1
|
Wang D, Yin F, Li Z, Zhang Y, Shi C. Current progress and remaining challenges of peptide-drug conjugates (PDCs): next generation of antibody-drug conjugates (ADCs)? J Nanobiotechnology 2025; 23:305. [PMID: 40259322 PMCID: PMC12013038 DOI: 10.1186/s12951-025-03277-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/24/2025] [Indexed: 04/23/2025] Open
Abstract
Drug conjugates have emerged as a promising alternative delivery system designed to deliver an ultra-toxic payload directly to the target cancer cells, maximizing therapeutic efficacy while minimizing toxicity. Among these, antibody-drug conjugates (ADCs) have garnered significant attention from both academia and industry due to their great potential for cancer therapy. However, peptide-drug conjugates (PDCs) offer several advantages over ADCs, including more accessible industrial synthesis, versatile functionalization, high tissue penetration, and rapid clearance with low immunotoxicity. These factors position PDCs as up-and-coming drug candidates for future cancer therapy. Despite their potential, PDCs face challenges such as poor pharmacokinetic properties and low bioactivity, which hinder their clinical development. How to design PDCs to meet clinical needs is a big challenge and urgent to resolve. In this review, we first carefully analyzed the general consideration of successful PDC design learning from ADCs. Then, we summarised the basic functions of each component of a PDC construct, comprising of peptides, linkers and payloads. The peptides in PDCs were categorized into three types: tumor targeting peptides, cell penetrating peptide and self-assembling peptide. We then analyzed the potential of these peptides for drug delivery, such as overcoming drug resistance, controlling drug release and improving therapeutic efficacy with reduced non-specific toxicity. To better understand the potential druggability of PDCs, we discussed the pharmacokinetics of PDCs and also briefly introduced the current PDCs in clinical trials. Lastly, we discussed the future perspectives for the successful development of an oncology PDC. This review aimed to provide useful information for better construction of PDCs in future clinical applications.
Collapse
Affiliation(s)
- Dongyuan Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Feng Yin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Shenzhen Bay Laboratory, Pingshan Translational Medicine Center, Shenzhen, 518118, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
- Shenzhen Bay Laboratory, Pingshan Translational Medicine Center, Shenzhen, 518118, China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China.
| | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China.
| |
Collapse
|
2
|
Ansong M, Kover K, Shah P, Friedman SH. A Green Light-Activated Insulin Depot with Ultrafast In Vivo Efficiency in the Subcutaneous Space. ACS Biomater Sci Eng 2024; 10:3806-3812. [PMID: 38709857 DOI: 10.1021/acsbiomaterials.4c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
In this work, for the first time, we demonstrate light control of a therapeutic protein's release from a depot in the subcutaneous layer of the skin. The subcutaneous layer is a standard location for therapeutic protein depots due to its large size and ease of access, but prior attempts to utilize this space failed because insufficient light can reach this deeper layer. An analysis of existing biophysical literature suggested that an increase of photoactivation wavelength from 365 to 500 nm could allow an increase of depot irradiation in the subcutaneous by >100-fold. We therefore used a green light-activated thio-coumarin-based material and demonstrated robust release of a therapeutic, insulin, in response to skin illumination with an LED light source. We further demonstrated that this release is ultrafast, as fast or faster than any commercially used insulin, while maintaining the native insulin sequence. This release of insulin was then accompanied by a robust reduction in blood glucose, demonstrating the retention of bioactivity despite the synthetic processing required to generate the material. In addition, we observed that the material exhibits slow basal release of insulin, even in the absence of light, potentially through biochemical or photochemical unmasking of insulin. Thus, these materials can act much like the healthy pancreas does: releasing insulin at a slow basal rate and then, upon skin irradiation, releasing an ultrafast bolus of native insulin to reduce postprandial blood glucose excursions.
Collapse
Affiliation(s)
- Michael Ansong
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri - Kansas City, Kansas City, Missouri 64108, United States
| | - Karen Kover
- Department of Endocrinology, Children's Mercy Hospital, Kansas City, Missouri 64108, United States
- Department of Medicine, School of Medicine, University of Missouri - Kansas City, Kansas City, Missouri 64108, United States
| | - Parth Shah
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri - Kansas City, Kansas City, Missouri 64108, United States
| | - Simon H Friedman
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri - Kansas City, Kansas City, Missouri 64108, United States
| |
Collapse
|
3
|
Yang X, Yuan Z, Lu W, Yang C, Wang M, Tripathi R, Fultz Z, Tan C, Wang B. De Novo Construction of Fluorophores via CO Insertion-Initiated Lactamization: A Chemical Strategy toward Highly Sensitive and Highly Selective Turn-On Fluorescent Probes for Carbon Monoxide. J Am Chem Soc 2023; 145:78-88. [PMID: 36548940 PMCID: PMC10287542 DOI: 10.1021/jacs.2c07504] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Extensive studies in the last few decades have led to the establishment of CO as an endogenous signaling molecule and subsequently to the exploration of CO's therapeutic roles. In the current state, there is a critical conundrum in CO-related research: the extensive knowledge of CO's biological effects and yet an insufficient understanding of the quantitative correlations between the CO concentration and biological responses of various natures. This conundrum is partially due to the difficulty in examining precise concentration-response relationships of a gaseous molecule. Another reason is the need for appropriate tools for the sensitive detection and concentration determination of CO in the biological system. We herein report a new chemical approach to the design of fluorescent CO probes through de novo construction of fluorophores by a CO insertion-initiated lactamization reaction, which allows for ultra-low background and exclusivity in CO detection. Two series of CO detection probes have been designed and synthesized using this strategy. Using these probes, we have extensively demonstrated their utility in quantifying CO in blood, tissue, and cell culture and in cellular imaging of CO from exogenous and endogenous sources. The probes described will enable many biology and chemistry labs to study CO's functions in a concentration-dependent fashion with very high sensitivity and selectivity. The chemical and design principles described will also be applicable in designing fluorescent probes for other small molecules.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Wen Lu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Ce Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Minjia Wang
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677 USA
| | - Ravi Tripathi
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Zach Fultz
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Chalet Tan
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677 USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| |
Collapse
|
4
|
Clemente CM, Robledo SM, Ravetti S. Menthol carbonates as potent antiparasitic agents: synthesis and in vitro studies along with computer-aided approaches. BMC Complement Med Ther 2022; 22:156. [PMID: 35698116 PMCID: PMC9190099 DOI: 10.1186/s12906-022-03636-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/02/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Introduction
Despite the number of deaths and the significant economic and social costs associated with Chagas, Leishmaniasis and Malaria diseases worldwide, available drugs are limited and have serious side effects and high toxicity for the patient. Therefore, there is an urgent need for safe, low-cost, and effective treatments. Natural products are an important source of bioactive compounds and there is current interest in finding natural bioactive molecules that can be used for treating these parasitic diseases. In the present study we proposed to evaluate the in vitro antiparasitic activity of new menthol derivatives against Trypanosoma cruzi, Leishmania braziliensis and Plasmodium falciparum; moreover, we propose to explore their mode of action through in silico approaches.
Material and methods
A series of carbonate prodrugs (1–9) were synthesized from menthol with different aliphatic alcohols. Spectroscopic techniques were used to confirm the structures of the synthesized compounds. The cytotoxicity of the compounds was assessed using U-937 cells. In vitro trypanocidal, leishmanicidal and antiplasmodial activity were evaluated using a T. cruzi, L. braziliensis and P. falciparum organism, respectively. In addition, in silico studies were also performed through molecular dynamics simulations and MM-PBSA analysis.
