1
|
Melin F, Sabuncu S, Choi SK, Leprince A, Gennis RB, Hellwig P. Role of the tightly bound quinone for the oxygen reaction of cytochrome
bo
3
oxidase from
Escherichia coli. FEBS Lett 2018; 592:3380-3387. [DOI: 10.1002/1873-3468.13263] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Frédéric Melin
- Chimie de la Matière Complexe UMR 7140 Laboratoire de Bioélectrochimie et Spectroscopie CNRS‐Université de Strasbourg France
| | - Sinan Sabuncu
- Chimie de la Matière Complexe UMR 7140 Laboratoire de Bioélectrochimie et Spectroscopie CNRS‐Université de Strasbourg France
| | - Sylvia K. Choi
- Center for Biophysics and Computational Biology University of Illinois Urbana IL USA
- Department of Biochemistry University of Illinois Urbana IL USA
| | - Agathe Leprince
- Chimie de la Matière Complexe UMR 7140 Laboratoire de Bioélectrochimie et Spectroscopie CNRS‐Université de Strasbourg France
| | | | - Petra Hellwig
- Chimie de la Matière Complexe UMR 7140 Laboratoire de Bioélectrochimie et Spectroscopie CNRS‐Université de Strasbourg France
| |
Collapse
|
2
|
Magalhães PR, Oliveira ASF, Campos SRR, Soares CM, Baptista AM. Effect of a pH Gradient on the Protonation States of Cytochrome c Oxidase: A Continuum Electrostatics Study. J Chem Inf Model 2017; 57:256-266. [PMID: 28095694 DOI: 10.1021/acs.jcim.6b00575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochrome c oxidase (CcO) couples the reduction of dioxygen to water with transmembrane proton pumping, which leads to the generation of an electrochemical gradient. In this study we analyze how one of the components of the electrochemical gradient, the difference in pH across the membrane, or ΔpH, influences the protonation states of residues in CcO. We modified our continuum electrostatics/Monte Carlo (CE/MC) method in order to include the ΔpH and applied it to the study of CcO, in what is, to our best knowledge, the first CE/MC study of CcO in the presence of a pH gradient. The inclusion of a transmembrane pH gradient allows for the identification of residues whose titration behavior depends on the pH on both sides of the membrane. Among the several residues with unusual titration profiles, three are well-known key residues in the proton transfer process of CcO: E286I, Y288I, and K362I. All three residues have been previously identified as being critical for the catalytic or proton pumping functions of CcO. Our results suggest that when the pH gradient increases, these residues may be part of a regulatory mechanism to stem the proton flow.
Collapse
Affiliation(s)
- Pedro R Magalhães
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , 2781-901 Oeiras, Portugal
| | - A Sofia F Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , 2781-901 Oeiras, Portugal
| | - Sara R R Campos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , 2781-901 Oeiras, Portugal
| | - Cláudio M Soares
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , 2781-901 Oeiras, Portugal
| | - António M Baptista
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , 2781-901 Oeiras, Portugal
| |
Collapse
|
3
|
Melin F, Xie H, Meyer T, Ahn YO, Gennis RB, Michel H, Hellwig P. The unusual redox properties of C-type oxidases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1892-1899. [PMID: 27664317 DOI: 10.1016/j.bbabio.2016.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 10/21/2022]
Abstract
Cytochrome cbb3 (also known as C-type) oxidases belong to the family of heme-copper terminal oxidases which couple at the end of the respiratory chain the reduction of molecular oxygen into water and the pumping of protons across the membrane. They are expressed most often at low pressure of O2 and they exhibit a low homology of sequence with the cytochrome aa3 (A-type) oxidases found in mitochondria. Their binuclear active site comprises a high-spin heme b3 associated with a CuB center. The protein also contains one low-spin heme b and 3 hemes c. We address here the redox properties of cbb3 oxidases from three organisms, Rhodobacter sphaeroides, Vibrio cholerae and Pseudomonas stutzeri by means of electrochemical and spectroscopic techniques. We show that the redox potential of the heme b3 exhibits a relatively low midpoint potential, as in related cytochrome c-dependent nitric oxide reductases. Potential implications for the coupled electron transfer and proton uptake mechanism of C-type oxidases are discussed.
