaic applications employing a redox electrolyte.
Collapse
Affiliation(s)
- Daniel Jun
- Advanced Materials and Process Engineering Laboratory, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Sylvester Zhang
- Advanced Materials and Process Engineering Laboratory, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Adrian Jan Grzędowski
- Advanced Materials and Process Engineering Laboratory, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Amita Mahey
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - J. Thomas Beatty
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Dan Bizzotto
- Advanced Materials and Process Engineering Laboratory, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
13
|
Orsi E, Beekwilder J, Eggink G, Kengen SWM, Weusthuis RA. The transition of Rhodobacter sphaeroides into a microbial cell factory. Biotechnol Bioeng 2020; 118:531-541. [PMID: 33038009 PMCID: PMC7894463 DOI: 10.1002/bit.27593] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/29/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022]
Abstract
Microbial cell factories are the workhorses of industrial biotechnology and improving their performances can significantly optimize industrial bioprocesses. Microbial strain engineering is often employed for increasing the competitiveness of bio‐based product synthesis over more classical petroleum‐based synthesis. Recently, efforts for strain optimization have been standardized within the iterative concept of “design‐build‐test‐learn” (DBTL). This approach has been successfully employed for the improvement of traditional cell factories like Escherichia coli and Saccharomyces cerevisiae. Within the past decade, several new‐to‐industry microorganisms have been investigated as novel cell factories, including the versatile α‐proteobacterium Rhodobacter sphaeroides. Despite its history as a laboratory strain for fundamental studies, there is a growing interest in this bacterium for its ability to synthesize relevant compounds for the bioeconomy, such as isoprenoids, poly‐β‐hydroxybutyrate, and hydrogen. In this study, we reflect on the reasons for establishing R. sphaeroides as a cell factory from the perspective of the DBTL concept. Moreover, we discuss current and future opportunities for extending the use of this microorganism for the bio‐based economy. We believe that applying the DBTL pipeline for R. sphaeroides will further strengthen its relevance as a microbial cell factory. Moreover, the proposed use of strain engineering via the DBTL approach may be extended to other microorganisms that have not been critically investigated yet for industrial applications.
Collapse
Affiliation(s)
- Enrico Orsi
- Bioprocess Engineering, Wageningen University, Wageningen, The Netherlands.,Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Gerrit Eggink
- Bioprocess Engineering, Wageningen University, Wageningen, The Netherlands.,Wageningen Food and Biobased Research, Wageningen, The Netherlands
| | - Servé W M Kengen
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
14
|
Draft Genome Assembly of Rhodobacter sphaeroides 2.4.1 Substrain H2 from Nanopore Data. Microbiol Resour Announc 2020; 9:9/29/e00414-20. [PMID: 32675180 PMCID: PMC7365791 DOI: 10.1128/mra.00414-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodobacter sphaeroides is a purple bacterium with complex genomic architecture. Here, a draft genome is reported for R. sphaeroides strain 2.4.1 substrain H2, which was generated exclusively from Nanopore sequencing data. Rhodobacter sphaeroides is a purple bacterium with complex genomic architecture. Here, a draft genome is reported for R. sphaeroides strain 2.4.1 substrain H2, which was generated exclusively from Nanopore sequencing data.
Collapse
|
15
|
Camarena L, Dreyfus G. Living in a Foster Home: The Single Subpolar Flagellum Fla1 of Rhodobacter sphaeroides. Biomolecules 2020; 10:E774. [PMID: 32429424 PMCID: PMC7277832 DOI: 10.3390/biom10050774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/14/2022] Open
Abstract
Rhodobacter sphaeroides is an α-proteobacterium that has the particularity of having two functional flagellar systems used for swimming. Under the growth conditions commonly used in the laboratory, a single subpolar flagellum that traverses the cell membrane, is assembled on the surface. This flagellum has been named Fla1. Phylogenetic analyses have suggested that this flagellar genetic system was acquired from an ancient γ-proteobacterium. It has been shown that this flagellum has components homologous to those present in other γ-proteobacteria such as the H-ring characteristic of the Vibrio species. Other features of this flagellum such as a straight hook, and a prominent HAP region have been studied and the molecular basis underlying these features has been revealed. It has also been shown that FliL, and the protein MotF, mainly found in several species of the family Rhodobacteraceae, contribute to remodel the amphipathic region of MotB, known as the plug, in order to allow flagellar rotation. In the absence of the plug region of MotB, FliL and MotF are dispensable. In this review we have covered the most relevant aspects of the Fla1 flagellum of this remarkable photosynthetic bacterium.
Collapse
Affiliation(s)
- Laura Camarena
- Depto. Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX 04510, Mexico
| | - Georges Dreyfus
- Depto. Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX 04510, Mexico
| |
Collapse
|
16
|
Jun D, Richardson-Sanchez T, Mahey A, Murphy MEP, Fernandez RC, Beatty JT. Introduction of the Menaquinone Biosynthetic Pathway into Rhodobacter sphaeroides and de Novo Synthesis of Menaquinone for Incorporation into Heterologously Expressed Integral Membrane Proteins. ACS Synth Biol 2020; 9:1190-1200. [PMID: 32271543 DOI: 10.1021/acssynbio.0c00066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Quinones are redox-active molecules that transport electrons and protons in organelles and cell membranes during respiration and photosynthesis. In addition to the fundamental importance of these processes in supporting life, there has been considerable interest in exploiting their mechanisms for diverse applications ranging from medical advances to innovative biotechnologies. Such applications include novel treatments to target pathogenic bacterial infections and fabricating biohybrid solar cells as an alternative renewable energy source. Ubiquinone (UQ) is the predominant charge-transfer mediator in both respiration and photosynthesis. Other quinones, such as menaquinone (MK), are additional or alternative redox mediators, for example in bacterial photosynthesis of species such as Thermochromatium tepidum and Chloroflexus aurantiacus. Rhodobacter sphaeroides has been used extensively to study electron transfer processes, and recently as a platform to produce integral membrane proteins from other species. To expand the diversity of redox mediators in R. sphaeroides, nine Escherichia coli genes encoding the synthesis of MK from chorismate and polyprenyl diphosphate were assembled into a synthetic operon in a newly designed expression plasmid. We show that the menFDHBCE, menI, menA, and ubiE genes are sufficient for MK synthesis when expressed in R. sphaeroides cells, on the basis of high performance liquid chromatography and mass spectrometry. The T. tepidum and C. aurantiacus photosynthetic reaction centers produced in R. sphaeroides were found to contain MK. We also measured in vitro charge recombination kinetics of the T. tepidum reaction center to demonstrate that the MK is redox-active and incorporated into the QA pocket of this heterologously expressed reaction center.
Collapse
Affiliation(s)
- Daniel Jun
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Tomas Richardson-Sanchez
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Amita Mahey
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Michael E. P. Murphy
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Rachel C. Fernandez
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - J. Thomas Beatty
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
17
|
Draft Genome Sequences of Four Rhodobacter sphaeroides Strains Isolated from a Marine Ecosystem. Microbiol Resour Announc 2019; 8:MRA01648-18. [PMID: 30687844 PMCID: PMC6346176 DOI: 10.1128/mra.01648-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 12/13/2018] [Indexed: 11/20/2022] Open
Abstract
Rhodobacter sphaeroides is an alphaproteobacterium found in freshwater and marine ecosystems. To better understand the metabolic diversity within this species, we isolated and sequenced four R. sphaeroides isolates obtained from Trunk River in Woods Hole, Massachusetts. Rhodobacter sphaeroides is an alphaproteobacterium found in freshwater and marine ecosystems. To better understand the metabolic diversity within this species, we isolated and sequenced four R. sphaeroides isolates obtained from Trunk River in Woods Hole, Massachusetts. Here, we report the draft genome sequences of R. sphaeroides AB24, AB25, AB27, and AB29.