Results
The assay revealed that most of the compounds were highly active against intracellular amastigotes of T. cruzi and L. braziliensis, and had moderate activity against the total forms of P. falciparum. Compound 2 was one of the drugs that showed a high selectivity index (SI) for the three organisms evaluated. The prediction of the ADME properties suggests that all the compounds have drug-like molecular properties and the probability to be lead candidates. Finally, molecular dynamics simulations, and MM-PBSA studies indicate that menthol at the substrate binding site of TcDHODH, LbDHODH and PfDHODH is structurally stable in the same order as the natural substrate; also, interactions of menthol with residues involved in the inhibition of TcDHODH and PfDHODH proteins were predicted.
Conclusions
The present study demonstrates that menthol prodrugs are promising antiparasitic agents; however, the mechanisms of action proposed in this study need to be experimentally verified by future enzymatic assays.
Collapse
|
5
|
Price S, Mehta R, Tan D, Hinojosa A, Thomas PW, Cummings T, Fast W, Que EL. Structural insights into the design of reversible fluorescent probes for metallo-β-lactamases NDM-1, VIM-2, and IMP-1. J Inorg Biochem 2022; 233:111869. [PMID: 35653820 PMCID: PMC9216179 DOI: 10.1016/j.jinorgbio.2022.111869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 12/31/2022]
Abstract
Metallo-β-lactamases (MBLs) are enzymes that are capable of hydrolyzing most β-lactam antibiotics and all clinically relevant carbapenems. We developed a library of reversible fluorescent turn-on probes that are designed to directly bind to the dizinc active site of these enzymes and can be used to study their dynamic metalation state and enzyme-inhibitor interactions. Structure-function relationships with regards to inhibitory strength and fluorescence turn-on response were evaluated for three representative MBLs.
Collapse
Affiliation(s)
- Sky Price
- Department of Chemistry, University of Texas at Austin, 105 E 24th St Stop A5300, Austin, TX 78712, United States of America
| | - Radhika Mehta
- Department of Chemistry, University of Texas at Austin, 105 E 24th St Stop A5300, Austin, TX 78712, United States of America
| | - Dominique Tan
- Department of Chemistry, University of Texas at Austin, 105 E 24th St Stop A5300, Austin, TX 78712, United States of America
| | - Abigail Hinojosa
- Department of Chemistry, University of Texas at Austin, 105 E 24th St Stop A5300, Austin, TX 78712, United States of America
| | - Pei W. Thomas
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, and the LaMontagne Center for Infectious Disease, University of Texas at Austin, Austin, TX 78712, United States of America
| | - Tawanda Cummings
- Department of Chemistry, University of Texas at Austin, 105 E 24th St Stop A5300, Austin, TX 78712, United States of America
| | - Walter Fast
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, and the LaMontagne Center for Infectious Disease, University of Texas at Austin, Austin, TX 78712, United States of America
| | - Emily L. Que
- Department of Chemistry, University of Texas at Austin, 105 E 24th St Stop A5300, Austin, TX 78712, United States of America,Corresponding author. (E.L. Que)
| |
Collapse
|
6
|
Zoghebi K, Aliabadi HM, Tiwari RK, Parang K. [(WR) 8WKβA]-Doxorubicin Conjugate: A Delivery System to Overcome Multi-Drug Resistance against Doxorubicin. Cells 2022. [PMID: 35053417 DOI: 10.3390/cells11020301/s1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
Doxorubicin (Dox) is an anthracycline chemotherapeutic agent used to treat breast, leukemia, and lymphoma malignancies. However, cardiotoxicity and inherent acquired resistance are major drawbacks, limiting its clinical application. We have previously shown that cyclic peptide [WR]9 containing alternate tryptophan (W) and arginine (R) residues acts as an efficient molecular transporter. An amphiphilic cyclic peptide containing a lysine (K) residue and alternative W and R was conjugated through a free side chain amino group with Dox via a glutarate linker to afford [(WR)8WKβA]-Dox conjugate. Antiproliferative assays were performed in different cancer cell lines using the conjugate and the corresponding physical mixture of the peptide and Dox to evaluate the effectiveness of synthesized conjugate compared to the parent drug alone. [(WR)8WKβA]-Dox conjugate showed higher antiproliferative activity at 10 µM and 5 µM than Dox alone at 5 μM. The conjugate inhibited the cell viability of ovarian adenocarcinoma (SK-OV-3) by 59% and the triple-negative breast cancer cells MDA-MB-231 and MCF-7 by 71% and 77%, respectively, at a concentration of 5 μM after 72 h of incubation. In contrast, Dox inhibited the proliferation of SK-OV-3, MDA-MB-231, and MCF-7 by 35%, 63%, and 57%, respectively. Furthermore, [(WR)8WKβA]-Dox conjugate (5 µM) inhibited the cell viability of Dox-resistant cells (MES-SA/MX2) by 92%, while the viability of cells incubated with free Dox was only 15% at 5 μM. Confocal microscopy images confirmed the ability of both Dox conjugate and the physical mixture of the peptide with the drug to deliver Dox through an endocytosis-independent pathway, as the uptake was not inhibited in the presence of endocytosis inhibitors. The stability of Dox conjugate was observed at different time intervals using analytical HPLC when the conjugate was incubated with 25% human serum. Half-life (t1/2) for [(WR)8WKβA]-Dox conjugate was (∼6 h), and more than 80% of the conjugate was degraded at 12 h. The release of free Dox was assessed intracellularly using the CCRF-CEM cell line. The experiment demonstrated that approximately 100% of free Dox was released from the conjugate intracellularly within 72 h. These data confirm the ability of the cyclic cell-penetrating peptide containing tryptophan and arginine residues as an efficient tool for delivery of Dox and for overcoming resistance to it.
Collapse
Affiliation(s)
- Khalid Zoghebi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 82826, Saudi Arabia
| | - Hamidreza Montazeri Aliabadi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
7
|
Zoghebi K, Aliabadi HM, Tiwari RK, Parang K. [(WR) 8WKβA]-Doxorubicin Conjugate: A Delivery System to Overcome Multi-Drug Resistance against Doxorubicin. Cells 2022; 11:301. [PMID: 35053417 PMCID: PMC8774489 DOI: 10.3390/cells11020301] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 02/02/2023] Open
Abstract
Doxorubicin (Dox) is an anthracycline chemotherapeutic agent used to treat breast, leukemia, and lymphoma malignancies. However, cardiotoxicity and inherent acquired resistance are major drawbacks, limiting its clinical application. We have previously shown that cyclic peptide [WR]9 containing alternate tryptophan (W) and arginine (R) residues acts as an efficient molecular transporter. An amphiphilic cyclic peptide containing a lysine (K) residue and alternative W and R was conjugated through a free side chain amino group with Dox via a glutarate linker to afford [(WR)8WKβA]-Dox conjugate. Antiproliferative assays were performed in different cancer cell lines using the conjugate and the corresponding physical mixture of the peptide and Dox to evaluate the effectiveness of synthesized conjugate compared to the parent drug alone. [(WR)8WKβA]-Dox conjugate showed higher antiproliferative activity at 10 µM and 5 µM than Dox alone at 5 μM. The conjugate inhibited the cell viability of ovarian adenocarcinoma (SK-OV-3) by 59% and the triple-negative breast cancer cells MDA-MB-231 and MCF-7 by 71% and 77%, respectively, at a concentration of 5 μM after 72 h of incubation. In contrast, Dox inhibited the proliferation of SK-OV-3, MDA-MB-231, and MCF-7 by 35%, 63%, and 57%, respectively. Furthermore, [(WR)8WKβA]-Dox conjugate (5 µM) inhibited the cell viability of Dox-resistant cells (MES-SA/MX2) by 92%, while the viability of cells incubated with free Dox was only 15% at 5 μM. Confocal microscopy images confirmed the ability of both Dox conjugate and the physical mixture of the peptide with the drug to deliver Dox through an endocytosis-independent pathway, as the uptake was not inhibited in the presence of endocytosis inhibitors. The stability of Dox conjugate was observed at different time intervals using analytical HPLC when the conjugate was incubated with 25% human serum. Half-life (t1/2) for [(WR)8WKβA]-Dox conjugate was (∼6 h), and more than 80% of the conjugate was degraded at 12 h. The release of free Dox was assessed intracellularly using the CCRF-CEM cell line. The experiment demonstrated that approximately 100% of free Dox was released from the conjugate intracellularly within 72 h. These data confirm the ability of the cyclic cell-penetrating peptide containing tryptophan and arginine residues as an efficient tool for delivery of Dox and for overcoming resistance to it.
