1
|
Devi OS, Singh SS, Kamei R, Sharma HJ, Devi MA, Brahmacharimayum N. Glycosylated SARs Cov 2 interaction with plant lectins. Glycoconj J 2024; 41:185-199. [PMID: 38748325 DOI: 10.1007/s10719-024-10154-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/20/2024] [Accepted: 04/29/2024] [Indexed: 08/17/2024]
Abstract
Lectins are non-immune carbohydrate-binding proteins/glycoproteins that are found everywhere in nature, from bacteria to human cells. They have also been a valuable biological tool for the purification and subsequent characterisation of glycoproteins due to their carbohydrate binding recognition capacity. Antinociceptive, antiulcer, anti-inflammatory activities and immune modulatory properties have been discovered in several plant lectins, with these qualities varying depending on the lectin carbohydrate-binding site. The Coronavirus of 2019 (COVID-19) is a respiratory disease that has swept the globe, killing millions and infecting millions more. Despite the availability of COVID-19 vaccinations and the vaccination of a huge portion of the world's population, viral infection rates continue to rise, causing major concern. Part of the reason for the vaccine's ineffectiveness has been attributed to repeated mutations in the virus's epitope determinant elements. The surface of the Coronavirus envelope is heavily glycosylated, with approximately sixty N-linked oligomannose, composite, and hybrid glycans covering the core of Man3GlcNAc2Asn. Some O-linked glycans have also been discovered. Many of these glyco-chains have also been subjected to multiple mutations, with only a few remaining conserved. As a result, numerous plant lectins with specificity for these viral envelope sugars have been discovered to interact preferentially with them and are being investigated as a potential future tool to combat coronaviruses such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by preventing viral attachment to the host. The review will discuss the possible applications of plant lectins as anti-coronaviruses including SARS-CoV-2, antinociceptive, anti-inflammation and its immune modulating effect.
Collapse
Affiliation(s)
| | | | - Rana Kamei
- Department of Biochemistry, Manipur University, Imphal, India
| | | | | | | |
Collapse
|
2
|
Yin AC, Holdcraft CJ, Brace EJ, Hellmig TJ, Basu S, Parikh S, Jachimowska K, Kalyoussef E, Roden D, Baredes S, Capitle EM, Suster DI, Shienbaum AJ, Zhao C, Zheng H, Balcaen K, Devos S, Haustraete J, Fatahzadeh M, Goldberg GS. Maackia amurensis seed lectin (MASL) and soluble human podoplanin (shPDPN) sequence analysis and effects on human oral squamous cell carcinoma (OSCC) cell migration and viability. Biochem Biophys Res Commun 2024; 710:149881. [PMID: 38583233 DOI: 10.1016/j.bbrc.2024.149881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Maackia amurensis lectins serve as research and botanical agents that bind to sialic residues on proteins. For example, M. amurensis seed lectin (MASL) targets the sialic acid modified podoplanin (PDPN) receptor to suppress arthritic chondrocyte inflammation, and inhibit tumor cell growth and motility. However, M. amurensis lectin nomenclature and composition are not clearly defined. Here, we sought to definitively characterize MASL and its effects on tumor cell behavior. We utilized SDS-PAGE and LC-MS/MS to find that M. amurensis lectins can be divided into two groups. MASL is a member of one group which is composed of subunits that form dimers, evidently mediated by a cysteine residue in the carboxy region of the protein. In contrast to MASL, members of the other group do not dimerize under nonreducing conditions. These data also indicate that MASL is composed of 4 isoforms with an identical amino acid sequence, but unique glycosylation sites. We also produced a novel recombinant soluble human PDPN receptor (shPDPN) with 17 threonine residues glycosylated with sialic acid moieties with potential to act as a ligand trap that inhibits OSCC cell growth and motility. In addition, we report here that MASL targets PDPN with very strong binding kinetics in the nanomolar range. Moreover, we confirm that MASL can inhibit the growth and motility of human oral squamous cell carcinoma (OSCC) cells that express the PDPN receptor. Taken together, these data characterize M. amurensis lectins into two major groups based on their intrinsic properties, clarify the composition of MASL and its subunit isoform sequence and glycosylation sites, define sialic acid modifications on the PDPN receptor and its ability to act as a ligand trap, quantitate MASL binding to PDPN with KD in the nanomolar range, and verify the ability of MASL to serve as a potential anticancer agent.