Collapse
|
18
|
Refojo PN, Sena FV, Calisto F, Sousa FM, Pereira MM. The plethora of membrane respiratory chains in the phyla of life. Adv Microb Physiol 2019; 74:331-414. [PMID: 31126533 DOI: 10.1016/bs.ampbs.2019.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The diversity of microbial cells is reflected in differences in cell size and shape, motility, mechanisms of cell division, pathogenicity or adaptation to different environmental niches. All these variations are achieved by the distinct metabolic strategies adopted by the organisms. The respiratory chains are integral parts of those strategies especially because they perform the most or, at least, most efficient energy conservation in the cell. Respiratory chains are composed of several membrane proteins, which perform a stepwise oxidation of metabolites toward the reduction of terminal electron acceptors. Many of these membrane proteins use the energy released from the oxidoreduction reaction they catalyze to translocate charges across the membrane and thus contribute to the establishment of the membrane potential, i.e. they conserve energy. In this work we illustrate and discuss the composition of the respiratory chains of different taxonomic clades, based on bioinformatic analyses and on biochemical data available in the literature. We explore the diversity of the respiratory chains of Animals, Plants, Fungi and Protists kingdoms as well as of Prokaryotes, including Bacteria and Archaea. The prokaryotic phyla studied in this work are Gammaproteobacteria, Betaproteobacteria, Epsilonproteobacteria, Deltaproteobacteria, Alphaproteobacteria, Firmicutes, Actinobacteria, Chlamydiae, Verrucomicrobia, Acidobacteria, Planctomycetes, Cyanobacteria, Bacteroidetes, Chloroflexi, Deinococcus-Thermus, Aquificae, Thermotogae, Deferribacteres, Nitrospirae, Euryarchaeota, Crenarchaeota and Thaumarchaeota.
Collapse
Affiliation(s)
- Patrícia N Refojo
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipa Calisto
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal; University of Lisboa, Faculty of Sciences, BIOISI- Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| |
Collapse
|
19
|
Bochkareva OO, Moroz EV, Davydov II, Gelfand MS. Genome rearrangements and selection in multi-chromosome bacteria Burkholderia spp. BMC Genomics 2018; 19:965. [PMID: 30587126 PMCID: PMC6307245 DOI: 10.1186/s12864-018-5245-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 11/14/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The genus Burkholderia consists of species that occupy remarkably diverse ecological niches. Its best known members are important pathogens, B. mallei and B. pseudomallei, which cause glanders and melioidosis, respectively. Burkholderia genomes are unusual due to their multichromosomal organization, generally comprised of 2-3 chromosomes. RESULTS We performed integrated genomic analysis of 127 Burkholderia strains. The pan-genome is open with the saturation to be reached between 86,000 and 88,000 genes. The reconstructed rearrangements indicate a strong avoidance of intra-replichore inversions that is likely caused by selection against the transfer of large groups of genes between the leading and the lagging strands. Translocated genes also tend to retain their position in the leading or the lagging strand, and this selection is stronger for large syntenies. Integrated reconstruction of chromosome rearrangements in the context of strains phylogeny reveals parallel rearrangements that may indicate inversion-based phase variation and integration of new genomic islands. In particular, we detected parallel inversions in the second chromosomes of B. pseudomallei with breakpoints formed by genes encoding membrane components of multidrug resistance complex, that may be linked to a phase variation mechanism. Two genomic islands, spreading horizontally between chromosomes, were detected in the B. cepacia group. CONCLUSIONS This study demonstrates the power of integrated analysis of pan-genomes, chromosome rearrangements, and selection regimes. Non-random inversion patterns indicate selective pressure, inversions are particularly frequent in a recent pathogen B. mallei, and, together with periods of positive selection at other branches, may indicate adaptation to new niches. One such adaptation could be a possible phase variation mechanism in B. pseudomallei.
Collapse
Affiliation(s)
- Olga O. Bochkareva
- Kharkevich Institute for Information Transmission Problems, Moscow, Russia
- Center of Life Sciences Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Elena V. Moroz
- Kharkevich Institute for Information Transmission Problems, Moscow, Russia
| | - Iakov I. Davydov
- Department of Ecology and Evolution & Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Mikhail S. Gelfand
- Kharkevich Institute for Information Transmission Problems, Moscow, Russia
- Center of Life Sciences Skolkovo Institute of Science and Technology, Moscow, Russia
- Faculty of Computer Science, Higher School of Economics, Moscow, Russia
| |
Collapse
|
20
|
Stoian N, Kaganjo J, Zeilstra-Ryalls J. Resolving the roles of the Rhodobacter sphaeroides HemA and HemT 5-aminolevulinic acid synthases. Mol Microbiol 2018; 110:1011-1029. [PMID: 30232811 DOI: 10.1111/mmi.14133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 11/30/2022]
Abstract
Strains of the phototrophic alpha-proteobacterium Rhodobacter sphaeroides vary in the number of enzymes catalyzing the formation of 5-aminolevulinic acid (ALA synthases) that are encoded in their genomes. All have hemA, but not all have hemT. This study compared transcription of these genes, and also properties of their products among three wild-type strains; 2.4.3 has hemA alone, 2.4.1 and 2.4.9 have both hemA and hemT. Using lacZ reporter plasmids all hemA genes were found to be upregulated under anaerobic conditions, but induction amplitudes differ. hemT is transcriptionally silent in 2.4.1 but actively transcribed in 2.4.9, and strongly upregulated under anaerobic-dark growth conditions when cells are respiring dimethyl sulfoxide, vs. aerobic-dark or phototrophic (anaerobic-light) conditions. Two extracytoplasmic function (ECF)-type sigma factors present in 2.4.9, but absent from 2.4.1 are directly involved in hemT transcription. Kinetic properties of the ALA synthases of all three strains were similar, but HemT enzymes are far less sensitive to feedback inhibition by hemin than HemA enzymes, and HemT is less active under oxidizing conditions. A model is presented that compares and contrast events in strains 2.4.1 and 2.4.9.
Collapse
Affiliation(s)
- Natalie Stoian
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, USA
| | - James Kaganjo
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, USA
| | - Jill Zeilstra-Ryalls
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, USA
| |
Collapse
|
21
|
Förstner KU, Reuscher CM, Haberzettl K, Weber L, Klug G. RNase E cleavage shapes the transcriptome ofRhodobacter sphaeroidesand strongly impacts phototrophic growth. Life Sci Alliance 2018; 1:e201800080. [PMID: 30456366 PMCID: PMC6238624 DOI: 10.26508/lsa.201800080] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/13/2018] [Accepted: 07/13/2018] [Indexed: 11/24/2022] Open
Abstract
This study identifies the cleavage sites of the endoribonuclease RNase E in the Rhodobacter sphaeroides transcriptome and demonstrates its effect on oxidative stress resistance and phototrophic growth. Bacteria adapt to changing environmental conditions by rapid changes in their transcriptome. This is achieved not only by adjusting rates of transcription but also by processing and degradation of RNAs. We applied TIER-Seq (transiently inactivating an endoribonuclease followed by RNA-Seq) for the transcriptome-wide identification of RNase E cleavage sites and of 5′ RNA ends, which are enriched when RNase E activity is reduced in Rhodobacter sphaeroides. These results reveal the importance of RNase E for the maturation and turnover of mRNAs, rRNAs, and sRNAs in this guanine-cytosine-rich α-proteobacterium, some of the latter have well-described functions in the oxidative stress response. In agreement with this, a role of RNase E in the oxidative stress response is demonstrated. A remarkably strong phenotype of a mutant with reduced RNase E activity was observed regarding the formation of photosynthetic complexes and phototrophic growth, whereas there was no effect on chemotrophic growth.