Collapse
Affiliation(s)
- Khalid Zoghebi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (K.Z.); (H.M.A.)
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 82826, Saudi Arabia
| | - Hamidreza Montazeri Aliabadi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (K.Z.); (H.M.A.)
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (K.Z.); (H.M.A.)
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (K.Z.); (H.M.A.)
| |
Collapse
|
8
|
Zhao D, Tao W, Li S, Chen Y, Sun Y, He Z, Sun B, Sun J. Apoptotic body-mediated intercellular delivery for enhanced drug penetration and whole tumor destruction. SCIENCE ADVANCES 2021; 7:7/16/eabg0880. [PMID: 33863733 PMCID: PMC8051881 DOI: 10.1126/sciadv.abg0880] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/03/2021] [Indexed: 05/10/2023]
Abstract
Chemotherapeutic nanomedicines can exploit the neighboring effect to increase tumor penetration. However, the neighboring effect is limited, likely by the consumption of chemotherapeutic agents and resistance of internal hypoxic tumor cells. Here, we first propose and demonstrate that apoptotic bodies (ApoBDs) could carry the remaining drugs to neighboring tumor cells after apoptosis. To enhance the ApoBD-based neighboring effect, we fabricated disulfide-linked prodrug nanoparticles consisting of camptothecin (CPT) and hypoxia-activated prodrug PR104A. CPT kills external normoxic tumor cells to produce ApoBDs, while PR104A remains inactive. The remaining drugs could be effectively delivered into internal tumor cells via ApoBDs. Although CPT exhibits low toxicity to internal hypoxic tumor cells, PR104A could be activated to exert strong cytotoxicity, which further facilitates deep penetration of the remaining drugs. Such a synergic approach could overcome the limitations of the neighboring effect to penetrate deep into solid tumors for whole tumor destruction.
Collapse
Affiliation(s)
- Dongyang Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wenhui Tao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Songhao Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yao Chen
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yinghua Sun
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
9
|
Alas M, Saghaeidehkordi A, Kaur K. Peptide-Drug Conjugates with Different Linkers for Cancer Therapy. J Med Chem 2020; 64:216-232. [PMID: 33382619 DOI: 10.1021/acs.jmedchem.0c01530] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Drug conjugates are chemotherapeutic or cytotoxic agents covalently linked to targeting ligands such as an antibody or a peptide via a linker. While antibody-drug conjugates (ADCs) are now clinically established for cancer therapy, peptide-drug conjugates (PDCs) are gaining recognition as a new modality for targeted drug delivery with improved efficacy and reduced side effects for cancer treatment. The linker in a drug conjugate plays a key role in the circulation time of the conjugate and release of the drug for full activity at the target site. Herein, we highlight the main linker chemistries utilized in the design of PDCs and discuss representative examples of PDCs with different linker chemistries with the related outcome in cell and animal studies.
Collapse
Affiliation(s)
- Mona Alas
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California 92618-1908, United States
| | - Azam Saghaeidehkordi
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California 92618-1908, United States
| | - Kamaljit Kaur
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California 92618-1908, United States
| |
Collapse
|
10
|
Pisarevsky E, Blau R, Epshtein Y, Ben-Shushan D, Eldar-Boock A, Tiram G, Koshrovski-Michael S, Scomparin A, Pozzi S, Krivitsky A, Shenbach-Koltin G, Yeini E, Fridrich L, White R, Satchi-Fainaro R. Rational Design of Polyglutamic Acid Delivering an Optimized Combination of Drugs Targeting Mutated BRAF and MEK in Melanoma. ADVANCED THERAPEUTICS 2020; 3:2000028. [PMID: 35754977 PMCID: PMC9223483 DOI: 10.1002/adtp.202000028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Indexed: 12/17/2022]
Abstract
Targeted therapies against cancer can relieve symptoms and induce remission, however, they often present limited duration of disease control, cause side effects and often induce acquired resistance. Therefore, there is a great motivation to develop a unique delivery system, targeted to the tumor, in which we can combine several active entities, increase the therapeutic index by reducing systemic exposure, and enhance their synergistic activity. To meet these goals, we chose the biocompatible and biodegradable poly(α,L-glutamic acid) (PGA) as a nanocarrier that facilitates extravasation-dependent tumor targeting delivery. The RAS/RAF/MEK/ERK pathway when aberrantly activated in melanoma, can lead to uncontrolled cell proliferation, induced invasion, and reduced apoptosis. Here, we selected two drugs targeting this pathway; a MEK1/2 inhibitor (selumetinib; SLM) and a modified BRAF inhibitor (modified dabrafenib; mDBF), that exhibited synergism in vitro. We synthesized and characterized our nanomedicine of PGA conjugated to SLM and mDBF (PGA-SLM-mDBF). PGA-SLM-mDBF inhibited the proliferation of melanoma cells and decreased their migratory and sprouting abilities without inducing a hemolytic effect. Moreover, the polymer-2-drugs conjugate exhibited superior anti-tumor activity in comparison with the two separate polymer-drug conjugates in vitro and with free drugs in a mouse model of primary melanoma and prolonged survival at a lower dose.
Collapse
Affiliation(s)
- Evgeni Pisarevsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Rachel Blau
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yana Epshtein
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dikla Ben-Shushan
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Anat Eldar-Boock
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Galia Tiram
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shani Koshrovski-Michael
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Anna Scomparin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Adva Krivitsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gal Shenbach-Koltin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eilam Yeini
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lidar Fridrich
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Richard White
- Cancer Biology & Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
11
|
Prodrugs of PKC modulators show enhanced HIV latency reversal and an expanded therapeutic window. Proc Natl Acad Sci U S A 2020; 117:10688-10698. [PMID: 32371485 DOI: 10.1073/pnas.1919408117] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIDS is a pandemic disease caused by HIV that affects 37 million people worldwide. Current antiretroviral therapy slows disease progression but does not eliminate latently infected cells, which resupply active virus, thus necessitating lifelong treatment with associated compliance, cost, and chemoexposure issues. Latency-reversing agents (LRAs) activate these cells, allowing for their potential clearance, thus presenting a strategy to eradicate the infection. Protein kinase C (PKC) modulators-including prostratin, ingenol esters, bryostatin, and their analogs-are potent LRAs in various stages of development for several clinical indications. While LRAs are promising, a major challenge associated with their clinical use is sustaining therapeutically meaningful levels of the active agent while minimizing side effects. Here we describe a strategy to address this problem based on LRA prodrugs, designed for controllable release of the active LRA after a single injection. As intended, these prodrugs exhibit comparable or superior in vitro activity relative to the parent compounds. Selected compounds induced higher in vivo expression of CD69, an activation biomarker, and, by releasing free agent over time, significantly improved tolerability when compared to the parent LRAs. More generally, selected prodrugs of PKC modulators avoid the bolus toxicities of the parent drug and exhibit greater efficacy and expanded tolerability, thereby addressing a longstanding objective for many clinical applications.