Collapse
Affiliation(s)
- Ariel C Yin
- Molecular Biology, Rowan Virtua SOM, Rowan University, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Cayla J Holdcraft
- Molecular Biology, Rowan Virtua SOM, Rowan University, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Eamonn J Brace
- Molecular Biology, Rowan Virtua SOM, Rowan University, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Tyler J Hellmig
- Molecular Biology, Rowan Virtua SOM, Rowan University, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Sayan Basu
- Molecular Biology, Rowan Virtua SOM, Rowan University, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Saumil Parikh
- Molecular Biology, Rowan Virtua SOM, Rowan University, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Katarzyna Jachimowska
- Molecular Biology, Rowan Virtua SOM, Rowan University, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Evelyne Kalyoussef
- Rutgers New Jersey Medical School, 185 S Orange Ave, Newark, NJ, 07103, USA
| | - Dylan Roden
- Rutgers New Jersey Medical School, 185 S Orange Ave, Newark, NJ, 07103, USA
| | - Soly Baredes
- Rutgers New Jersey Medical School, 185 S Orange Ave, Newark, NJ, 07103, USA
| | - Eugenio M Capitle
- Rutgers New Jersey Medical School, 185 S Orange Ave, Newark, NJ, 07103, USA
| | - David I Suster
- Rutgers New Jersey Medical School, 185 S Orange Ave, Newark, NJ, 07103, USA
| | - Alan J Shienbaum
- Keystone Pathology Associates, 781 Keystone Industrial Park Rd, Dunmore, PA, 18512, USA
| | - Caifeng Zhao
- Biological Mass Spectrometry Resources, Robert Wood Johnson Medical School, Rutgers, State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Haiyan Zheng
- Biological Mass Spectrometry Resources, Robert Wood Johnson Medical School, Rutgers, State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Kevin Balcaen
- VIB Protein Core, VIB, Technologiepark 71, Ghent, Belgium; VIB-UGent Center for Inflammation Research, VIB, Ghent University, Technologiepark 71, 9000, Ghent, Belgium
| | - Simon Devos
- VIB Proteomics Core, VIB, Technologiepark 75, 9000, Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, VIB, Ghent University, Technologiepark 75, 9000, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark 75, 9000, Belgium
| | - Jurgen Haustraete
- VIB Protein Core, VIB, Technologiepark 71, Ghent, Belgium; VIB-UGent Center for Inflammation Research, VIB, Ghent University, Technologiepark 71, 9000, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, Ghent, Belgium
| | - Mahnaz Fatahzadeh
- Rutgers School of Dental Medicine, 110 Bergen St, Newark, NJ, 07103, USA
| | - Gary S Goldberg
- Molecular Biology, Rowan Virtua SOM, Rowan University, 2 Medical Center Dr., Stratford, NJ, 08084, USA.
| |
Collapse
|
3
|
Hamilton KL, Greenspan AA, Shienbaum AJ, Fischer BD, Bottaro A, Goldberg GS. Maackia amurensis seed lectin (MASL) ameliorates articular cartilage destruction and increases movement velocity of mice with TNFα induced rheumatoid arthritis. Biochem Biophys Rep 2022; 32:101341. [PMID: 36120492 PMCID: PMC9471970 DOI: 10.1016/j.bbrep.2022.101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022] Open
Abstract
Up to 70 million people around the world suffer from rheumatoid arthritis. Current treatment options have varied efficacy and can cause unwanted side effects. New approaches are needed to treat this condition. Sialic acid modifications on chondrocyte receptors have been associated with arthritic inflammation and joint destruction. For example, the transmembrane mucin receptor protein podoplanin (PDPN) has been identified as a functionally relevant receptor that presents extracellular sialic acid motifs. PDPN signaling promotes inflammation and invasion associated with arthritis and, therefore, has emerged as a target that can be used to inhibit arthritic inflammation. Maackia amurensis seed lectin (MASL) can target PDPN on chondrocytes to decrease inflammatory signaling cascades and reduce cartilage destruction in a lipopolysaccharide induced osteoarthritis mouse model. Here, we investigated the effects of MASL on rheumatoid arthritis progression in a TNFα transgenic (TNF-Tg) mouse model. Results from this study indicate that MASL can be administered orally to ameliorate joint malformation and increase velocity of movement exhibited by these TNF-Tg mice. These data support the consideration of MASL as a potential treatment for rheumatoid arthritis.