Collapse
Affiliation(s)
- Konrad U Förstner
- German National Library of Medicine—Information Center for Life Sciences, Cologne, Germany
- Technical University of Cologne, Faculty for Information and Communication Sciences, Cologne, Germany
- Core Unit Systems Medicine, Institutes of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
- Correspondence:
| | - Carina M Reuscher
- Institut für Mikrobiologie und Molekularbiologie, Interdisciplinary Research Center for Biosystems, Universität Giessen, Giessen, Germany
| | - Kerstin Haberzettl
- Institut für Mikrobiologie und Molekularbiologie, Interdisciplinary Research Center for Biosystems, Universität Giessen, Giessen, Germany
| | - Lennart Weber
- Institut für Mikrobiologie und Molekularbiologie, Interdisciplinary Research Center for Biosystems, Universität Giessen, Giessen, Germany
| | - Gabriele Klug
- Institut für Mikrobiologie und Molekularbiologie, Interdisciplinary Research Center for Biosystems, Universität Giessen, Giessen, Germany
| |
Collapse
|
22
|
diCenzo GC, Finan TM. The Divided Bacterial Genome: Structure, Function, and Evolution. Microbiol Mol Biol Rev 2017; 81:e00019-17. [PMID: 28794225 PMCID: PMC5584315 DOI: 10.1128/mmbr.00019-17] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Approximately 10% of bacterial genomes are split between two or more large DNA fragments, a genome architecture referred to as a multipartite genome. This multipartite organization is found in many important organisms, including plant symbionts, such as the nitrogen-fixing rhizobia, and plant, animal, and human pathogens, including the genera Brucella, Vibrio, and Burkholderia. The availability of many complete bacterial genome sequences means that we can now examine on a broad scale the characteristics of the different types of DNA molecules in a genome. Recent work has begun to shed light on the unique properties of each class of replicon, the unique functional role of chromosomal and nonchromosomal DNA molecules, and how the exploitation of novel niches may have driven the evolution of the multipartite genome. The aims of this review are to (i) outline the literature regarding bacterial genomes that are divided into multiple fragments, (ii) provide a meta-analysis of completed bacterial genomes from 1,708 species as a way of reviewing the abundant information present in these genome sequences, and (iii) provide an encompassing model to explain the evolution and function of the multipartite genome structure. This review covers, among other topics, salient genome terminology; mechanisms of multipartite genome formation; the phylogenetic distribution of multipartite genomes; how each part of a genome differs with respect to genomic signatures, genetic variability, and gene functional annotation; how each DNA molecule may interact; as well as the costs and benefits of this genome structure.
Collapse
Affiliation(s)
- George C diCenzo
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Turlough M Finan
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
23
|
Chandrashekhar K, Kassem II, Rajashekara G. Campylobacter jejuni transducer like proteins: Chemotaxis and beyond. Gut Microbes 2017; 8:323-334. [PMID: 28080213 PMCID: PMC5570417 DOI: 10.1080/19490976.2017.1279380] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/12/2016] [Accepted: 12/29/2016] [Indexed: 02/03/2023] Open
Abstract
Chemotaxis, a process that mediates directional motility toward or away from chemical stimuli (chemoeffectors/ligands that can be attractants or repellents) in the environment, plays an important role in the adaptation of Campylobacter jejuni to disparate niches. The chemotaxis system consists of core signal transduction proteins and methyl-accepting-domain-containing Transducer like proteins (Tlps). Ligands binding to Tlps relay a signal to chemotaxis proteins in the cytoplasm which initiate a signal transduction cascade, culminating into a directional flagellar movement. Tlps facilitate substrate-specific chemotaxis in C. jejuni, which plays an important role in the pathogen's adaptation, pathobiology and colonization of the chicken gastrointestinal tract. However, the role of Tlps in C. jejuni's host tissue specific colonization, physiology and virulence remains not completely understood. Based on recent studies, it can be predicted that Tlps might be important targets for developing strategies to control C. jejuni via vaccines and antimicrobials.
Collapse
Affiliation(s)
- Kshipra Chandrashekhar
- Department of Food Animal Health and Preventive Medicine, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, Ohio, USA
| | - Issmat I. Kassem
- Department of Food Animal Health and Preventive Medicine, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, Ohio, USA
| | - Gireesh Rajashekara
- Department of Food Animal Health and Preventive Medicine, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, Ohio, USA
| |
Collapse
|
24
|
Abstract
The photosynthetic bacterium R. sphaeroides expresses two flagellar systems that are encoded by two complete gene clusters that have distinct phylogenetic origins. The isolation and purification of the Filament-Hook Basal Body (F-HBB) or the Hook Basal Body (HBB) structure is a troublesome task given the complexity of this nano-machine that is composed of multiple loosely bound substructures that can be lost during the isolation and purification procedure. A successful procedure requires adjustments to the standard method established for Salmonella. In this chapter, we describe a detailed protocol to isolate and purify the Fla2 F-HBB and HBB from R. sphaeroides a photosynthetic bacterium that has a complex intracellular membrane system that frequently interferes with isolation of high-quality samples.
Collapse
|
25
|
Varela L, Bell CH, Armitage JP, Redfield C. (1)H, (13)C and (15)N resonance assignments for the response regulator CheY3 from Rhodobacter sphaeroides. BIOMOLECULAR NMR ASSIGNMENTS 2016; 10:373-378. [PMID: 27468962 PMCID: PMC5039241 DOI: 10.1007/s12104-016-9703-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/22/2016] [Indexed: 05/29/2023]
Abstract
Rhodobacter sphaeroides has emerged as a model system for studies of the complex chemotaxis pathways that are a hallmark of many non-enteric bacteria. The genome of R. sphaeroides encodes two sets of flagellar genes, fla1 and fla2, that are controlled by three different operons. Each operon encodes homologues of most of the proteins required for the well-studied E. coli chemotaxis pathway. R. sphaeroides has six homologues of the response regulator CheY that are localized to and are regulated by different clusters of chemosensory proteins in the cell and have different effects on chemotaxis. CheY6 is the major CheY stopping the fla1 flagellar motor and associated with a cytoplasmically localised chemosensory pathway. CheY3 and CheY4 are associated with a membrane localised polar chemosensory cluster, and can bind to but not stop the motor. CheY6 and either CheY3 or CheY4 are required for chemotaxis. We are using NMR spectroscopy to characterise and compare the structure and dynamics of CheY3 and CheY6 in solution. We are interested in defining the conformational changes that occur upon activation of these two proteins and to identify differences in their properties that can explain the different functions they play in chemotaxis in R. sphaeroides. Here we present the (1)H, (13)C and (15)N assignments for CheY3 in its active, inactive and Mg(2+)-free apo form. These assignments provide the starting point for detailed investigations of the structure and function of CheY3.
Collapse
Affiliation(s)
- Lorena Varela
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Christian H Bell
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Judith P Armitage
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| | - Christina Redfield
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
26
|
Santillán O, Ramírez-Romero MA, Lozano L, Checa A, Encarnación SM, Dávila G. Region 4 of Rhizobium etli Primary Sigma Factor (SigA) Confers Transcriptional Laxity in Escherichia coli. Front Microbiol 2016; 7:1078. [PMID: 27468278 PMCID: PMC4943231 DOI: 10.3389/fmicb.2016.01078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/27/2016] [Indexed: 11/13/2022] Open
Abstract
Sigma factors are RNA polymerase subunits engaged in promoter recognition and DNA strand separation during transcription initiation in bacteria. Primary sigma factors are responsible for the expression of housekeeping genes and are essential for survival. RpoD, the primary sigma factor of Escherichia coli, a γ-proteobacteria, recognizes consensus promoter sequences highly similar to those of some α-proteobacteria species. Despite this resemblance, RpoD is unable to sustain transcription from most of the α-proteobacterial promoters tested so far. In contrast, we have found that SigA, the primary sigma factor of Rhizobium etli, an α-proteobacteria, is able to transcribe E. coli promoters, although it exhibits only 48% identity (98% coverage) to RpoD. We have called this the transcriptional laxity phenomenon. Here, we show that SigA partially complements the thermo-sensitive deficiency of RpoD285 from E. coli strain UQ285 and that the SigA region σ4 is responsible for this phenotype. Sixteen out of 74 residues (21.6%) within region σ4 are variable between RpoD and SigA. Mutating these residues significantly improves SigA ability to complement E. coli UQ285. Only six of these residues fall into positions already known to interact with promoter DNA and to comprise a helix-turn-helix motif. The remaining variable positions are located on previously unexplored sites inside region σ4, specifically into the first two α-helices of the region. Neither of the variable positions confined to these helices seem to interact directly with promoter sequence; instead, we adduce that these residues participate allosterically by contributing to correct region folding and/or positioning of the HTH motif. We propose that transcriptional laxity is a mechanism for ensuring transcription in spite of naturally occurring mutations from endogenous promoters and/or horizontally transferred DNA sequences, allowing survival and fast environmental adaptation of α-proteobacteria.