Collapse
Affiliation(s)
- Frederic Melin
- Laboratoire de Bioélectrochimie et Spectroscopie, Chimie de la Matière Complexe, UMR 7140, Université de Strasbourg, 1 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Hao Xie
- Max Planck Institute of Biophysics, Department of Molecular Membrane Biology, Max-von-Laue-Str. 3, D-60438 Frankfurt am Main, Germany
| | - Thomas Meyer
- Laboratoire de Bioélectrochimie et Spectroscopie, Chimie de la Matière Complexe, UMR 7140, Université de Strasbourg, 1 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Young Ok Ahn
- Department of Biochemistry, University of Illinois at Urbana Champaign, USA
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois at Urbana Champaign, USA
| | - Hartmut Michel
- Max Planck Institute of Biophysics, Department of Molecular Membrane Biology, Max-von-Laue-Str. 3, D-60438 Frankfurt am Main, Germany
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie, Chimie de la Matière Complexe, UMR 7140, Université de Strasbourg, 1 Rue Blaise Pascal, 67000 Strasbourg, France.
| |
Collapse
|
4
|
Abstract
Cytochrome c oxidase (CcO) uses the energy released by reduction of O2 to H2O to drive eight charges from the high pH to low pH side of the membrane, increasing the electrochemical gradient. Four electrons and protons are used for chemistry, while four more protons are pumped. Proton pumping requires that residues on a pathway change proton affinity through the reaction cycle to load and then release protons. The protonation states of all residues in CcO are determined in MultiConformational Continuum Electrostatics simulations with the protonation and redox states of heme a, a3, Cu(B), Y288, and E286 used to define the catalytic cycle. One proton is found to be loaded and released from residues identified as the proton loading site (PLS) on the P-side of the protein in each of the four CcO redox states. Thus, the same proton pumping mechanism can be used each time CcO is reduced. Calculations with structures of Rhodobacter sphaeroides, Paracoccus denitrificans, and bovine CcO derived by crystallography and molecular dynamics show the PLS functions similarly in different CcO species. The PLS is a cluster rather than a single residue, as different structures show 1-4 residues load and release protons. However, the proton affinity of the heme a3 propionic acids primarily determines the number of protons loaded into the PLS; if their proton affinity is too low, less than one proton is loaded.
Collapse
|
5
|
Rich PR, Maréchal A. Functions of the hydrophilic channels in protonmotive cytochrome c oxidase. J R Soc Interface 2013; 10:20130183. [PMID: 23864498 PMCID: PMC3730678 DOI: 10.1098/rsif.2013.0183] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/03/2013] [Indexed: 01/31/2023] Open
Abstract
The structures and functions of hydrophilic channels in electron-transferring membrane proteins are discussed. A distinction is made between proton channels that can conduct protons and dielectric channels that are non-conducting but can dielectrically polarize in response to the introduction of charge changes in buried functional centres. Functions of the K, D and H channels found in A1-type cytochrome c oxidases are reviewed in relation to these ideas. Possible control of function by dielectric channels and their evolutionary relation to proton channels is explored.
Collapse
Affiliation(s)
- Peter R Rich
- Glynn Laboratory of Bioenergetics, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
6
|
Construction of histidine-tagged yeast mitochondrial cytochrome c oxidase for facile purification of mutant forms. Biochem J 2012; 444:199-204. [PMID: 22394221 DOI: 10.1042/bj20120116] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Yeast CcO (cytochrome c oxidase) has been developed as a facile system for the production and analysis of mutants of a mitochondrial form of CcO for mechanistic studies. First, a 6H tag (His6 tag) was fused to the C-terminus of a nuclear-encoded subunit of CcO from yeast Saccharomyces cerevisiae. This allowed efficient purification of a WT (wild-type) mitochondrial CcO, 6H-WT (yeast CcO with a 6H tag on the nuclear-encoded Cox13 subunit), with a recovery yield of 45%. Its catalytic-centre activity [≈180 e·s(-1) (electrons per s)], UV-visible signatures of oxidized and reduced states and ability to form the P(M) ['peroxy' (but actually a ferryl/radical state)] and F (ferryl) intermediates confirm normal functioning of the histidine-tagged protein. Point mutations were introduced into subunit I of the 6H-WT strain. All mutants were screened for their ability to assemble CcO and grow on respiratory substrate. One such mutant [6H-E243DI (the 6H-WT strain with an additional mutation of E243D in mitochondrial DNA-encoded subunit I)] was purified and showed ~50% of the 6H-WT catalytic-centre activity, consistent with the effects of the equivalent mutation in bacterial oxidases. Mutations in both the D and the H channels affect respiratory growth and these effects are discussed in terms of their putative roles in CcO mechanism.