Collapse
Affiliation(s)
- Kelly L. Hamilton
- Rowan University School of Osteopathic Medicine and Graduate School of Biomedical Sciences, 2 Medical Center Dr., Stratford, NJ, 08084, USA
- Medstar Georgetown University Hospital, 3800 Reservoir Road NW, Washington, DC, 20007, USA
| | - Amanda A. Greenspan
- Rowan University School of Osteopathic Medicine and Graduate School of Biomedical Sciences, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Alan J. Shienbaum
- Keystone Medical Laboratories & Pathology Associates, 781 Keystone Industrial Park, Throop, PA, 18512, USA
| | - Bradford D. Fischer
- Cooper Medical School of Rowan University, 401 Broadway, Camden, NJ, 08103, USA
| | - Andrea Bottaro
- Cooper Medical School of Rowan University, 401 Broadway, Camden, NJ, 08103, USA
| | - Gary S. Goldberg
- Rowan University School of Osteopathic Medicine and Graduate School of Biomedical Sciences, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| |
Collapse
|
4
|
Konozy E, Osman M, Dirar A. Plant lectins as potent Anti-coronaviruses, Anti-inflammatory, antinociceptive and antiulcer agents. Saudi J Biol Sci 2022; 29:103301. [PMID: 35475119 PMCID: PMC9026953 DOI: 10.1016/j.sjbs.2022.103301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/12/2022] [Accepted: 04/17/2022] [Indexed: 12/14/2022] Open
Abstract
Lectins are defined as carbohydrate-binding proteins/glycoproteins of none immune origin, they are ubiquitous in nature, exist from bacteria to human cells. And due to their carbohydrate-binding recognition capacity, they have been a useful biological tool for the purification of glycoproteins and their subsequent characterization. Some plant lectins have also been revealed to own antinociceptive, antiulcer, and anti-inflammatory properties, where these features, in many instances, depending on the lectin carbohydrate-binding site. Coronavirus disease of 2019 (COVID-19) is a respiratory disease that struck the entire world leaving millions of people dead and more infected. Although COVID-19 vaccines have been made available, and quite a large number of world populations have already been immunized, the viral infection rates remained in acceleration, which continues to provoke major concern about the vaccines' efficacy. The belief in the ineffectiveness of the vaccine has been attributed in part to the recurrent mutations that occur in the epitope determinant fragments of the virus. Coronavirus envelope surface is extensively glycosylated being covered by more than sixty N-linked oligomannose, composite, and hybrid glycans with a core of Man3GlcNAc2Asn. In addition some O-linked glycans are also detected. Of these glyco-chains, many have also been exposed to several mutations, and a few remained conserved. Therefore, numerous plant lectins with a specificity directed towards these viral envelope sugars have been found to interact preferentially with them and are suggested to be scrutinized as a possible future tool to combat coronaviruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through blocking the viral attachment to the host cells. In this review, we will discuss the possible applications of plant lectins as anti-coronaviruses including SARS-CoV-2, antinociceptive, anti-inflammatory, and antiulcer agents with the proposed mechanism of their actions.