Collapse
Affiliation(s)
- Orlando Santillán
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | | | - Luis Lozano
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | - Alberto Checa
- Programa de Genómica Funcional de Procariontes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | - Sergio M Encarnación
- Programa de Genómica Funcional de Procariontes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | - Guillermo Dávila
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico; Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de MéxicoJuriquilla, Mexico
| |
Collapse
|
27
|
Niederman RA. Development and dynamics of the photosynthetic apparatus in purple phototrophic bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:232-46. [PMID: 26519773 DOI: 10.1016/j.bbabio.2015.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/22/2015] [Accepted: 10/25/2015] [Indexed: 11/30/2022]
Abstract
The purple bacterium Rhodobacter sphaeroides provides a useful model system for studies of the assembly and dynamics of bacterial photosynthetic membranes. For the nascent developing membrane, proteomic analyses showed an ~2-fold enrichment in general membrane assembly factors, compared to chromatophores. When the protonophore carbonyl-cyanide m-chlorophenyl-hydrazone (CCCP) was added to an ICM inducing culture, an ~2-fold elevation in spectral counts vs. the control was seen for the SecA translocation ATPase, the preprotein translocase SecY, SecD and SecF insertion components, and chaperonins DnaJ and DnaK, which act early in the assembly process. It is suggested that these factors accumulated with their nascent polypeptides, as putative assembly intermediates in a functionally arrested state. Since in Synechocystis PCC 6803, a link has been established between Chl delivery involving the high-light HilD protein and the SecY/YidC-requiring cotranslational insertion of nascent polypeptides, such a connection between BChl biosynthesis and insertion and folding of nascent Rba. sphaeroides BChl binding proteins is likely to also occur. AFM imaging studies of the formation of the reaction center (RC)-light harvesting 1 (LH1) complex suggested a cooperative assembly mechanism in which, following the association between the RC template and the initial LH1 unit, addition of successive LH1 units to the RC drives the assembly process to completion. Alterations in membrane dynamics as the developing membrane becomes filled with LH2-rings were assessed by fluorescence induction/relaxation kinetics, which showed a slowing in RC electron transfer rate thought to mainly reflect alterations in donor side electron transfer. This was attributed to an increased distance for electron flow in cytochrome c2 between the RC and cytochrome bc1 complexes, as suggested in the current structural models. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof Conrad Mullineaux.
Collapse
Affiliation(s)
- Robert A Niederman
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, New Jersey 08854-8082, United States.
| |
Collapse
|
28
|
Effects of the protonophore carbonyl-cyanide m-chlorophenylhydrazone on intracytoplasmic membrane assembly in Rhodobacter sphaeroides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1119-28. [DOI: 10.1016/j.bbabio.2015.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 11/20/2022]
|
29
|
Austin S, Kontur WS, Ulbrich A, Oshlag Z, Zhang W, Higbee A, Zhang Y, Coon JJ, Hodge DB, Donohue TJ, Noguera DR. Metabolism of Multiple Aromatic Compounds in Corn Stover Hydrolysate by Rhodopseudomonas palustris. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:8914-22. [PMID: 26121369 PMCID: PMC5031247 DOI: 10.1021/acs.est.5b02062] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Lignocellulosic biomass hydrolysates hold great potential as a feedstock for microbial biofuel production, due to their high concentration of fermentable sugars. Present at lower concentrations are a suite of aromatic compounds that can inhibit fermentation by biofuel-producing microbes. We have developed a microbial-mediated strategy for removing these aromatic compounds, using the purple nonsulfur bacterium Rhodopseudomonas palustris. When grown photoheterotrophically in an anaerobic environment, R. palustris removes most of the aromatics from ammonia fiber expansion (AFEX) treated corn stover hydrolysate (ACSH), while leaving the sugars mostly intact. We show that R. palustris can metabolize a host of aromatic substrates in ACSH that have either been previously described as unable to support growth, such as methoxylated aromatics, and those that have not yet been tested, such as aromatic amides. Removing the aromatics from ACSH with R. palustris, allowed growth of a second microbe that could not grow in the untreated ACSH. By using defined mutants, we show that most of these aromatic compounds are metabolized by the benzoyl-CoA pathway. We also show that loss of enzymes in the benzoyl-CoA pathway prevents total degradation of the aromatics in the hydrolysate, and instead allows for biological transformation of this suite of aromatics into selected aromatic compounds potentially recoverable as an additional bioproduct.
Collapse
Affiliation(s)
- Samantha Austin
- Department of Civil and Environmental Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| | - Wayne S. Kontur
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| | - Arne Ulbrich
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| | - Zachary Oshlag
- Department of Civil and Environmental Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| | - Weiping Zhang
- Department of Civil and Environmental Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| | - Alan Higbee
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| | - Yaoping Zhang
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| | - David B. Hodge
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biosystems & Agricultural Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Timothy J. Donohue
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| | - Daniel R. Noguera
- Department of Civil and Environmental Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
30
|
Structural Characterization of the Fla2 Flagellum of Rhodobacter sphaeroides. J Bacteriol 2015; 197:2859-66. [PMID: 26124240 DOI: 10.1128/jb.00170-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/08/2015] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED Rhodobacter sphaeroides is a free-living alphaproteobacterium that contains two clusters of functional flagellar genes in its genome: one acquired by horizontal gene transfer (fla1) and one that is endogenous (fla2). We have shown that the Fla2 system is normally quiescent and under certain conditions produces polar flagella, while the Fla1 system is always active and produces a single flagellum at a nonpolar position. In this work we purified and characterized the structure and analyzed the composition of the Fla2 flagellum. The number of polar filaments per cell is 4.6 on average. By comparison with the Fla1 flagellum, the prominent features of the ultra structure of the Fla2 HBB are the absence of an H ring, thick and long hooks, and a smoother zone at the hook-filament junction. The Fla2 helical filaments have a pitch of 2.64 μm and a diameter of 1.4 μm, which are smaller than those of the Fla1 filaments. Fla2 filaments undergo polymorphic transitions in vitro and showed two polymorphs: curly (right-handed) and coiled. However, in vivo in free-swimming cells, we observed only a bundle of filaments, which should probably be left-handed. Together, our results indicate that Fla2 cell produces multiple right-handed polar flagella, which are not conventional but exceptional. IMPORTANCE R. sphaeroides possesses two functional sets of flagellar genes. The fla1 genes are normally expressed in the laboratory and were acquired by horizontal transfer. The fla2 genes are endogenous and are expressed in a Fla1(-) mutant grown phototrophically and in the absence of organic acids. The Fla1 system produces a single lateral or subpolar flagellum, and the Fla2 system produces multiple polar flagella. The two kinds of flagella are never expressed simultaneously, and both are used for swimming in liquid media. The two sets of genes are certainly ready for responding to specific environmental conditions. The characterization of the Fla2 system will help us to understand its role in the physiology of this microorganism.