Collapse
|
12
|
Anti-echinococcal activity of menthol and a novel prodrug, menthol-pentanol, against Echinococcus multilocularis. Acta Trop 2020; 205:105411. [PMID: 32101761 DOI: 10.1016/j.actatropica.2020.105411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 11/20/2022]
Abstract
Alveolar echinococcosis is one of the most dangerous parasitic zoonoses. This disease, widely distributed in the northern hemisphere, is caused by the metacestode stage of the tapeworm Echinococcus multilocularis. All surgical and non-surgical patients should perform chemotherapy with benzimidazoles, mainly with albendazole. However, the efficacy of albendazole is variable due to its deficient pharmacokinetic properties. Therefore, the need to find new therapeutic alternatives for the treatment of alveolar echinococcosis is evident. Menthol is a natural compound of low toxicity, used in industries such as cosmetics and gastronomy and generally recognized as safe by the Food and Drug Administration. In addition, menthol has important pharmacological effects and is effective against a wide variety of organisms. The development of prodrugs allows improving the pharmacokinetic properties of the parental drug. To improve lipophilicity and therefore the bioavailability of menthol, a novel prodrug called menthol-pentanol was developed by masking the functional polar group of menthol by linking n-pentanol by a carbonate bond. The aim of the current work was to evaluate the in vitro and in vivo efficacy of menthol and menthol-pentanol against E. multilocularis. Menthol-pentanol had a greater protoscolicidal effect than menthol. In addition, the prodrug demonstrated a similar clinical efficacy to albendazole. The increase in lipophilicity of the prodrug with respect to menthol was reflected in an increase in its antiparasitic activity against E. multilocularis. Thus, menthol-pentanol appears as a promising candidate for further evaluation as a potential alternative for the treatment of alveolar echinococcosis.
Collapse
|
13
|
Monpara J, Velga D, Verma T, Gupta S, Vavia P. Cationic cholesterol derivative efficiently delivers the genes: in silico and in vitro studies. Drug Deliv Transl Res 2019; 9:106-122. [PMID: 30132199 DOI: 10.1007/s13346-018-0571-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aims of the research work were to synthesize ethyl(cholesteryl carbamoyl)-L-arginate (ECCA), an arginine-conjugated cholesterol derivative, and to evaluate its application as a gene delivery vector. The interactions of ECCA with DNA duplex were studied using molecular dynamics (MD) simulations. It was found that the guanidine group of ECCA could interact with the phosphate group of DNA through ionic interactions as well as hydrogen bonds. The structure of DNA was stable throughout the simulation time. Liposomes were formulated using ECCA and soya phosphatidylcholine (SPC) by a thin-film hydration method. They had the particle size of ~ 150 nm and the zeta potential of + 51 mV. To ensure the efficient binding of DNA to the liposomes, the ratio of DNA to ECCA was optimized using gel retardation assay. Further, serum stability, haemolysis and cytotoxicity studies were carried out to determine the stability and safety of the lipoplexes. Circular dichroism spectroscopy was used to determine the interaction of DNA and cationic liposomes. Cellular uptake pathway was determined by studying the uptake of coumarin-loaded lipoplexes at 4 °C and in the presence of uptake inhibitors, i.e. genistein, chlorpromazine and methyl-β-cyclodextrin. Transfection studies were carried out to evaluate the transfection efficacy of the ECCA-loaded lipoplexes. The binding of DNA and lipoplexes was found to be stable in the presence of serum, and no degradation of DNA was observed. The lipoplexes showed low haemolysis and cytotoxicity. The uptake of coumarin-loaded liposomes was decreased up to ~ 20% in the presence of clathrin- and caveola-mediated uptake inhibitors, indicating a role of both the pathways in the uptake of the inhibitors. Satisfactory transfection efficiency was obtained compared to Lipofectamine®. Thus, cationic cholesterol derivative is a useful tool for gene delivery vector.
Collapse
Affiliation(s)
- Jasmin Monpara
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, University Under Section 3 of UGC Act-1956, Elite Status and Center of Excellence-Government of Maharashtra, TEQIP Phase II Funded, Mumbai, 400019, India
| | - Divya Velga
- Gupta Laboratory, Epigenetics and Chromatin Biology Group, Cancer Research Institute, Tata Memorial Centre, Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, 400085, India
| | - Tripti Verma
- Gupta Laboratory, Epigenetics and Chromatin Biology Group, Cancer Research Institute, Tata Memorial Centre, Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, 400085, India
| | - Sanjay Gupta
- Gupta Laboratory, Epigenetics and Chromatin Biology Group, Cancer Research Institute, Tata Memorial Centre, Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, 400085, India
| | - Pradeep Vavia
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, University Under Section 3 of UGC Act-1956, Elite Status and Center of Excellence-Government of Maharashtra, TEQIP Phase II Funded, Mumbai, 400019, India.
| |
Collapse
|
14
|
Wei W, Zhou T, Wu S, Shen X, Zhu M, Li S. An enzyme-like imprinted-polymer reactor with segregated quantum confinements for a tandem catalyst. RSC Adv 2018; 8:1610-1620. [PMID: 35540881 PMCID: PMC9077128 DOI: 10.1039/c7ra12320e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/20/2017] [Indexed: 12/20/2022] Open
Abstract
This study was aimed at addressing the present challenge in tandem catalysts, as to how to furnish catalysts with tandem catalytic-ability without involving the precise control and man-made isolation of different types of catalytic sites. This objective was realized by constructing an enzyme-like imprinted-polymer reactor made of a unique polymer composite inspired from the compartmentalization of cells, a composite of a reactive imprinted polymer (containing acidic catalytic sites), and encapsulated metal nanoparticles (acting as catalytic reduction sites). The compilation of two types of catalytic sites with admissible access allowed this reactor to behave like compartments of cells for enzymatic reactions and hence catalytically constituted two quantum interaction-segregated domains, which led to the occurrence of catalytic tandem processes. Unlike the reported functional reactors that run tandem catalysis by largely depending on the precise control and man-made isolation of different types of catalytic sites, tandem catalysis in this reactor run naturally with segregated quantum confinements, which does not involve the precise control and isolation of different types of catalytic sites. This protocol presents new opportunities for the development of functional catalysts for complicated chemical processes. This study was aimed at addressing the present challenge in tandem catalysts: how to furnish catalysts with tandem catalytic-ability without involving the precise control and man-made isolation of different types of catalytic sites.![]()
Collapse
Affiliation(s)
- Wenjing Wei
- Institute of Polymer Materials
- School of Materials Science & Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Tingting Zhou
- Institute of Polymer Materials
- School of Materials Science & Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Shuping Wu
- Institute of Polymer Materials
- School of Materials Science & Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Xiaojuan Shen
- Institute of Polymer Materials
- School of Materials Science & Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Maiyong Zhu
- Institute of Polymer Materials
- School of Materials Science & Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Songjun Li
- Institute of Polymer Materials
- School of Materials Science & Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| |
Collapse
|
15
|
Al-Shamary MN, Al-Lohedan HA, Rafiquee M, El-Ablack F, Issa ZA. Micellar effect upon the rate of alkaline hydrolysis of carboxylic and carbonate esters. JOURNAL OF SAUDI CHEMICAL SOCIETY 2017. [DOI: 10.1016/j.jscs.2014.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Cox N, Kintzing JR, Smith M, Grant GA, Cochran JR. Integrin-Targeting Knottin Peptide-Drug Conjugates Are Potent Inhibitors of Tumor Cell Proliferation. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603488] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nick Cox
- Stanford ChEM-H Medicinal Chemistry Knowledge Center; Stanford University; Stanford CA 94305 USA
| | - James R. Kintzing
- Department of Bioengineering; Stanford University; Stanford CA 94305 USA
| | - Mark Smith
- Stanford ChEM-H Medicinal Chemistry Knowledge Center; Stanford University; Stanford CA 94305 USA
| | - Gerald A. Grant
- Department of Neurosurgery; Stanford University; Stanford CA 94305 USA
| | | |
Collapse
|
17
|
Cox N, Kintzing JR, Smith M, Grant GA, Cochran JR. Integrin-Targeting Knottin Peptide-Drug Conjugates Are Potent Inhibitors of Tumor Cell Proliferation. Angew Chem Int Ed Engl 2016; 55:9894-7. [PMID: 27304709 DOI: 10.1002/anie.201603488] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 05/16/2016] [Indexed: 01/05/2023]
Abstract
Antibody-drug conjugates (ADCs) offer increased efficacy and reduced toxicity compared to systemic chemotherapy. Less attention has been paid to peptide-drug delivery, which has the potential for increased tumor penetration and facile synthesis. We report a knottin peptide-drug conjugate (KDC) and demonstrate that it can selectively deliver gemcitabine to malignant cells expressing tumor-associated integrins. This KDC binds to tumor cells with low-nanomolar affinity, is internalized by an integrin-mediated process, releases its payload intracellularly, and is a highly potent inhibitor of brain, breast, ovarian, and pancreatic cancer cell lines. Notably, these features enable this KDC to bypass a gemcitabine-resistance mechanism found in pancreatic cancer cells. This work expands the therapeutic relevance of knottin peptides to include targeted drug delivery, and further motivates efforts to expand the drug-conjugate toolkit to include non-antibody protein scaffolds.