Collapse
Affiliation(s)
- Emadeldin Konozy
- Department of Biotechnology, Africa City of Technology, Khartoum, Sudan
| | - Makarim Osman
- Department of Zoology, University of Khartoum, Khartoum, Sudan
| | - Amina Dirar
- Medicinal, Aromatic Plants and Traditional Medicine Research Institute (MAPTRI), National Center for Research, Mek Nimr Street, Khartoum, Sudan
| |
Collapse
|
5
|
Hamilton KL, Sheehan SA, Retzbach EP, Timmerman CA, Gianneschi GB, Tempera PJ, Balachandran P, Goldberg GS. Effects of Maackia amurensis seed lectin (MASL) on oral squamous cell carcinoma (OSCC) gene expression and transcriptional signaling pathways. J Cancer Res Clin Oncol 2020; 147:445-457. [PMID: 33205348 DOI: 10.1007/s00432-020-03456-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Oral cancer causes over 120,000 deaths annually and affects the quality of life for survivors. Over 90% of oral cancers are derived from oral squamous cell carcinoma cells (OSCCs) which are generally resistant to standard cytotoxic chemotherapy agents. OSCC cells often exhibit increased TGFβ and PDPN receptor activity compared to nontransformed oral epithelial cells. Maackia amurensis seed lectin (MASL) can target the PDPN receptor and has been identified as a novel agent that can be used to treat oral cancer. However, mechanisms by which MASL inhibits OSCC progression are not yet clearly defined. METHODS Here, we performed cell migration and cytotoxicity assays to assess the effects of MASL on OSCC motility and viability at physiologically relevant concentrations. We then performed comprehensive transcriptome analysis combined with transcription factor reporter assays to investigate the how MASL affects OSCC gene expression at these concentration. Key data were then confirmed by western blotting to evaluate the effects of MASL on gene expression and kinase signaling activity at the protein level. RESULTS MASL significantly affected the expression of about 27% of approximately 15,000 genes found to be expressed by HSC-2 cells used to model OSCC cells in this study. These genes affected by MASL include members of the TGFβ-SMAD, JAK-STAT, and Wnt-βCTN signaling pathways. In particular, MASL decreased expression of PDPN, SOX2, and SMAD5 at the RNA and protein levels. MASL also inhibited SMAD and MAPK activity, and exhibited potential for combination therapy with doxorubicin and 5-fluorouracil. CONCLUSIONS Taken together, results from this study indicate that MASL decreases activity of JAK-STAT, TGFβ-SMAD, and Wnt-βCTN signaling pathways to inhibit OSCC growth and motility. These data suggest that further studies should be undertaken to determine how MASL may also be used alone and in combination with other agents to treat oral cancer.
Collapse
Affiliation(s)
- Kelly L Hamilton
- Department of Molecular Biology, Science Center, Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA
| | - Stephanie A Sheehan
- Department of Molecular Biology, Science Center, Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA
| | - Edward P Retzbach
- Department of Molecular Biology, Science Center, Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA
| | - Clinton A Timmerman
- Department of Molecular Biology, Science Center, Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA
| | - Garret B Gianneschi
- Department of Molecular Biology, Science Center, Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA
| | - Patrick J Tempera
- Department of Molecular Biology, Science Center, Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA
| | - Premalatha Balachandran
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Gary S Goldberg
- Department of Molecular Biology, Science Center, Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA.
| |
Collapse
|
6
|
New Therapeutic Strategies for Osteoarthritis by Targeting Sialic Acid Receptors. Biomolecules 2020; 10:biom10040637. [PMID: 32326143 PMCID: PMC7226619 DOI: 10.3390/biom10040637] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease characterized by articular cartilage degradation and joint degeneration. The articular cartilage is mainly formed by chondrocytes and a collagen-proteoglycan extracellular matrix that contains high levels of glycosylated proteins. It was reported that the shift from glycoproteins containing α-2,6-linked sialic acids to those that contain α-2,3 was associated with the onset of common types of arthritis. However, the pathophysiology of α-2,3-sialylation in cartilage has not been yet elucidated. We show that cartilage from osteoarthritic patients expresses high levels of the α-2,3-sialylated transmembrane mucin receptor, known as podoplanin (PDPN). Additionally, the Maackia amurensis seed lectin (MASL), that can be utilized to target PDPN, attenuates the inflammatory response mediated by NF-kB activation in primary chondrocytes and protects human cartilage breakdown ex vivo and in an animal model of arthritis. These findings reveal that specific lectins targeting α-2,3-sialylated receptors on chondrocytes might effectively inhibit cartilage breakdown. We also present a computational 3D molecular model for this interaction. These findings provide mechanistic information on how a specific lectin could be used as a novel therapy to treat degenerative joint diseases such as osteoarthritis.
Collapse
|
7
|
|
8
|
Antibody and lectin target podoplanin to inhibit oral squamous carcinoma cell migration and viability by distinct mechanisms. Oncotarget 2015; 6:9045-60. [PMID: 25826087 PMCID: PMC4496201 DOI: 10.18632/oncotarget.3515] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/04/2015] [Indexed: 11/25/2022] Open
Abstract
Podoplanin (PDPN) is a unique transmembrane receptor that promotes tumor cell motility. Indeed, PDPN may serve as a chemotherapeutic target for primary and metastatic cancer cells, particularly oral squamous cell carcinoma (OSCC) cells that cause most oral cancers. Here, we studied how a monoclonal antibody (NZ-1) and lectin (MASL) that target PDPN affect human OSCC cell motility and viability. Both reagents inhibited the migration of PDPN expressing OSCC cells at nanomolar concentrations before inhibiting cell viability at micromolar concentrations. In addition, both reagents induced mitochondrial membrane permeability transition to kill OSCC cells that express PDPN by caspase independent nonapoptotic necrosis. Furthermore, MASL displayed a surprisingly robust ability to target PDPN on OSCC cells within minutes of exposure, and significantly inhibited human OSCC dissemination in zebrafish embryos. Moreover, we report that human OSCC cells formed tumors that expressed PDPN in mice, and induced PDPN expression in infiltrating host murine cancer associated fibroblasts. Taken together, these data suggest that antibodies and lectins may be utilized to combat OSCC and other cancers that express PDPN.