Collapse
|
31
|
Marçais G, Yorke JA, Zimin A. QuorUM: An Error Corrector for Illumina Reads. PLoS One 2015; 10:e0130821. [PMID: 26083032 PMCID: PMC4471408 DOI: 10.1371/journal.pone.0130821] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 05/26/2015] [Indexed: 11/18/2022] Open
Abstract
Motivation Illumina Sequencing data can provide high coverage of a genome by relatively short (most often 100 bp to 150 bp) reads at a low cost. Even with low (advertised 1%) error rate, 100 × coverage Illumina data on average has an error in some read at every base in the genome. These errors make handling the data more complicated because they result in a large number of low-count erroneous k-mers in the reads. However, there is enough information in the reads to correct most of the sequencing errors, thus making subsequent use of the data (e.g. for mapping or assembly) easier. Here we use the term “error correction” to denote the reduction in errors due to both changes in individual bases and trimming of unusable sequence. We developed an error correction software called QuorUM. QuorUM is mainly aimed at error correcting Illumina reads for subsequent assembly. It is designed around the novel idea of minimizing the number of distinct erroneous k-mers in the output reads and preserving the most true k-mers, and we introduce a composite statistic π that measures how successful we are at achieving this dual goal. We evaluate the performance of QuorUM by correcting actual Illumina reads from genomes for which a reference assembly is available. Results We produce trimmed and error-corrected reads that result in assemblies with longer contigs and fewer errors. We compared QuorUM against several published error correctors and found that it is the best performer in most metrics we use. QuorUM is efficiently implemented making use of current multi-core computing architectures and it is suitable for large data sets (1 billion bases checked and corrected per day per core). We also demonstrate that a third-party assembler (SOAPdenovo) benefits significantly from using QuorUM error-corrected reads. QuorUM error corrected reads result in a factor of 1.1 to 4 improvement in N50 contig size compared to using the original reads with SOAPdenovo for the data sets investigated. Availability QuorUM is distributed as an independent software package and as a module of the MaSuRCA assembly software. Both are available under the GPL open source license at http://www.genome.umd.edu. Contact gmarcais@umd.edu.
Collapse
Affiliation(s)
- Guillaume Marçais
- IPST, University of Maryland, College Park, MD, USA
- * E-mail: (AZ), (GM)
| | | | - Aleksey Zimin
- IPST, University of Maryland, College Park, MD, USA
- * E-mail: (AZ), (GM)
| |
Collapse
|
32
|
Phylogenomic analysis and predicted physiological role of the proton-translocating NADH:quinone oxidoreductase (complex I) across bacteria. mBio 2015; 6:mBio.00389-15. [PMID: 25873378 PMCID: PMC4453560 DOI: 10.1128/mbio.00389-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The proton-translocating NADH:quinone oxidoreductase (complex I) is a multisubunit integral membrane enzyme found in the respiratory chains of both bacteria and eukaryotic organelles. Although much research has focused on the enzyme's central role in the mitochondrial respiratory chain, comparatively little is known about its role in the diverse energetic lifestyles of different bacteria. Here, we used a phylogenomic approach to better understand the distribution of complex I across bacteria, the evolution of this enzyme, and its potential roles in shaping the physiology of different bacterial groups. By surveying 970 representative bacterial genomes, we predict complex I to be present in ~50% of bacteria. While this includes bacteria with a wide range of energetic schemes, the presence of complex I is associated with specific lifestyles, including aerobic respiration and specific types of phototrophy (bacteria with only a type II reaction center). A phylogeny of bacterial complex I revealed five main clades of enzymes whose evolution is largely congruent with the evolution of the bacterial groups that encode complex I. A notable exception includes the gammaproteobacteria, whose members encode one of two distantly related complex I enzymes predicted to participate in different types of respiratory chains (aerobic versus anaerobic). Comparative genomic analyses suggest a broad role for complex I in reoxidizing NADH produced from various catabolic reactions, including the tricarboxylic acid (TCA) cycle and fatty acid beta-oxidation. Together, these findings suggest diverse roles for complex I across bacteria and highlight the importance of this enzyme in shaping diverse physiologies across the bacterial domain. IMPORTANCE Living systems use conserved energy currencies, including a proton motive force (PMF), NADH, and ATP. The respiratory chain enzyme, complex I, connects these energy currencies by using NADH produced during nutrient breakdown to generate a PMF, which is subsequently used for ATP synthesis. Our goal is to better understand the role of complex I in bacteria, whose energetic diversity allows us to view its function in a range of biological contexts. We analyzed sequenced bacterial genomes to predict the presence, evolution, and function of complex I in bacteria. We identified five main classes of bacterial complex I and predict that different classes participate in different types of respiratory chains (aerobic and anaerobic). We also predict that complex I helps maintain a cellular redox state by reoxidizing NADH produced from central metabolism. Our findings suggest diverse roles for complex I in bacterial physiology, highlighting the need for future laboratory-based studies.
Collapse
|
33
|
An integrated approach to reconstructing genome-scale transcriptional regulatory networks. PLoS Comput Biol 2015; 11:e1004103. [PMID: 25723545 PMCID: PMC4344238 DOI: 10.1371/journal.pcbi.1004103] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 12/23/2014] [Indexed: 11/24/2022] Open
Abstract
Transcriptional regulatory networks (TRNs) program cells to dynamically alter their gene expression in response to changing internal or environmental conditions. In this study, we develop a novel workflow for generating large-scale TRN models that integrates comparative genomics data, global gene expression analyses, and intrinsic properties of transcription factors (TFs). An assessment of this workflow using benchmark datasets for the well-studied γ-proteobacterium Escherichia coli showed that it outperforms expression-based inference approaches, having a significantly larger area under the precision-recall curve. Further analysis indicated that this integrated workflow captures different aspects of the E. coli TRN than expression-based approaches, potentially making them highly complementary. We leveraged this new workflow and observations to build a large-scale TRN model for the α-Proteobacterium Rhodobacter sphaeroides that comprises 120 gene clusters, 1211 genes (including 93 TFs), 1858 predicted protein-DNA interactions and 76 DNA binding motifs. We found that ~67% of the predicted gene clusters in this TRN are enriched for functions ranging from photosynthesis or central carbon metabolism to environmental stress responses. We also found that members of many of the predicted gene clusters were consistent with prior knowledge in R. sphaeroides and/or other bacteria. Experimental validation of predictions from this R. sphaeroides TRN model showed that high precision and recall was also obtained for TFs involved in photosynthesis (PpsR), carbon metabolism (RSP_0489) and iron homeostasis (RSP_3341). In addition, this integrative approach enabled generation of TRNs with increased information content relative to R. sphaeroides TRN models built via other approaches. We also show how this approach can be used to simultaneously produce TRN models for each related organism used in the comparative genomics analysis. Our results highlight the advantages of integrating comparative genomics of closely related organisms with gene expression data to assemble large-scale TRN models with high-quality predictions. The ever growing amount of genomic data enables the assembly of large-scale network models that can provide important new insights into living systems. However, assembly and validation of such large-scale models can be challenging, since we often lack sufficient information to make accurate predictions. This work describes a new approach for constructing large-scale transcriptional regulatory networks of individual cells. We show that the reconstructed network captures a significantly larger fraction of cellular regulatory processes than networks generated by other existing approaches. We predict this approach, with appropriate refinements, will allow reconstruction of large-scale transcriptional network models for a variety of other organisms. As we work towards modeling the function of cells or complex ecosystems, individually reconstructed network models of signaling, information transfer and metabolism, can be integrated to provide high information predictions and insights not otherwise obtainable.