Collapse
|
7
|
Brzezinski P, Johansson AL. Variable proton-pumping stoichiometry in structural variants of cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:710-23. [DOI: 10.1016/j.bbabio.2010.02.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 02/15/2010] [Accepted: 02/17/2010] [Indexed: 10/19/2022]
|
8
|
Brzezinski P, Gennis RB. Cytochrome c oxidase: exciting progress and remaining mysteries. J Bioenerg Biomembr 2008; 40:521-31. [PMID: 18975062 PMCID: PMC4012550 DOI: 10.1007/s10863-008-9181-7] [Citation(s) in RCA: 227] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 08/15/2008] [Indexed: 10/21/2022]
Abstract
Cytochrome c oxidase generates a proton motive force by two separate mechanisms. The first mechanism is similar to that postulated by Peter Mitchell, and is based on electrons and protons used to generate water coming from opposite sides of the membrane. The second mechanism was not initially anticipated, but is now firmly established as a proton pump. A brief review of the current state of our understanding of the proton pump of cytochrome oxidase is presented. We have come a long way since the initial observation of the pump by Mårten Wikström in 1977, but a number of essential questions remain to be answered.
Collapse
Affiliation(s)
- Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Robert B. Gennis
- Department of Biochemistry, University of Illinois, 600 South Goodwin Avenue, A320 CLSL, Urbana, IL 61801, USA
| |
Collapse
|
9
|
Belevich I, Verkhovsky MI. Molecular mechanism of proton translocation by cytochrome c oxidase. Antioxid Redox Signal 2008; 10:1-29. [PMID: 17949262 DOI: 10.1089/ars.2007.1705] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cytochrome c oxidase (CcO) is a terminal protein of the respiratory chain in eukaryotes and some bacteria. It catalyzes most of the biologic oxygen consumption on earth done by aerobic organisms. During the catalytic reaction, CcO reduces dioxygen to water and uses the energy released in this process to maintain the electrochemical proton gradient by functioning as a redox-linked proton pump. Even though the structures of several terminal oxidases are known, they are not sufficient in themselves to explain the molecular mechanism of proton pumping. Thus, additional extensive studies of CcO by varieties of biophysical and biochemical approaches are involved to shed light on the mechanism of proton translocation. In this review, we summarize the current level of knowledge about CcO, including the latest model developed to explain the CcO proton-pumping mechanism.
Collapse
Affiliation(s)
- Ilya Belevich
- Helsinki Bioenergetics Group, Program for Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
10
|
Edwards JC, Johnson MS, Taylor BL. Differentiation between electron transport sensing and proton motive force sensing by the Aer and Tsr receptors for aerotaxis. Mol Microbiol 2006; 62:823-37. [PMID: 16995896 PMCID: PMC1858650 DOI: 10.1111/j.1365-2958.2006.05411.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Aerotaxis (oxygen-seeking) behaviour in Escherichia coli is a response to changes in the electron transport system and not oxygen per se. Because changes in proton motive force (PMF) are coupled to respiratory electron transport, it is difficult to differentiate between PMF, electron transport or redox, all primary candidates for the signal sensed by the aerotaxis receptors, Aer and Tsr. We constructed electron transport mutants that produced different respiratory H+/e- stoichiometries. These strains expressed binary combinations of one NADH dehydrogenase and one quinol oxidase. We then introduced either an aer or tsr mutation into each mutant to create two sets of electron transport mutants. In vivo H+/e- ratios for strains grown in glycerol medium ranged from 1.46+/-0.18-3.04+/-0.47, but rates of respiration and growth were similar. The PMF jump in response to oxygen was proportional to the H+/e- ratio in each set of mutants (r2=0.986-0.996). The length of Tsr-mediated aerotaxis responses increased with the PMF jump (r2=0.988), but Aer-mediated responses did not correlate with either PMF changes (r2=0.297) or the rate of electron transport (r2=0.066). Aer-mediated responses were linked to NADH dehydrogenase I, although there was no absolute requirement. The data indicate that Tsr responds to changes in PMF, but strong Aer responses to oxygen are associated with redox changes in NADH dehydrogenase I.