Collapse
Affiliation(s)
- Nick Cox
- Stanford ChEM-H Medicinal Chemistry Knowledge Center, Stanford University, Stanford, CA, 94305, USA
| | - James R Kintzing
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Mark Smith
- Stanford ChEM-H Medicinal Chemistry Knowledge Center, Stanford University, Stanford, CA, 94305, USA
| | - Gerald A Grant
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA
| | - Jennifer R Cochran
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
18
|
Mahmoodi MM, Abate-Pella D, Pundsack TJ, Palsuledesai CC, Goff PC, Blank DA, Distefano MD. Nitrodibenzofuran: A One- and Two-Photon Sensitive Protecting Group That Is Superior to Brominated Hydroxycoumarin for Thiol Caging in Peptides. J Am Chem Soc 2016; 138:5848-59. [PMID: 27027927 PMCID: PMC5026405 DOI: 10.1021/jacs.5b11759] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Indexed: 11/28/2022]
Abstract
Photoremovable protecting groups are important for a wide range of applications in peptide chemistry. Using Fmoc-Cys(Bhc-MOM)-OH, peptides containing a Bhc-protected cysteine residue can be easily prepared. However, such protected thiols can undergo isomerization to a dead-end product (a 4-methylcoumarin-3-yl thioether) upon photolysis. To circumvent that photoisomerization problem, we explored the use of nitrodibenzofuran (NDBF) for thiol protection by preparing cysteine-containing peptides where the thiol is masked with an NDBF group. This was accomplished by synthesizing Fmoc-Cys(NDBF)-OH and incorporating that residue into peptides by standard solid-phase peptide synthesis procedures. Irradiation with 365 nm light or two-photon excitation with 800 nm light resulted in efficient deprotection. To probe biological utility, thiol group uncaging was carried out using a peptide derived from the protein K-Ras4B to yield a sequence that is a known substrate for protein farnesyltransferase; irradiation of the NDBF-caged peptide in the presence of the enzyme resulted in the formation of the farnesylated product. Additionally, incubation of human ovarian carcinoma (SKOV3) cells with an NDBF-caged version of a farnesylated peptide followed by UV irradiation resulted in migration of the peptide from the cytosol/Golgi to the plasma membrane due to enzymatic palmitoylation. Overall, the high cleavage efficiency devoid of side reactions and significant two-photon cross-section of NDBF render it superior to Bhc for thiol group caging. This protecting group should be useful for a plethora of applications ranging from the development of light-activatable cysteine-containing peptides to the development of light-sensitive biomaterials.
Collapse
Affiliation(s)
- M. Mohsen Mahmoodi
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Daniel Abate-Pella
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Tom J. Pundsack
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Charuta C. Palsuledesai
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Philip C. Goff
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - David A. Blank
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mark D. Distefano
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
19
|
Botella P, Muniesa C, Vicente V, Cabrera-García A. Effect of drug precursor in cell uptake and cytotoxicity of redox-responsive camptothecin nanomedicines. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 58:692-9. [DOI: 10.1016/j.msec.2015.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/04/2015] [Accepted: 09/02/2015] [Indexed: 12/29/2022]
|
20
|
Saxena J, Meloni D, Huang MT, Heck DE, Laskin JD, Heindel ND, Young SC. Ethynylphenyl carbonates and carbamates as dual-action acetylcholinesterase inhibitors and anti-inflammatory agents. Bioorg Med Chem Lett 2015; 25:5609-12. [PMID: 26510670 DOI: 10.1016/j.bmcl.2015.10.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/14/2015] [Indexed: 01/24/2023]
Abstract
Novel ethynylphenyl carbonates and carbamates containing carbon- and silicon-based choline mimics were synthesized from their respective phenol and aniline precursors and screened for anticholinesterase and anti-inflammatory activities. All molecules were micromolar inhibitors of acetylcholinesterase (AChE), with IC50s of 28-86 μM; the carbamates were two-fold more potent than the carbonates. Two of the most potent AChE inhibitors suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation by 40%. Furthermore, these molecules have physicochemical properties in the range of other CNS drugs. These molecules have the potential to treat inflammation; they could also dually target Alzheimer's disease through restoration of cholinergic balance and inflammation suppression.
Collapse
Affiliation(s)
- Jaya Saxena
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, United States
| | - David Meloni
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, United States; Incyte Corporation, Wilmington, DE 19803, United States
| | - Mou-Tuan Huang
- Department of Chemical Biology, Rutgers University, Piscataway, NJ 08854, United States
| | - Diane E Heck
- Department of Environmental Health Science, New York Medical College, Valhalla, NY 10595, United States
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Medicine, Rutgers University, Piscataway, NJ 08854, United States
| | - Ned D Heindel
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, United States
| | - Sherri C Young
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, United States; Department of Chemistry, Muhlenberg College, Allentown, PA 18104, United States.
| |
Collapse
|
21
|
Pan X, Xu S, Huang R, Yu W, Liu F. A Facile, Six-Step Process for the Synthesis of (3S,5S)-3-Isopropyl-5-((2S,4S)-4-isopropyl-5-oxo-tetrahydrofuran-2-yl)-2-oxopyrrolidine-1-carboxylic Acid tert-Butyl Ester, The Key Synthetic Intermediate of Aliskiren. Org Process Res Dev 2015. [DOI: 10.1021/acs.oprd.5b00009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xianhua Pan
- School of Perfume and Aroma
Technology, Shanghai Institute of Technology, 100 Haiquan Rd, Shanghai, 201418, P. R. China
| | - Siyao Xu
- School of Perfume and Aroma
Technology, Shanghai Institute of Technology, 100 Haiquan Rd, Shanghai, 201418, P. R. China
| | - Rui Huang
- School of Perfume and Aroma
Technology, Shanghai Institute of Technology, 100 Haiquan Rd, Shanghai, 201418, P. R. China
| | - Wansheng Yu
- School of Perfume and Aroma
Technology, Shanghai Institute of Technology, 100 Haiquan Rd, Shanghai, 201418, P. R. China
| | - Feng Liu
- School of Perfume and Aroma
Technology, Shanghai Institute of Technology, 100 Haiquan Rd, Shanghai, 201418, P. R. China
| |
Collapse
|
22
|
Shi Y, Truong VX, Kulkarni K, Qu Y, Simon GP, Boyd RL, Perlmutter P, Lithgow T, Forsythe JS. Light-triggered release of ciprofloxacin from an in situ forming click hydrogel for antibacterial wound dressings. J Mater Chem B 2015; 3:8771-8774. [DOI: 10.1039/c5tb01820j] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Light triggered release of an antibiotic from a click crosslinked hydrogel was developed by conjugating ciprofloxacin through a photo-cleavable linker to the hydrogel network structure.