Collapse
|
34
|
|
35
|
The flagellar set Fla2 in Rhodobacter sphaeroides is controlled by the CckA pathway and is repressed by organic acids and the expression of Fla1. J Bacteriol 2014; 197:833-47. [PMID: 25512309 DOI: 10.1128/jb.02429-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Rhodobacter sphaeroides has two different sets of flagellar genes. Under the growth conditions commonly used in the laboratory, the expression of the fla1 set is constitutive, whereas the fla2 genes are not expressed. Phylogenetic analyses have previously shown that the fla1 genes were acquired by horizontal transfer from a gammaproteobacterium and that the fla2 genes are endogenous genes of this alphaproteobacterium. In this work, we characterized a set of mutants that were selected for swimming using the Fla2 flagella in the absence of the Fla1 flagellum (Fla2(+) strains). We determined that these strains have a single missense mutation in the histidine kinase domain of CckA. The expression of these mutant alleles in a Fla1(-) strain allowed fla2-dependent motility without selection. Motility of the Fla2(+) strains is also dependent on ChpT and CtrA. The mutant versions of CckA showed an increased autophosphorylation activity in vitro. Interestingly, we found that cckA is transcriptionally repressed by the presence of organic acids, suggesting that the availability of carbon sources could be a part of the signal that turns on this flagellar set. Evidence is presented showing that reactivation of fla1 gene expression in the Fla2(+) background strongly reduces the number of cells with Fla2 flagella.
Collapse
|
36
|
Abstract
Fatty acids play important functional and protective roles in living systems. This paper reports on the synthesis of a previously unidentified 19 carbon furan-containing fatty acid, 10,13-epoxy-11-methyl-octadecadienoate (9-(3-methyl-5-pentylfuran-2-yl)nonanoic acid) (19Fu-FA), in phospholipids from Rhodobacter sphaeroides. We show that 19Fu-FA accumulation is increased in cells containing mutations that increase the transcriptional response of this bacterium to singlet oxygen ((1)O2), a reactive oxygen species generated by energy transfer from one or more light-excited donors to molecular oxygen. We identify a previously undescribed class of S-adenosylmethionine-dependent methylases that convert a phospholipid 18 carbon cis unsaturated fatty acyl chain to a 19 carbon methylated trans unsaturated fatty acyl chain (19M-UFA). We also identify genes required for the O2-dependent conversion of this 19M-UFA to 19Fu-FA. Finally, we show that the presence of (1)O2 leads to turnover of 19Fu-Fa in vivo. We propose that furan-containing fatty acids like 19Fu-FA can act as a membrane-bound scavenger of (1)O2, which is naturally produced by integral membrane enzymes of the R. sphaeroides photosynthetic apparatus.
Collapse
|
37
|
Keltjens JT, Pol A, Reimann J, Op den Camp HJM. PQQ-dependent methanol dehydrogenases: rare-earth elements make a difference. Appl Microbiol Biotechnol 2014; 98:6163-83. [PMID: 24816778 DOI: 10.1007/s00253-014-5766-8] [Citation(s) in RCA: 261] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 01/06/2023]
Abstract
Methanol dehydrogenase (MDH) catalyzes the first step in methanol use by methylotrophic bacteria and the second step in methane conversion by methanotrophs. Gram-negative bacteria possess an MDH with pyrroloquinoline quinone (PQQ) as its catalytic center. This MDH belongs to the broad class of eight-bladed β propeller quinoproteins, which comprise a range of other alcohol and aldehyde dehydrogenases. A well-investigated MDH is the heterotetrameric MxaFI-MDH, which is composed of two large catalytic subunits (MxaF) and two small subunits (MxaI). MxaFI-MDHs bind calcium as a cofactor that assists PQQ in catalysis. Genomic analyses indicated the existence of another MDH distantly related to the MxaFI-MDHs. Recently, several of these so-called XoxF-MDHs have been isolated. XoxF-MDHs described thus far are homodimeric proteins lacking the small subunit and possess a rare-earth element (REE) instead of calcium. The presence of such REE may confer XoxF-MDHs a superior catalytic efficiency. Moreover, XoxF-MDHs are able to oxidize methanol to formate, rather than to formaldehyde as MxaFI-MDHs do. While structures of MxaFI- and XoxF-MDH are conserved, also regarding the binding of PQQ, the accommodation of a REE requires the presence of a specific aspartate residue near the catalytic site. XoxF-MDHs containing such REE-binding motif are abundantly present in genomes of methylotrophic and methanotrophic microorganisms and also in organisms that hitherto are not known for such lifestyle. Moreover, sequence analyses suggest that XoxF-MDHs represent only a small part of putative REE-containing quinoproteins, together covering an unexploited potential of metabolic functions.
Collapse
Affiliation(s)
- Jan T Keltjens
- Department of Microbiology, Institute of Wetland and Water Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
38
|
Abstract
The DNA sequences of chromosomes I and II of Rhodobacter sphaeroides strain 2.4.1 have been revised, and the annotation of the entire genomic sequence, including both chromosomes and the five plasmids, has been updated. Errors in the originally published sequence have been corrected, and ~11% of the coding regions in the original sequence have been affected by the revised annotation.
Collapse
|
39
|
Peters AE, Bavishi A, Cho H, Choudhary M. Evolutionary constraints and expression analysis of gene duplications in Rhodobacter sphaeroides 2.4.1. BMC Res Notes 2012; 5:192. [PMID: 22533893 PMCID: PMC3494609 DOI: 10.1186/1756-0500-5-192] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Accepted: 04/05/2012] [Indexed: 01/07/2023] Open
Abstract
Background Gene duplication is a major force that contributes to the evolution of new metabolic functions in all organisms. Rhodobacter sphaeroides 2.4.1 is a bacterium that displays a wide degree of metabolic versatility and genome complexity and therefore is a fitting model for the study of gene duplications in bacteria. A comprehensive analysis of 234 duplicate gene-pairs in R. sphaeroides was performed using structural constraint and expression analysis. Results The results revealed that most gene-pairs in in-paralogs are maintained under negative selection (ω ≤ 0.3), but the strength of selection differed among in-paralog gene-pairs. Although in-paralogs located on different replicons are maintained under purifying selection, the duplicated genes distributed between the primary chromosome (CI) and the second chromosome (CII) are relatively less selectively constrained than the gene-pairs located within each chromosome. The mRNA expression patterns of duplicate gene-pairs were examined through microarray analysis of this organism grown under seven different growth conditions. Results revealed that ~62% of paralogs have similar expression patterns (cosine ≥ 0.90) over all of these growth conditions, while only ~7% of paralogs are very different in their expression patterns (cosine < 0.50). Conclusions The overall findings of the study suggest that only a small proportion of paralogs contribute to the metabolic diversity and the evolution of novel metabolic functions in R. sphaeroides. In addition, the lack of relationships between structural constraints and gene-pair expression suggests that patterns of gene-pair expression are likely associated with conservation or divergence of gene-pair promoter regions and other coregulation mechanisms.