Collapse
Affiliation(s)
- Jessica C Edwards
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | |
Collapse
|
11
|
Brzezinski P, Adelroth P. Design principles of proton-pumping haem-copper oxidases. Curr Opin Struct Biol 2006; 16:465-72. [PMID: 16842995 DOI: 10.1016/j.sbi.2006.06.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 06/12/2006] [Accepted: 06/30/2006] [Indexed: 11/20/2022]
Abstract
Transmembrane electrochemical proton gradients are used to store free energy in biological systems, and to drive the synthesis of biomolecules and transmembrane transport. These gradients are maintained by membrane-bound proton transporters that employ free energy provided by, for example, electron transfer or light. In recent years, the structures of several membrane proteins involved in proton translocation have been determined, and indicate that both protein-bound water molecules and protonatable amino acid residues play central roles in transmembrane proton conduction. From these structures, in combination with functional studies, have emerged general principles of proton transfer across membranes and control mechanisms for such reactions, in particular with regard to the electron-transfer-driven proton pump cytochrome c oxidase.
Collapse
Affiliation(s)
- Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| | | |
Collapse
|
12
|
Abstract
A series of metalloprotein complexes embedded in a mitochondrial or bacterial membrane utilize electron transfer reactions to pump protons across the membrane and create an electrochemical potential (DeltamuH+). Current understanding of the principles of electron-driven proton transfer is discussed, mainly with respect to the wealth of knowledge available from studies of cytochrome c oxidase. Structural, experimental, and theoretical evidence supports the model of long-distance proton transfer via hydrogen-bonded water chains in proteins as well as the basic concept that proton uptake and release in a redox-driven pump are driven by charge changes at the membrane-embedded centers. Key elements in the pumping mechanism may include bound water, carboxylates, and the heme propionates, arginines, and associated water above the hemes. There is evidence for an important role of subunit III and proton backflow, but the number and nature of gating mechanisms remain elusive, as does the mechanism of physiological control of efficiency.
Collapse
Affiliation(s)
- Jonathan P. Hosler
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216;
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824; ,
| | - Denise A. Mills
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824; ,
| |
Collapse
|
13
|
Khalimonchuk O, Rödel G. Biogenesis of cytochrome c oxidase. Mitochondrion 2005; 5:363-88. [PMID: 16199211 DOI: 10.1016/j.mito.2005.08.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 08/10/2005] [Indexed: 11/20/2022]
Abstract
Cytochrome c oxidase (COX), the terminal enzyme of electron transport chains in some prokaryotes and in mitochondria, has been characterized in detail over many years. Recently, a number of new data on structural and functional aspects as well as on COX biogenesis emerged. COX biogenesis includes a variety of steps starting from translation to the formation of the mature complex. Each step involves a set of specific factors that assist translation of subunits, their translocation across membranes, insertion of essential cofactors, assembly and final maturation of the enzyme. In this review, we focus on the organization and biogenesis of COX.