Collapse
|
9
|
Ochoa-Alvarez JA, Krishnan H, Shen Y, Acharya NK, Han M, McNulty DE, Hasegawa H, Hyodo T, Senga T, Geng JG, Kosciuk M, Shin SS, Goydos JS, Temiakov D, Nagele RG, Goldberg GS. Plant lectin can target receptors containing sialic acid, exemplified by podoplanin, to inhibit transformed cell growth and migration. PLoS One 2012; 7:e41845. [PMID: 22844530 PMCID: PMC3402461 DOI: 10.1371/journal.pone.0041845] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 06/29/2012] [Indexed: 12/31/2022] Open
Abstract
Cancer is a leading cause of death of men and women worldwide. Tumor cell motility contributes to metastatic invasion that causes the vast majority of cancer deaths. Extracellular receptors modified by α2,3-sialic acids that promote this motility can serve as ideal chemotherapeutic targets. For example, the extracellular domain of the mucin receptor podoplanin (PDPN) is highly O-glycosylated with α2,3-sialic acid linked to galactose. PDPN is activated by endogenous ligands to induce tumor cell motility and metastasis. Dietary lectins that target proteins containing α2,3-sialic acid inhibit tumor cell growth. However, anti-cancer lectins that have been examined thus far target receptors that have not been identified. We report here that a lectin from the seeds of Maackia amurensis (MASL) with affinity for O-linked carbohydrate chains containing sialic acid targets PDPN to inhibit transformed cell growth and motility at nanomolar concentrations. Interestingly, the biological activity of this lectin survives gastrointestinal proteolysis and enters the cardiovascular system to inhibit melanoma cell growth, migration, and tumorigenesis. These studies demonstrate how lectins may be used to help develop dietary agents that target specific receptors to combat malignant cell growth.
Collapse
Affiliation(s)
- Jhon Alberto Ochoa-Alvarez
- Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Anacardium occidentale Bark Lectin: Purification, Immobilization as an Affinity Model and Influence in the Uptake of Technetium-99M by Rat Adipocytes. Appl Biochem Biotechnol 2012; 168:580-91. [DOI: 10.1007/s12010-012-9798-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 07/03/2012] [Indexed: 11/24/2022]
|
11
|
Agrawal P, Kumar S, Das HR. Mass spectrometric characterization of isoform variants of peanut (Arachis hypogaea) stem lectin (SL-I). J Proteomics 2010; 73:1573-86. [PMID: 20348039 DOI: 10.1016/j.jprot.2010.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 02/11/2010] [Accepted: 03/10/2010] [Indexed: 12/31/2022]
Abstract
Matrix assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometric (MS) analysis of purified Arachis hypogaea stem lectin (SL-I) and its tryptic digests suggested it to be an isoformic glucose/mannose binding lectin. Two-dimensional gel electrophoresis of SL-I indicated six isoforms (A1-A6), which were confirmed by Western blotting and MALDI-TOF MS analysis. Comparative analysis of peptide mass spectra of the isoforms matched with A. hypogaea lectins with three different accession numbers (Q43376_ARAHY, Q43377_ARAHY, Q70DJ5_ARAHY). Tandem mass spectrometric (MS/MS) analysis of tryptic peptides revealed these to be isoformic variants with altered amino acid sequences. Among the peptides, the peptide T12 showed major variation. The (199)Val-Ser-Tyr-Asn(202) sequence in peptide T12 of A1 and A2 was replaced by (199)Leu-Ser-His-Glu(202) in A3 and A4 (T12') while in A5 and A6 this sequence was (199)Val-Ser-Tyr-Val(202) (T12''). Peptide T1 showed the presence of (10)Asn in the isoforms A1-A5 while in A6 this amino acid was replaced by (10)Lys (T1'). Overall amino acid sequence as identified by MS/MS showed a high degree of similarity between A1, A2 and among A3, A4, A5. Carbohydrate binding domain and adenine binding site seem to be conserved.