Collapse
Affiliation(s)
- Anne E Peters
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77341, USA
| | | | | | | |
Collapse
|
40
|
Woronowicz K, Olubanjo OB, Sung HC, Lamptey JL, Niederman RA. Differential assembly of polypeptides of the light-harvesting 2 complex encoded by distinct operons during acclimation of Rhodobacter sphaeroides to low light intensity. PHOTOSYNTHESIS RESEARCH 2012; 111:125-138. [PMID: 22396151 DOI: 10.1007/s11120-011-9707-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 08/10/2011] [Indexed: 05/31/2023]
Abstract
In order to obtain an improved understanding of the assembly of the bacterial photosynthetic apparatus, we have conducted a proteomic analysis of pigment-protein complexes isolated from the purple bacterium Rhodobacter sphaeroides undergoing acclimation to reduced incident light intensity. Photoheterotrophically growing cells were shifted from 1,100 to 100 W/m(2) and intracytoplasmic membrane (ICM) vesicles isolated over 24-h were subjected to clear native polyacrylamide gel electrophoresis. Bands containing the LH2 and reaction center (RC)-LH1 complexes were excised and subjected to in-gel trypsin digestion followed by liquid chromatography (LC)-mass spectroscopy (MS)/MS. The results revealed that the LH2 band contained distinct levels of the LH2-α and -β polypeptides encoded by the two puc operons. Polypeptide subunits encoded by the puc2AB operon predominated under high light and in the early stages of acclimation to low light, while after 24 h, the puc1BAC components were most abundant. Surprisingly, the Puc2A polypeptide containing a 251 residue C-terminal extension not present in Puc1A, was a protein of major abundance. A predominance of Puc2A components in the LH2 complex formed at high light intensity is followed by a >2.5-fold enrichment in Puc1B levels between 3 and 24 h of acclimation, accompanied by a nearly twofold decrease in Puc2A levels. This indicates that the puc1BAC operon is under more stringent light control, thought to reflect differences in the puc1 upstream regulatory region. In contrast, elevated levels of Puc2 polypeptides were seen 48 h after the gratuitous induction of ICM formation at low aeration in the dark, while after 24 h of acclimation to low light, an absence of alterations in Puc polypeptide distributions was observed in the upper LH2-enriched gel band, despite an approximate twofold increase in overall LH2 levels. This is consistent with the origin of this band from a pool of LH2 laid down early in development that is distinct from subsequently assembled LH2-only domains, forming the LH2 gel band.
Collapse
Affiliation(s)
- Kamil Woronowicz
- Department of Molecular Biology and Biochemistry, Rutgers University, Busch Campus, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | | | | | | | | |
Collapse
|
41
|
Denger K, Huhn T, Hollemeyer K, Schleheck D, Cook AM. Sulfoquinovose degraded by pure cultures of bacteria with release of C3-organosulfonates: complete degradation in two-member communities. FEMS Microbiol Lett 2012; 328:39-45. [PMID: 22150877 DOI: 10.1111/j.1574-6968.2011.02477.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 11/28/2011] [Accepted: 11/28/2011] [Indexed: 11/29/2022] Open
Abstract
Sulfoquinovose (SQ, 6-deoxy-6-sulfoglucose) was synthesized chemically. An HPLC-ELSD method to separate SQ and other chromophore-free sulfonates, e.g. 2,3-dihydroxypropane-1-sulfonate (DHPS), was developed. A set of 10 genome-sequenced, sulfonate-utilizing bacteria did not utilize SQ, but an isolate, Pseudomonas putida SQ1, from an enrichment culture did so. The molar growth yield with SQ was half of that with glucose, and 1 mol 3-sulfolactate (mol SQ)(-1) was formed during growth. The 3-sulfolactate was degraded by the addition of Paracoccus pantotrophus NKNCYSA, and the sulfonate sulfur was recovered quantitatively as sulfate. Another isolate, Klebsiella oxytoca TauN1, could utilize SQ, forming 1 mol DHPS (mol SQ)(-1) ; the molar growth yield with SQ was half of that with glucose. This DHPS could be degraded by Cupriavidus pinatubonensis JMP134, with quantitative recovery of the sulfonate sulfur as sulfate. We presume that SQ can be degraded by communities in the environment.
Collapse
Affiliation(s)
- Karin Denger
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | | | | | | |
Collapse
|
42
|
Thompson AK, Gray J, Liu A, Hosler JP. The roles of Rhodobacter sphaeroides copper chaperones PCu(A)C and Sco (PrrC) in the assembly of the copper centers of the aa(3)-type and the cbb(3)-type cytochrome c oxidases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:955-64. [PMID: 22248670 DOI: 10.1016/j.bbabio.2012.01.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/30/2011] [Accepted: 01/02/2012] [Indexed: 11/28/2022]
Abstract
The α proteobacter Rhodobacter sphaeroides accumulates two cytochrome c oxidases (CcO) in its cytoplasmic membrane during aerobic growth: a mitochondrial-like aa(3)-type CcO containing a di-copper Cu(A) center and mono-copper Cu(B), plus a cbb(3)-type CcO that contains Cu(B) but lacks Cu(A). Three copper chaperones are located in the periplasm of R. sphaeroides, PCu(A)C, PrrC (Sco) and Cox11. Cox11 is required to assemble Cu(B) of the aa(3)-type but not the cbb(3)-type CcO. PrrC is homologous to mitochondrial Sco1; Sco proteins are implicated in Cu(A) assembly in mitochondria and bacteria, and with Cu(B) assembly of the cbb(3)-type CcO. PCu(A)C is present in many bacteria, but not mitochondria. PCu(A)C of Thermus thermophilus metallates a Cu(A) center in vitro, but its in vivo function has not been explored. Here, the extent of copper center assembly in the aa(3)- and cbb(3)-type CcOs of R. sphaeroides has been examined in strains lacking PCu(A)C, PrrC, or both. The absence of either chaperone strongly lowers the accumulation of both CcOs in the cells grown in low concentrations of Cu(2+). The absence of PrrC has a greater effect than the absence of PCu(A)C and PCu(A)C appears to function upstream of PrrC. Analysis of purified aa(3)-type CcO shows that PrrC has a greater effect on the assembly of its Cu(A) than does PCu(A)C, and both chaperones have a lesser but significant effect on the assembly of its Cu(B) even though Cox11 is present. Scenarios for the cellular roles of PCu(A)C and PrrC are considered. The results are most consistent with a role for PrrC in the capture and delivery of copper to Cu(A) of the aa(3)-type CcO and to Cu(B) of the cbb(3)-type CcO, while the predominant role of PCu(A)C may be to capture and deliver copper to PrrC and Cox11. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
Affiliation(s)
- Audie K Thompson
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | | | | | | |
Collapse
|
43
|
Fogg PC, Hynes AP, Digby E, Lang AS, Beatty JT. Characterization of a newly discovered Mu-like bacteriophage, RcapMu, in Rhodobacter capsulatus strain SB1003. Virology 2011; 421:211-21. [DOI: 10.1016/j.virol.2011.09.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/25/2011] [Accepted: 09/28/2011] [Indexed: 10/16/2022]
|
44
|
Network identification and flux quantification of glucose metabolism in Rhodobacter sphaeroides under photoheterotrophic H(2)-producing conditions. J Bacteriol 2011; 194:274-83. [PMID: 22056932 DOI: 10.1128/jb.05624-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nonsulfur purple bacteria that exhibit unusual metabolic versatility can produce hydrogen gas (H(2)) using the electrons derived from metabolism of organic compounds during photoheterotrophic growth. Here, based on (13)C tracer experiments, we identified the network of glucose metabolism and quantified intracellular carbon fluxes in Rhodobacter sphaeroides KD131 grown under H(2)-producing conditions. Moreover, we investigated how the intracellular fluxes in R. sphaeroides responded to knockout mutations in hydrogenase and poly-β-hydroxybutyrate synthase genes, which led to increased H(2) yield. The relative contribution of the Entner-Doudoroff pathway and Calvin-Benson-Bassham cycle to glucose metabolism differed significantly in hydrogenase-deficient mutants, and this flux change contributed to the increased formation of the redox equivalent NADH. Disruption of hydrogenase and poly-β-hydroxybutyrate synthase resulted in a significantly increased flux through the phosphoenolpyruvate carboxykinase and a reduced flux through the malic enzyme. A remarkable increase in the flux through the tricarboxylic acid cycle, a major NADH producer, was observed for the mutant strains. The in vivo regulation of the tricarboxylic acid cycle flux in photoheterotrophic R. sphaeroides was discussed based on the measurements of in vitro enzyme activities and intracellular concentrations of NADH and NAD(+). Overall, our results provide quantitative insights into how photoheterotrophic cells manipulate the metabolic network and redistribute intracellular fluxes to generate more electrons for increased H(2) production.