Collapse
Affiliation(s)
- Oleh Khalimonchuk
- Institut für Genetik, Technische Universität Dresden, 01062 Dresden, Germany
| | | |
Collapse
|
14
|
Faxén K, Gilderson G, Adelroth P, Brzezinski P. A mechanistic principle for proton pumping by cytochrome c oxidase. Nature 2005; 437:286-9. [PMID: 16148937 DOI: 10.1038/nature03921] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Accepted: 06/09/2005] [Indexed: 11/08/2022]
Abstract
In aerobic organisms, cellular respiration involves electron transfer to oxygen through a series of membrane-bound protein complexes. The process maintains a transmembrane electrochemical proton gradient that is used, for example, in the synthesis of ATP. In mitochondria and many bacteria, the last enzyme complex in the electron transfer chain is cytochrome c oxidase (CytcO), which catalyses the four-electron reduction of O2 to H2O using electrons delivered by a water-soluble donor, cytochrome c. The electron transfer through CytcO, accompanied by proton uptake to form H2O drives the physical movement (pumping) of four protons across the membrane per reduced O2. So far, the molecular mechanism of such proton pumping driven by electron transfer has not been determined in any biological system. Here we show that proton pumping in CytcO is mechanistically coupled to proton transfer to O2 at the catalytic site, rather than to internal electron transfer. This scenario suggests a principle by which redox-driven proton pumps might operate and puts considerable constraints on possible molecular mechanisms by which CytcO translocates protons.
Collapse
Affiliation(s)
- Kristina Faxén
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
15
|
Salomonsson L, Lee A, Gennis RB, Brzezinski P. A single-amino-acid lid renders a gas-tight compartment within a membrane-bound transporter. Proc Natl Acad Sci U S A 2004; 101:11617-21. [PMID: 15289603 PMCID: PMC511029 DOI: 10.1073/pnas.0402242101] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Indexed: 11/18/2022] Open
Abstract
Proteins undergo structural fluctuations between nearly isoenergetic substates. Such fluctuations are often intimately linked with the functional properties of proteins. However, in some cases, such as in transmembrane ion transporters, the control of the ion transport requires that the protein is designed to restrict the motions in specific regions. In this study, we have investigated the dynamics of a membrane-bound respiratory oxidase, which acts both as an enzyme catalyzing reduction of O(2) to H(2)O and as a transmembrane proton pump. The segment of the protein where proton translocation is controlled ("gating" region) overlaps with a channel through which O(2) is delivered to the catalytic site. We show that the replacement of an amino acid residue with a small side chain (Gly) by one with a larger side chain (Val), in a narrow part of this channel, completely blocks the O(2) access to the catalytic site and results in formation of a compartment around the site that is impermeable to small gas molecules. Thus, the protein motions cannot counter the blockage introduced by the mutation. These results indicate that the protein motions are restricted in the proton-gating region and that rapid O(2) delivery to the catalytic site requires a gas channel, which is confined within a rigid protein body.
Collapse
Affiliation(s)
- Lina Salomonsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
16
|
Affiliation(s)
- Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Svante Arrhenius väg 12, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
17
|
Brzezinski P, Larsson G. Redox-driven proton pumping by heme-copper oxidases. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1605:1-13. [PMID: 12907296 DOI: 10.1016/s0005-2728(03)00079-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
One of the key problems of molecular bioenergetics is the understanding of the function of redox-driven proton pumps on a molecular level. One such class of proton pumps are the heme-copper oxidases. These enzymes are integral membrane proteins in which proton translocation across the membrane is driven by electron transfer from a low-potential donor, such as, e.g. cytochrome c, to a high-potential acceptor, O(2). Proton pumping is associated with distinct exergonic reaction steps that involve gradual reduction of oxygen to water. During the process of O(2) reduction, unprotonated high pK(a) proton acceptors are created at the catalytic site. Initially, these proton acceptors become protonated as a result of intramolecular proton transfer from a residue(s) located in the membrane-spanning part of the enzyme, but removed from the catalytic site. This residue is then reprotonated from the bulk solution. In cytochrome c oxidase from Rhodobacter sphaeroides, the proton is initially transferred from a glutamate, E(I-286), which has an apparent pK(a) of 9.4. According to a recently published structure of the enzyme, the deprotonation of E(I-286) is likely to result in minor structural changes that propagate to protonatable groups on the proton output (positive) side of the protein. We propose that in this way, the free energy available from the O(2) reduction is conserved during the proton transfer. On the basis of the observation of these structural changes, a possible proton-pumping model is presented in this paper. Initially, the structural changes associated with deprotonation of E(I-286) result in the transfer of a proton to an acceptor for pumped protons from the input (negative) side of the membrane. After reprotonation of E(I-286) this acceptor releases a proton to the output side of the membrane.