Collapse
Affiliation(s)
- Praveen Agrawal
- Proteomics and Structural Biology Division, Institute of Genomics and Integrative Biology, Delhi, India
| | | | | |
Collapse
|
12
|
Perçin I, Yavuz H, Aksöz E, Denizli A. N-acetyl-D-galactosamine-specific lectin isolation from soyflour with poly(HPMA-GMA) beads. J Appl Polym Sci 2009. [DOI: 10.1002/app.29054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
KONG KWANGHOON, HONG SUNGGUAN, YOO SUNYOUNG, LEE KWANGSOO, KIM HAHYUNG. CLONING, EXPRESSION AND CHARACTERIZATION OF NOVEL LECTIN FROM ORYZA SATIVA. J Food Biochem 2004. [DOI: 10.1111/j.1745-4514.2004.06303.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Guzmán-Partida AM, Robles-Burgueño MR, Ortega-Nieblas M, Vázquez-Moreno I. Purification and characterization of complex carbohydrate specific isolectins from wild legume seeds: Acacia constricta is (vinorama) highly homologous to Phaseolus vulgaris lectins. Biochimie 2004; 86:335-42. [PMID: 15194238 DOI: 10.1016/j.biochi.2004.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2003] [Accepted: 02/27/2004] [Indexed: 10/26/2022]
Abstract
Vinorama isolectins (VL2-VL4) were purified from seeds of Acacia constricta (vinorama) using affinity chromatography on a fetuin-fractogel column followed by cationic-exchange chromatography. Each isolectin fraction presented a characteristic isoelectric point range from 5.5 to 8.4. Under native conditions, VL containing fractions migrated as tetramers of 133 kDa, while in SDS-PAGE, in presence of 2-mercaptoethanol, a single subunit band with M(r) of 34 kDa was observed. VL was found to be a glycoprotein with a 7.5% neutral sugar content. Antibodies to Phaseolus vulgaris lectins PHA and other wild legume lectins as Olneya tesota (palo fierro) PF2 and PF3, and Parkinsonia aculeate (palo verde) PV reacted with VL, but not with anti Glycine max agglutinin SBA or anti Lotus tetragonolobus agglutinin LTA. Furthermore, direct analysis of VL peptides showed sequences homologous to those reported in different lectins of the Phaseolus genus. VL2-VL4 did not have ABO serological or simple sugar specificity, but were inhibited by complex carbohydrates from fetuin and thyroglobulin. Asialofetuin carbohydrates strongly interacted with VL4 and VL3. Vinorama isolectins could be classified as "complex lectins".
Collapse
Affiliation(s)
- A M Guzmán-Partida
- Centro de Investigación en Alimentación y Desarrollo, A.C. Apartado Postal 1735, 83000 Hermosillo Sonora, Mexico
| | | | | | | |
Collapse
|
15
|
Van Damme EJM, Hause B, Hu J, Barre A, Rougé P, Proost P, Peumans WJ. Two distinct jacalin-related lectins with a different specificity and subcellular location are major vegetative storage proteins in the bark of the black mulberry tree. PLANT PHYSIOLOGY 2002; 130:757-69. [PMID: 12376642 PMCID: PMC166604 DOI: 10.1104/pp.005892] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2002] [Revised: 04/17/2002] [Accepted: 06/18/2002] [Indexed: 05/21/2023]
Abstract
Using a combination of protein isolation/characterization and molecular cloning, we have demonstrated that the bark of the black mulberry tree (Morus nigra) accumulates large quantities of a galactose-specific (MornigaG) and a mannose (Man)-specific (MornigaM) jacalin-related lectin. MornigaG resembles jacalin with respect to its molecular structure, specificity, and co- and posttranslational processing indicating that it follows the secretory pathway and eventually accumulates in the vacuolar compartment. In contrast, MornigaM represents a novel type of highly active Man-specific jacalin-related lectin that is synthesized without signal peptide or other vacuolar targeting sequences, and accordingly, accumulates in the cytoplasm. The isolation and cloning, and immunocytochemical localization of MornigaG and MornigaM not only demonstrates that jacalin-related lectins act as vegetative storage proteins in bark, but also allows a detailed comparison of a vacuolar galactose-specific and a cytoplasmic Man-specific jacalin-related lectin from a single species. Moreover, the identification of MornigaM provides the first evidence, to our knowledge, that bark cells accumulate large quantities of a cytoplasmic storage protein. In addition, due to its high activity, abundance, and ease of preparation, MornigaM is of great potential value for practical applications as a tool and bioactive protein in biological and biomedical research.