Collapse
|
45
|
Woronowicz K, Olubanjo OB, Sung HC, Lamptey JL, Niederman RA. Differential assembly of polypeptides of the light-harvesting 2 complex encoded by distinct operons during acclimation of Rhodobacter sphaeroides to low light intensity. PHOTOSYNTHESIS RESEARCH 2011; 108:201-214. [PMID: 21863386 DOI: 10.1007/s11120-011-9681-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 08/10/2011] [Indexed: 05/31/2023]
Abstract
In order to obtain an improved understanding of the assembly of the bacterial photosynthetic apparatus, we have conducted a proteomic analysis of pigment-protein complexes isolated from the purple bacterium Rhodobacter sphaeroides undergoing acclimation to reduced incident light intensity. Photoheterotrophically growing cells were shifted from 1,100 to 100 W/m(2) and intracytoplasmic membrane (ICM) vesicles isolated over 24-h were subjected to clear native polyacrylamide gel electrophoresis. Bands containing the LH2 and reaction center (RC)-LH1 complexes were excised and subjected to in-gel trypsin digestion followed by liquid chromatography (LC)-mass spectroscopy (MS)/MS. The results revealed that the LH2 band contained distinct levels of the LH2-α and -β polypeptides encoded by the two puc operons. Polypeptide subunits encoded by the puc2AB operon predominated under high light and in the early stages of acclimation to low light, while after 24 h, the puc1BAC components were most abundant. Surprisingly, the Puc2A polypeptide containing a 251 residue C-terminal extension not present in Puc1A, was a protein of major abundance. A predominance of Puc2A components in the LH2 complex formed at high light intensity is followed by a >2.5-fold enrichment in Puc1B levels between 3 and 24 h of acclimation, accompanied by a nearly twofold decrease in Puc2A levels. This indicates that the puc1BAC operon is under more stringent light control, thought to reflect differences in the puc1 upstream regulatory region. In contrast, elevated levels of Puc2 polypeptides were seen 48 h after the gratuitous induction of ICM formation at low aeration in the dark, while after 24 h of acclimation to low light, an absence of alterations in Puc polypeptide distributions was observed in the upper LH2-enriched gel band, despite an approximate twofold increase in overall LH2 levels. This is consistent with the origin of this band from a pool of LH2 laid down early in development that is distinct from subsequently assembled LH2-only domains, forming the LH2 gel band.
Collapse
Affiliation(s)
- Kamil Woronowicz
- Department of Molecular Biology and Biochemistry, Rutgers University, Busch Campus, 604 Allison Road, Piscataway, NJ 08854-8082, USA
| | | | | | | | | |
Collapse
|
46
|
Abstract
Denitrification is generally considered to occur under micro-oxic or anoxic conditions. With this in mind, the physiological function and regulation of several steps in the denitrification of model α-proteobacteria are compared in the present review. Expression of the periplasmic nitrate reductase is quite variable, with this enzyme being maximally expressed under oxic conditions in some bacteria, but under micro-oxic conditions in others. Expression of nitrite and NO reductases in most denitrifiers is more tightly controlled, with expression only occurring under micro-oxic conditions. A possible exception to this may be Roseobacter denitrificans, but the physiological role of these enzymes under oxic conditions is uncertain.
Collapse
|
47
|
|
48
|
Bavishi A, Lin L, Schroeder K, Peters A, Cho H, Choudhary M. The prevalence of gene duplications and their ancient origin in Rhodobacter sphaeroides 2.4.1. BMC Microbiol 2010; 10:331. [PMID: 21192830 PMCID: PMC3024229 DOI: 10.1186/1471-2180-10-331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 12/30/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rhodobacter sphaeroides 2.4.1 is a metabolically versatile organism that belongs to α-3 subdivision of Proteobacteria. The present study was to identify the extent, history, and role of gene duplications in R. sphaeroides 2.4.1, an organism that possesses two chromosomes. RESULTS A protein similarity search (BLASTP) identified 1247 orfs (~29.4% of the total protein coding orfs) that are present in 2 or more copies, 37.5% (234 gene-pairs) of which exist in duplicate copies. The distribution of the duplicate gene-pairs in all Clusters of Orthologous Groups (COGs) differed significantly when compared to the COG distribution across the whole genome. Location plots revealed clusters of gene duplications that possessed the same COG classification. Phylogenetic analyses were performed to determine a tree topology predicting either a Type-A or Type-B phylogenetic relationship. A Type-A phylogenetic relationship shows that a copy of the protein-pair matches more with an ortholog from a species closely related to R. sphaeroides while a Type-B relationship predicts the highest match between both copies of the R. sphaeroides protein-pair. The results revealed that ~77% of the proteins exhibited a Type-A phylogenetic relationship demonstrating the ancient origin of these gene duplications. Additional analyses on three other strains of R. sphaeroides revealed varying levels of gene loss and retention in these strains. Also, analyses on common gene pairs among the four strains revealed that these genes experience similar functional constraints and undergo purifying selection. CONCLUSIONS Although the results suggest that the level of gene duplication in organisms with complex genome structuring (more than one chromosome) seems to be not markedly different from that in organisms with only a single chromosome, these duplications may have aided in genome reorganization in this group of eubacteria prior to the formation of R. sphaeroides as gene duplications involved in specialized functions might have contributed to complex genomic development.
Collapse
Affiliation(s)
- Anish Bavishi
- Department of Biological Sciences, Sam Houston State University, Huntsville, Texas 77341, USA
| | | | | | | | | | | |
Collapse
|
49
|
Rizk ML, Laguna R, Smith KM, Tabita FR, Liao JC. Redox homeostasis phenotypes in RubisCO-deficient Rhodobacter sphaeroides via ensemble modeling. Biotechnol Prog 2010; 27:15-22. [DOI: 10.1002/btpr.506] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 05/12/2010] [Indexed: 11/06/2022]
|
50
|
Li X, Liu T, Wu Y, Zhao G, Zhou Z. Derepressive effect of NH4+ on hydrogen production by deleting the glnA1 gene in Rhodobacter sphaeroides. Biotechnol Bioeng 2010; 106:564-72. [PMID: 20340141 DOI: 10.1002/bit.22722] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Purple non-sulfur (PNS) bacteria produce hydrogen by photofermentation of organic acids in wastewater. However, NH(4)(+) in wastewater may inhibit hydrogen synthesis by repressing the expression and activity of nitrogenase, the enzyme catalyzing hydrogen production in PNS bacteria. In this study, the Rhodobacter sphaeroides 6016 glnA gene encoding glutamine synthetase (GS) was knocked out by homologous recombination, and the effects on hydrogen production and nitrogenase activity were examined. Using 3 mM glutamine as the nitrogen source, hydrogen production (1,245-1,588 mL hydrogen/L culture) and nitrogenase activity were detected in the mutant in the presence of relatively high NH(4)(+) concentrations (15-40 mM), whereas neither was detected in the wild-type strain under the same conditions. Further analysis indicated that high NH(4)(+) concentrations greatly inhibited the expression of nifA and nitrogenase gene in the wild-type strain but not in the glnA1(-) mutant. These observations suggest that GS is essential to NH(4)(+) repression of nitrogenase and that deletion of glnA1 results in the complete derepression of nitrogenase by preventing NH(4)(+) assimilation in vivo, thus relieving the inhibition of nifA and nitrogenase gene expression. Knocking out glnA1 therefore provides an efficient approach to removing the inhibitory effects of ammonium ions in R. sphaeroides and possibly in other hydrogen-producing PNS bacteria.
Collapse
Affiliation(s)
- Xinfeng Li
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, China
| | | | | | | | | |
Collapse
|