Collapse
Affiliation(s)
- Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Svante Arrhenius vag 12, SE-106 91, Stockholm, Sweden.
| | | |
Collapse
|
18
|
Xavier AV. A mechano-chemical model for energy transduction in cytochrome c oxidase: the work of a Maxwell's god. FEBS Lett 2002; 532:261-6. [PMID: 12482576 DOI: 10.1016/s0014-5793(02)03692-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cytochrome c3 has a central role in the energetics of Desulfovibrio sp., where it performs an electroprotonic energy transduction step. This process uses a network of cooperativities, largely based on anti-Coulomb components, resulting from a mechano-chemical energy coupling mechanism. This mechanism provides a model coherent with the data available for the redox chemistry of haem a of cytochrome c oxidase and its link to the activation of protons. A crucial feature of the model is an anti-Coulomb effect that sets the stage for a molecular ratchet, ensuring vectoriality for the redox-driven localised movement of protons across the membrane, against an electrochemical gradient.
Collapse
Affiliation(s)
- António V Xavier
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Rua da Quinta Grande, 6 - Apt. 127, 2780-156, Oeiras, Portugal.
| |
Collapse
|
19
|
Gomes CM, Backgren C, Teixeira M, Puustinen A, Verkhovskaya ML, Wikström M, Verkhovsky MI. Heme-copper oxidases with modified D- and K-pathways are yet efficient proton pumps. FEBS Lett 2001; 497:159-64. [PMID: 11377432 DOI: 10.1016/s0014-5793(01)02431-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The cytochrome aa(3)-type quinol oxidase from the archaeon Acidianus ambivalens and the ba(3)-type cytochrome c oxidase from Thermus thermophilus are divergent members of the heme-copper oxidase superfamily of enzymes. In particular they lack most of the key residues involved in the proposed proton transfer pathways. The pumping capability of the A. ambivalens enzyme was investigated and found to occur with the same efficiency as the canonical enzymes. This is the first demonstration of pumping of 1 H(+)/electron in a heme-copper oxidase that lacks most residues of the K- and D-channels. Also, the structure of the ba(3) oxidase from T. thermophilus was simulated by mutating Phe274 to threonine and Glu278 to isoleucine in the D-pathway of the Paracoccus denitrificans cytochrome c oxidase. This modification resulted in full efficiency of proton translocation albeit with a substantially lowered turnover. Together, these findings show that multiple structural solutions for efficient proton conduction arose during evolution of the respiratory oxidases, and that very few residues remain invariant among these enzymes to function in a common proton-pumping mechanism.
Collapse
Affiliation(s)
- C M Gomes
- Instituto de Tecnologia Quimica e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | | | | | |
Collapse
|
20
|
Kotelnikov AI, Medvedev ES, Medvedev DM, Stuchebrukhov AA. Kinetic Treatment of Coupled Electron and Proton Transfer in Flash-Photolysis Experiments on Carbon Monoxide-Inhibited Mixed-Valence Cytochrome c Oxidase. J Phys Chem B 2001. [DOI: 10.1021/jp010001t] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A. I. Kotelnikov
- Department of Chemistry, University of California, Davis, California 95616, and Institute of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow, Russia
| | - E. S. Medvedev
- Department of Chemistry, University of California, Davis, California 95616, and Institute of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow, Russia
| | - D. M. Medvedev
- Department of Chemistry, University of California, Davis, California 95616, and Institute of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow, Russia
| | - A. A. Stuchebrukhov
- Department of Chemistry, University of California, Davis, California 95616, and Institute of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow, Russia
| |
Collapse
|
21
|
Tsubaki M, Hori H, Mogi T. Probing molecular structure of dioxygen reduction site of bacterial quinol oxidases through ligand binding to the redox metal centers. J Inorg Biochem 2000; 82:19-25. [PMID: 11132627 DOI: 10.1016/s0162-0134(00)00140-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cytochromes bo and bd are structurally unrelated terminal ubiquinol oxidases in the aerobic respiratory chain of Escherichia coli. The high-spin heme o-CuB binuclear center serves as the dioxygen reduction site for cytochrome bo, and the heme b595-heme d binuclear center for cytochrome bd. CuB coordinates three histidine ligands and serves as a transient ligand binding site en route to high-spin heme o one-electron donor to the oxy intermediate, and a binding site for bridging ligands like cyanide. In addition, it can protect the dioxygen reduction site through binding of a peroxide ion in the resting state, and connects directly or indirectly Tyr288 and Glu286 to carry out redox-driven proton pumping in the catalytic cycle. Contrary, heme b595 of cytochrome bd participate a similar role to CuB in ligand binding and dioxygen reduction but cannot perform such versatile roles because of its rigid structure.