Collapse
Affiliation(s)
- Els J M Van Damme
- Laboratory for Phytopathology and Plant Protection, Catholic University Leuven, 2001 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
16
|
Van Damme EJ, Hao Q, Barre A, Rougé P, Van Leuven F, Peumans WJ. Major protein of resting rhizomes of Calystegia sepium (hedge bindweed) closely resembles plant RNases but has no enzymatic activity. PLANT PHYSIOLOGY 2000; 122:433-46. [PMID: 10677436 PMCID: PMC58880 DOI: 10.1104/pp.122.2.433] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/1999] [Accepted: 10/19/1999] [Indexed: 05/20/2023]
Abstract
The most abundant protein of resting rhizomes of Calystegia sepium (L.) R.Br. (hedge bindweed) has been isolated and its corresponding cDNA cloned. The native protein consists of a single polypeptide of 212 amino acid residues and occurs as a mixture of glycosylated and unglycosylated isoforms. Both forms are derived from the same preproprotein containing a signal peptide and a C-terminal propeptide. Analysis of the deduced amino acid sequence indicated that the C. sepium protein shows high sequence identity and structural similarity with plant RNases. However, no RNase activity could be detected in highly purified preparations of the protein. This apparent lack of activity results most probably from the replacement of a conserved His residue, which is essential for the catalytic activity of plant RNases. Our findings not only demonstrate the occurrence of a catalytically inactive variant of an S-like RNase, but also provide further evidence that genes encoding storage proteins may have evolved from genes encoding enzymes or other biologically active proteins.
Collapse
Affiliation(s)
- E J Van Damme
- Laboratory for Phytopathology and Plant Protection, Katholieke Universiteit Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
17
|
Acharya S, Rayborn ME, Hollyfield JG. Characterization of SPACR, a sialoprotein associated with cones and rods present in the interphotoreceptor matrix of the human retina: immunological and lectin binding analysis. Glycobiology 1998; 8:997-1006. [PMID: 9719680 DOI: 10.1093/glycob/8.10.997] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Rod and cone photoreceptors project from the outer retinal surface into a carbohydrate-rich interphotoreceptor matrix (IPM). Unique IPM glycoconjugates are distributed around rods and cones. Wheat germ agglutinin (WGA) strongly decorates the rod matrix domains and weakly decorates the cone matrix domains. This study characterizes the major WGA-binding glycoprotein in the human IPM, which we refer to as SPACR (sialoprotein associated with cones and rods). SPACR, which has a molecular weight of 147 kDa, was isolated and purified from the IPM by lectin affinity chromatography. A polyclonal antibody to SPACR was prepared that colocalizes in tissue preparations with WGA-binding domains in the IPM. Sequential digestion of SPACR with N- and O-glycosidases results in a systematic increase in electrophorectic mobility, indicating the presence of both N- and O-linked glycoconjugates. Complete deglycosylation results in a reduction in the relative molecular mass of SPACR by about 30%. Analysis of lectin binding allowed us to identify some of the structural characteristics of SPACR glycoconjugates. Treatment with neuraminidase exposes Galbeta1-3GalNAc disaccharide as indicated by positive peanut agglutinin (PNA) staining, accompanied by the loss of WGA staining. Maackia amurensis agglutinins (MAA-1 and MAA-2), specific for sialic acid in alpha2-3 linkage to Gal, bind SPACR, while Sambucus nigra agglutinin (SNA), specific for alpha2-6 linked sialic acid, does not, indicating that the dominant glycoconjugate determinant on SPACR is the O-linked carbohydrate, NeuAcalpha2-3Galbeta1-3GalNAc. The abundance of sialic acid in SPACR suggests that this glycoprotein may contribute substantially to the polyanionic nature of the IPM. The carbohydrate chains present on SPACR could also provide sites for extensive crosslinking and participate in the formation of the ordered IPM lattice that surrounds the elongate photoreceptors projecting from the outer retinal surface.
Collapse
Affiliation(s)
- S Acharya
- The Eye Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | |
Collapse
|