Collapse
Affiliation(s)
- Yue Shi
- Department of Material Science and Engineering
- Monash Institute of Medical Engineering
- Monash University
- Victoria 3800
- Australia
| | - Vinh X. Truong
- Department of Material Science and Engineering
- Monash Institute of Medical Engineering
- Monash University
- Victoria 3800
- Australia
| | - Ketav Kulkarni
- Department of Chemistry
- Monash University
- Victoria 3800
- Australia
| | - Yue Qu
- Infection and Immunity Program
- Monash Biomedicine Discovery Institute and Department of Microbiology
- Monash University
- Victoria 3800
- Australia
| | - George P. Simon
- Department of Material Science and Engineering
- Monash Institute of Medical Engineering
- Monash University
- Victoria 3800
- Australia
| | - Richard L. Boyd
- Faculty of Medicine
- Nursing and Health Sciences Anatomy and Developmental Biology
- Monash University
- Australia
| | | | - Trevor Lithgow
- Infection and Immunity Program
- Monash Biomedicine Discovery Institute and Department of Microbiology
- Monash University
- Victoria 3800
- Australia
| | - John S. Forsythe
- Department of Material Science and Engineering
- Monash Institute of Medical Engineering
- Monash University
- Victoria 3800
- Australia
| |
Collapse
|
23
|
Lal S, Snape TJ. Aromatic amides and ureas as novel molecular probes for diagnosing disease. Med Hypotheses 2014; 83:751-4. [DOI: 10.1016/j.mehy.2014.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 08/11/2014] [Indexed: 11/30/2022]
|
24
|
Govindan SV, Cardillo TM, Rossi EA, Trisal P, McBride WJ, Sharkey RM, Goldenberg DM. Improving the Therapeutic Index in Cancer Therapy by Using Antibody–Drug Conjugates Designed with a Moderately Cytotoxic Drug. Mol Pharm 2014; 12:1836-47. [DOI: 10.1021/mp5006195] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | | | - Edmund A. Rossi
- Immunomedics, Inc., Morris Plains, New Jersey 07950, United States
| | - Preeti Trisal
- Immunomedics, Inc., Morris Plains, New Jersey 07950, United States
| | | | | | - David M. Goldenberg
- Immunomedics, Inc., Morris Plains, New Jersey 07950, United States
- Center for Molecular Medicine and Immunology, Morris Plains, New Jersey 07950, United States
| |
Collapse
|
25
|
Beydon D, Payan JP, Ferrari E, Grandclaude MC. Percutaneous absorption of herbicides derived from 2,4-dichlorophenoxyacid: Structure–activity relationship. Toxicol In Vitro 2014; 28:1066-74. [DOI: 10.1016/j.tiv.2014.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/27/2014] [Accepted: 04/17/2014] [Indexed: 10/25/2022]
|
26
|
|
27
|
Synthesis, In Vitro and In Vivo Evaluation of the N-ethoxycarbonylmorpholine Ester of Diclofenac as a Prodrug. Pharmaceuticals (Basel) 2014; 7:453-63. [PMID: 24736104 PMCID: PMC4014702 DOI: 10.3390/ph7040453] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/20/2014] [Accepted: 03/31/2014] [Indexed: 11/30/2022] Open
Abstract
The N-ethoxycarbonylmorpholine moiety was evaluated as a novel prodrug moiety for carboxylic acid containing drugs represented by diclofenac (1). Compound 2, the N-ethoxycarbonylmorpholine ester of diclofenac was synthesized and evaluated as a potential prodrug. The stability of the synthesized prodrug was evaluated in solutions of pH 1 and 7.4, and in plasma. The ester’s half lives were found to be 8 h, 47 h and 21 min in pH 1, pH 7.4 and plasma, respectively. Equimolar doses of diclofenac sodium and its synthesized prodrug were administered orally to a group of rabbits in a crossover study to evaluate their pharmacokinetic parameters. The prodrug 2 shows a similar rate and extent of absorption as the parent drug (1). The ulcerogenicity of the prepared prodrug was evaluated and compared with the parent drug. The prodrug showed less ulcerogenicity as detected by fewer number and smaller size of ulcers. In conclusion, the newly synthesized N-ethoxycarbonylmorpholine ester of diclofenac prodrug showed appropriate stability properties at different pHs, similar pharmacokinetic profile, and much less ulcerogenecity at the GIT compared to the parent drug diclofenac.
Collapse
|
28
|
Synthesis and evaluation of N-acylamino acids derivatives of triazenes. Activation by tyrosinase in human melanoma cell lines. Eur J Med Chem 2013; 70:1-9. [PMID: 24125877 DOI: 10.1016/j.ejmech.2013.09.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 09/17/2013] [Accepted: 09/20/2013] [Indexed: 10/26/2022]
Abstract
In this research work we report the synthesis of a new series of triazene prodrugs designed for Melanocyte-Directed Enzyme Prodrug Therapy (MDEPT). These compounds are derived from the N-acyltyrosine amino acid - a good enzyme substrate for the tyrosinase enzyme, which is significantly overexpressed in melanoma cells. We analysed their chemical stability and plasma enzymatic hydrolysis, and we also evaluated the release of the antitumoral drug in the presence of the tyrosinase. Subsequently, we performed the evaluation of the prodrug cytotoxicity in melanoma cell lines with different levels of tyrosinase activity. Prodrug 5c showed the highest cytotoxicity against melanoma cell lines, and this effect correlated well with the tyrosinase activity suggesting that prodrug cytotoxicity is tyrosinase-dependent.
Collapse
|
29
|
Gualdesi MS, Ravetti S, Raviolo MA, Briñón MC. Preformulation studies of novel 5′-O-carbonates of lamivudine with biological activity: solubility and stability assays. Drug Dev Ind Pharm 2013; 40:1246-52. [DOI: 10.3109/03639045.2013.814064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
|
31
|
Scientific Opinion on Flavouring Group Evaluation 06, Revision 4 (FGE.06Rev4): Straight‐ and branched‐chain aliphatic unsaturated primary alcohols, aldehydes, carboxylic acids and esters from chemical groups 1, 3 and 4. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
32
|
Chao TY, Raines RT. Fluorogenic label to quantify the cytosolic delivery of macromolecules. MOLECULAR BIOSYSTEMS 2013; 9:339-42. [PMID: 23340874 DOI: 10.1039/c3mb25552b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The delivery of a macromolecule to the cytosol of human cells is assessed by using a pendant di-O-glycosylated derivative of fluorescein. Its fluorescence is unmasked by Escherichia coliβ-galactosidase installed in the cytosol. Background is diminished by using RNAi to suppress the expression of GLB1, which encodes a lysosomal β-galactosidase. This strategy was used to quantify the cytosolic entry of a highly cationic protein, ribonuclease A.