Collapse
Affiliation(s)
- M Tsubaki
- Department of Life Science, Faculty of Science, Himeji Institute of Technology, Akou-gun, Hyogo, Japan
| | | | | |
Collapse
|
22
|
Rich PR, Breton J, Jünemann S, Heathcote P. Protonation reactions in relation to the coupling mechanism of bovine cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1459:475-80. [PMID: 11004465 DOI: 10.1016/s0005-2728(00)00186-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Identification of the locations of protonatable sites in cytochrome c oxidase that are influenced by reactions in the binuclear centre is critical to assessment of proposed coupling mechanisms, and to controversies on where the pumping steps occur. One such protonation site is that which governs interconversion of the isoelectronic 607 nm 'P(M)' and 580 nm 'F' forms of the two-electron-reduced oxygen intermediate. Low pH favours protonation of a site that is close to an electron paramagnetic resonance (EPR)-silent radical species in P(M), and this induces a partial electronic redistribution to form an EPR-detectable tryptophan radical in F. A further protonatable group that must be close to the binuclear centre has been detected in bacterial oxidases by Fourier transform infrared spectroscopy from pH-dependent changes in the haem-bound CO vibration frequency at low temperatures. However, in bovine cytochrome c oxidase under similar conditions of measurement, haem-bound CO remains predominantly in a single 1963 cm(-1) form between pH 6.5 and 8.5, indicating that this group is not present. Lack of pH dependence extends to the protein region of the CO photolysis spectra and suggests that both the reduced and the reduced/CO states do not have titratable groups that affect the binuclear centre strongly in the pH range 6.5-8.5. This includes the conserved glutamic acid residue E242 whose pK appears to be above 8.5 even in the fully oxidised enzyme. The results are discussed in relation to recent ideas on coupling mechanism.
Collapse
Affiliation(s)
- P R Rich
- The Glynn Laboratory of Bioenergetics, Department of Biology, University College of London, UK.
| | | | | | | |
Collapse
|
23
|
Wikström M, Jasaitis A, Backgren C, Puustinen A, Verkhovsky MI. The role of the D- and K-pathways of proton transfer in the function of the haem-copper oxidases. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1459:514-20. [PMID: 11004470 DOI: 10.1016/s0005-2728(00)00191-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The X-ray structures of several haem-copper oxidases now at hand have given important constraints on how these enzymes function. Yet, dynamic data are required to elucidate the mechanisms of electron and proton transfer, the activation of O(2) and its reduction to water, as well as the still enigmatic mechanism by which these enzymes couple the redox reaction to proton translocation. Here, some recent observations will be briefly reviewed with special emphasis on the functioning of the so-called D- and K-pathways of proton transfer. It turns out that only one of the eight protons taken up by the enzyme during its catalytic cycle is transferred via the K-pathway. The D-pathway is probably responsible for the transfer of all other protons, including the four that are pumped across the membrane. The unique K-pathway proton may be specifically required to aid O-O bond scission by the haem-copper oxidases.