Collapse
Affiliation(s)
- Tzu-Yuan Chao
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | | |
Collapse
|
33
|
Ormazábal-Toledo R, Castro EA, Santos JG, Millán D, Cañete A, Contreras R, Campodónico PR. Predicting the reaction mechanism of nucleophilic substitutions at carbonyl and thiocarbonyl centres of esters and thioesters. J PHYS ORG CHEM 2013. [DOI: 10.1002/poc.3048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rodrigo Ormazábal-Toledo
- Departamento de Química, Facultad de Ciencias; Universidad de Chile; Casilla 653; Santiago; Chile
| | - Enrique A. Castro
- Facultad de Química; Pontificia Universidad Católica de Chile; Casilla 306; Santiago; 6094411; Chile
| | - José G. Santos
- Facultad de Química; Pontificia Universidad Católica de Chile; Casilla 306; Santiago; 6094411; Chile
| | - Daniela Millán
- Facultad de Química; Pontificia Universidad Católica de Chile; Casilla 306; Santiago; 6094411; Chile
| | - Alvaro Cañete
- Facultad de Química; Pontificia Universidad Católica de Chile; Casilla 306; Santiago; 6094411; Chile
| | - Renato Contreras
- Departamento de Química, Facultad de Ciencias; Universidad de Chile; Casilla 653; Santiago; Chile
| | - Paola R. Campodónico
- Instituto de Ciencias, Facultad de Medicina; Clínica Alemana Universidad del Desarrollo; código postal 771-0162; Santiago; Chile
| |
Collapse
|
34
|
Turhanen PA, Weisell J, Vepsäläinen JJ. The selective stepwise chemical hydrolysis of alkylcarbonate groups from novel mixed alkylcarbonate trialkyl ester derivatives of etidronic acid. RSC Adv 2013. [DOI: 10.1039/c2ra22960a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
35
|
Turhanen PA, Weisell J, Vepsäläinen JJ. Preparation of mixed trialkyl alkylcarbonate derivatives of etidronic acid via an unusual route. Beilstein J Org Chem 2012; 8:2019-24. [PMID: 23209537 PMCID: PMC3511037 DOI: 10.3762/bjoc.8.228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 11/01/2012] [Indexed: 11/23/2022] Open
Abstract
A method to prepare four (3a–d) trialkyl alkylcarbonate esters of etidronate from P,P'-dimethyl etidronate and alkyl chloroformate was developed by utilizing unexpected demethylation and decarboxylation reactions. The reaction with the sterically more hindered isobutyl chloroformate at a lower temperature (90 °C) produced the P,P'-diester (2) as a stable intermediate product. A possible reaction mechanism is discussed to explain these methyl substitutions. These unusual reactions also clarify why it is difficult to prepare alkylcarbonate prodrugs from bisphosphonates. The compounds prepared were analysed by spectroscopic techniques.
Collapse
Affiliation(s)
- Petri A Turhanen
- University of Eastern Finland, School of Pharmacy, Biocenter Kuopio, P.O. Box 1627, FIN-70211, Kuopio, Finland
| | | | | |
Collapse
|
36
|
Scientific Opinion on Flavouring Group Evaluation 06, Revision 3 (FGE.06Rev3): Straight‐ and branched‐chain aliphatic unsaturated primary alcohols, aldehydes, carboxylic acids, and esters from chemical groups 1 and 4. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
37
|
Vacondio F, Silva C, Mor M, Testa B. Qualitative structure-metabolism relationships in the hydrolysis of carbamates. Drug Metab Rev 2011; 42:551-89. [PMID: 20441444 DOI: 10.3109/03602531003745960] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aims of this review were 1) to compile a large number of reliable literature data on the metabolic hydrolysis of medicinal carbamates and 2) to extract from such data a qualitative relation between molecular structure and lability to metabolic hydrolysis. The compounds were classified according to the nature of their substituents (R³OCONR¹R²), and a metabolic lability score was calculated for each class. A trend emerged, such that the metabolic lability of carbamates decreased (i.e., their metabolic stability increased), in the following series: Aryl-OCO-NHAlkyl >> Alkyl-OCO-NHAlkyl ~ Alkyl-OCO-N(Alkyl)₂ ≥ Alkyl-OCO-N(endocyclic) ≥ Aryl-OCO-N(Alkyl)₂ ~ Aryl-OCO-N(endocyclic) ≥ Alkyl-OCO-NHAryl ~ Alkyl-OCO-NHAcyl >> Alkyl-OCO-NH₂ > Cyclic carbamates. This trend should prove useful in the design of carbamates as drugs or prodrugs.
Collapse
Affiliation(s)
- Federica Vacondio
- Dipartimento Farmaceutico, Università degli Studi di Parma, Parma, Italy.
| | | | | | | |
Collapse
|
38
|
Scientific Opinion on Flavouring Group Evaluation 06, Revision 2 (FGE.06Rev2): Straight‐ and branched‐chain aliphatic unsaturated primary alcohols, aldehydes, carboxylic acids, and esters from chemical groups 1 and 4. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.1844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
39
|
Bisol TB, Bortoluzzi AJ, Sá MM. Nucleophilic ring-opening of epoxide and aziridine acetates for the stereodivergent synthesis of β-hydroxy and β-amino γ-lactams. J Org Chem 2010; 76:948-62. [PMID: 21194209 DOI: 10.1021/jo102267h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A highly regio- and stereoselective synthesis of novel β,γ-disubstituted γ-lactams with either an anti or syn relative configuration was developed from readily available epoxide and aziridine acetates. The key steps include the regio- and diastereocontrolled nucleophilic ring-opening of these three-membered heterocycles followed by mild reductive cyclization of the γ-azido ester intermediate. The method was also extended to an asymmetric synthesis of (4R,5S)-4-hydroxy-5-phenylpyrrolidin-2-one from a chiral epoxide acetate. The main features of this versatile synthesis of functionalized γ-lactams include the involvement of inexpensive reagents and mild conditions together with high chemical efficiency.
Collapse
Affiliation(s)
- Tula B Bisol
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | |
Collapse
|
40
|
Osman S, Albert BJ, Wang Y, Li M, Czaicki NL, Koide K. Structural requirements for the antiproliferative activity of pre-mRNA splicing inhibitor FR901464. Chemistry 2010; 17:895-904. [PMID: 21226105 DOI: 10.1002/chem.201002402] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Indexed: 11/08/2022]
Abstract
FR901464, a natural product isolated from a bacterium source, activates a reporter gene, inhibits pre-mRNA splicing, and shows antitumor activity. We previously reported the development of a more potent analogue, meayamycin, through the total synthesis of FR901464. Herein, we report detailed structure-activity relationships of FR901464 that revealed the significance of the epoxide, carbon atoms in the tetrahydropyran ring, the Z geometry of the side chain, the 1,3-diene moiety, the C4-hydroxy group, and the C2''-carbonyl group. Importantly, the methyl group of the acetyl substituent was found to be inessential, leading to a new potent analogue. Additionally, partially based on in vivo data, we synthesized and evaluated potentially more metabolically stable analogues for their antiproliferative activity. These structural insights into FR901464 may contribute to the simplification of the natural product for further drug development.
Collapse
Affiliation(s)
- Sami Osman
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | | | | | | | | | | |
Collapse
|
41
|
Burke PJ, Senter PD, Meyer DW, Miyamoto JB, Anderson M, Toki BE, Manikumar G, Wani MC, Kroll DJ, Jeffrey SC. Design, Synthesis, and Biological Evaluation of Antibody−Drug Conjugates Comprised of Potent Camptothecin Analogues. Bioconjug Chem 2009; 20:1242-50. [DOI: 10.1021/bc9001097] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Patrick J. Burke
- Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, Research Triangle Institute, Natural Products Laboratory, Research Triangle Park, North Carolina 27709, and North Carolina Central University, Pharmaceutical Sciences, BRITE, Durham, North Carolina 27707
| | - Peter D. Senter
- Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, Research Triangle Institute, Natural Products Laboratory, Research Triangle Park, North Carolina 27709, and North Carolina Central University, Pharmaceutical Sciences, BRITE, Durham, North Carolina 27707
| | - David W. Meyer
- Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, Research Triangle Institute, Natural Products Laboratory, Research Triangle Park, North Carolina 27709, and North Carolina Central University, Pharmaceutical Sciences, BRITE, Durham, North Carolina 27707
| | - Jamie B. Miyamoto
- Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, Research Triangle Institute, Natural Products Laboratory, Research Triangle Park, North Carolina 27709, and North Carolina Central University, Pharmaceutical Sciences, BRITE, Durham, North Carolina 27707
| | - Martha Anderson
- Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, Research Triangle Institute, Natural Products Laboratory, Research Triangle Park, North Carolina 27709, and North Carolina Central University, Pharmaceutical Sciences, BRITE, Durham, North Carolina 27707
| | - Brian E. Toki
- Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, Research Triangle Institute, Natural Products Laboratory, Research Triangle Park, North Carolina 27709, and North Carolina Central University, Pharmaceutical Sciences, BRITE, Durham, North Carolina 27707
| | - Govindarajan Manikumar
- Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, Research Triangle Institute, Natural Products Laboratory, Research Triangle Park, North Carolina 27709, and North Carolina Central University, Pharmaceutical Sciences, BRITE, Durham, North Carolina 27707
| | - Mansukh C. Wani
- Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, Research Triangle Institute, Natural Products Laboratory, Research Triangle Park, North Carolina 27709, and North Carolina Central University, Pharmaceutical Sciences, BRITE, Durham, North Carolina 27707
| | - David J. Kroll
- Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, Research Triangle Institute, Natural Products Laboratory, Research Triangle Park, North Carolina 27709, and North Carolina Central University, Pharmaceutical Sciences, BRITE, Durham, North Carolina 27707
| | - Scott C. Jeffrey
- Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, Research Triangle Institute, Natural Products Laboratory, Research Triangle Park, North Carolina 27709, and North Carolina Central University, Pharmaceutical Sciences, BRITE, Durham, North Carolina 27707
| |
Collapse
|
42
|
El Alaoui A, Schmidt F, Sarr M, Decaudin D, Florent JC, Johannes L. Synthesis and properties of a mitochondrial peripheral benzodiazepine receptor conjugate. ChemMedChem 2009; 3:1687-95. [PMID: 18846592 DOI: 10.1002/cmdc.200800249] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Peripheral benzodiazepine receptors are potential targets for cancer therapeutics through the use of specific ligands such as the pro-apoptotic benzodiazepine RO5-4864. However, the poor water solubility of this compound has been a limitation to its application in vivo. Herein we describe an efficient synthesis for the conjugation, via a cleavable linker arm, of RO5-4864 to a novel tumour-delivery tool, the B-subunit of Shiga toxin (STxB). The conjugate is water soluble and specifically targets cancer cells that overexpress the glycolipid Gb3, the cellular Shiga toxin receptor that is found on several human tumours. After internalisation via retrograde transport, the prodrug is cleaved inside cells to release the active principle. Delivery by STxB therefore increases the cytotoxic activity of RO5-4864 and its tumour specificity.
Collapse
Affiliation(s)
- Abdessamad El Alaoui
- Institut Curie, Centre de Recherche, Conception, Synthèse et Vectorisation de Biomolécules, 26 rue d'Ulm, 75248 Paris, France
| | | | | | | | | | | |
Collapse
|
43
|
Makhaeva G, Rudakova E, Boltneva N, Sigolaeva L, Eremenko A, Kurochkin I, Richardson R. Blood Esterases as a Complex Biomarker for Exposure to Organophosphorus Compounds. COUNTERACTION TO CHEMICAL AND BIOLOGICAL TERRORISM IN EAST EUROPEAN COUNTRIES 2009. [DOI: 10.1007/978-90-481-2342-1_22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
44
|
Leticia AG, Gerardo GB. Determination of esterase activity and characterization of cholinesterases in the reef fish Haemulon plumieri. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2008; 71:787-797. [PMID: 18384877 DOI: 10.1016/j.ecoenv.2008.01.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 01/23/2008] [Accepted: 01/27/2008] [Indexed: 05/26/2023]
Abstract
White grunt (Haemulon plumieri) has been proposed by the Mesoamerican Barrier Reef System (MBRS) Synoptic Monitoring Program as a bioindicator species. It is in this sense that the present study has a main goal to evaluate this organism's suitability as an indicator species. Individuals were captured during three seasons at the port of Sisal, Yucatan, Mexico which is located in an area that is considered to be weakly impacted by human activities such as agriculture or industry. Both cholinesterase (ChE) and carboxylesterase (CbE) activities were measured in brain, muscle, liver and eye of sampled individuals. Results indicated that ChE and CbE activities were greatest in the brain (256.3 ± 43) and in the liver (191 ± 21), respectively. Furthermore, ChEs detected in brain, liver and muscle were characterized, and results suggested that the acetylcholinesterase (AChE) type was more abundant relative to pseudocholinesterase (BChE) which was rare. In addition, K(m) and V(max) and IC(50) values were calculated from the Michaelis-Menten equation. Finally, an additional experiment in vitro showed a significant decrease in both ChE and CbE activities when different tissues were exposed to model xenobiotics, such as benzo[a]pyrene and Chlorpyrifos. In conclusion, findings from this study confirm the potential suitability of H. plumieri as an organic pollution bioindicator species, and thus of practical use for environmental biomonitoring purposes.
Collapse
Affiliation(s)
- Alpuche-Gual Leticia
- Research and Advanced Studies Center at Merida (Cinvestav Merida), Km 6 Antigua Carretera a Progreso, Mérida, Yucatán 97310, Mexico
| | | |
Collapse
|
45
|
Flavouring Group Evaluation 6, Revision 1 (FGE.06Rev1) - Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in contact with Food (AFC). EFSA J 2008. [DOI: 10.2903/j.efsa.2008.616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
46
|
Yoshii K, Tonogai Y, Katakawa J, Ueno H, Nakamuro K. Characterization and Malathion Degradability of Carboxylesterase in Wheat Kernels. ACTA ACUST UNITED AC 2008. [DOI: 10.1248/jhs.54.535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kimihiko Yoshii
- Pharmaceutical Affairs Division, Department of Public Health and Welfare, Osaka Prefectural Government
| | | | | | - Hitoshi Ueno
- Faculty of Pharmaceutical Sciences, Setsunan University
| | | |
Collapse
|
47
|
Castro EA, Echevarria GR, Opazo A, Robert PS, Santos JG. Reaction of poly-L
-lysine with aryl acetates and aryl methyl carbonates. A mechanistic study. J PHYS ORG CHEM 2007. [DOI: 10.1002/poc.1285] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Yoshii K, Tonogai Y, Katakawa J, Ueno H, Nakamuro K. Kinetic Analysis for Hydrolysis of Malathion by Carboxylesterase in Wheat Kernels. ACTA ACUST UNITED AC 2007. [DOI: 10.1248/jhs.53.507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kimihiko Yoshii
- Pharmaceutical Affairs Division, Department of Public Health and Welfare
| | | | | | - Hitoshi Ueno
- Faculty of Pharmaceutical Sciences, Setsunan University
| | | |
Collapse
|
49
|
Inoue O, Hosoi R, Momosaki S, Yamamoto K, Amitani M, Yamaguchi M, Gee A. Evaluation of [14C]phenylacetate as a prototype tracer for the measurement of glial metabolism in the rat brain. Nucl Med Biol 2006; 33:985-9. [DOI: 10.1016/j.nucmedbio.2006.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 08/21/2006] [Accepted: 08/29/2006] [Indexed: 10/23/2022]
|
50
|
Interaction of Plant Epicuticular Waxes and Extracellular Esterases of Curvularia eragrostidis during Infection of Digitaria sanguinalis and Festuca arundinacea by the Fungus. Int J Mol Sci 2006. [DOI: 10.3390/i7090346] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|