Collapse
Affiliation(s)
- M Wikström
- Department of Medical Chemistry, Institute of Biomedical Sciences and Biocentrum Helsinki, University of Helsinki, Finland.
| | | | | | | | | |
Collapse
|
24
|
Das TK, Mazumdar S. Effect of Adriamycin on the boundary lipid structure of cytochrome c oxidase: pico-second time-resolved fluorescence depolarization studies. Biophys Chem 2000; 86:15-28. [PMID: 11011696 DOI: 10.1016/s0301-4622(00)00158-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The fluorescence dynamics of the dye 3,3'-diethyloxadicarbocyanine iodide (DODCI) was used to probe the microenvironment of cytochrome c oxidase (CcO) and cardiolipin. The dye was partitioned between an aqueous and a hydrophobic phase. The 'bound' and 'free' populations of DODCI could be separated by analysis of the time-resolved fluorescence decay of the dye. The anisotropy decay of the DODCI bound to CcO showed a unique 'dip and rise' shape that was analyzed by a combination of rotational correlation times with time-dependent weight factors for each lifetime component. Rotational dynamics studies revealed the existence of a restricted motion of the dye bound at the enzyme surface. Adriamycin, an anticancer, albeit cardiotoxic drug, was previously proposed to affect the surface structure of CcO, most likely by causing a disorder to the surface lipid arrangement. A drastic change in the rotational correlation time of the dye bound to the enzyme surface was observed, which suggested a depletion of cardiolipin layer due to complexation with the drug. The effect of Adriamycin on cardiolipin was drastic, leading to its phase separation. The present study suggests that the effect of Adriamycin on CcO is primarily a segregation of the cardiolipins.
Collapse
Affiliation(s)
- T K Das
- Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
25
|
Zaslavsky D, Gennis RB. Proton pumping by cytochrome oxidase: progress, problems and postulates. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1458:164-79. [PMID: 10812031 DOI: 10.1016/s0005-2728(00)00066-9] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The current status of our knowledge about the mechanism of proton pumping by cytochrome oxidase is discussed. Significant progress has resulted from the study of site-directed mutants within the proton-conducting pathways of the bacterial oxidases. There appear to be two channels to facilitate proton translocation within the enzyme and they are important at different parts of the catalytic cycle. The use of hydrogen peroxide as an alternative substrate provides a very useful experimental tool to explore the enzymology of this system, and insights gained from this approach are described. Proton transfer is coupled to and appears to regulate the rate of electron transfer steps during turnover. It is proposed that the initial step in the reaction involves a proton transfer to the active site that is important to convert metal-ligated hydroxide to water, which can more rapidly dissociate from the metals and allow the reaction with dioxygen which, we propose, can bind the one-electron reduced heme-copper center. Coordinated movement of protons and electrons over both short and long distances within the enzyme appear to be important at different parts of the catalytic cycle. During the initial reduction of dioxygen, direct hydrogen transfer to form a tyrosyl radical at the active site seems likely. Subsequent steps can be effectively blocked by mutation of a residue at the surface of the protein, apparently preventing the entry of protons.
Collapse
Affiliation(s)
- D Zaslavsky
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
26
|
Das TK, Gomes CM, Teixeira M, Rousseau DL. Redox-linked transient deprotonation at the binuclear site in the aa(3)-type quinol oxidase from Acidianus ambivalens: implications for proton translocation. Proc Natl Acad Sci U S A 1999; 96:9591-6. [PMID: 10449737 PMCID: PMC22253 DOI: 10.1073/pnas.96.17.9591] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hyperthermophilic archaeon Acidianus ambivalens expresses a membrane-bound aa(3)-type quinol oxidase, when grown aerobically, that we have studied by resonance Raman spectroscopy. The purified aa(3) oxidase, which does not contain bound quinol, undergoes a reversible slow conformational change at heme a(3) upon reduction, as indicated by a change in the frequency of its heme formyl stretching mode, from 1,660 cm(-1) to 1,667 cm(-1). In contrast, upon reduction of the integral membrane enzyme or the purified enzyme preincubated with decylubiquinol, this mode appears at 1,667 cm(-1) much more rapidly, suggesting a role of the bound quinol in controlling the redox-linked conformational changes. The shift of the formyl mode to higher frequency is attributed to a loss of hydrogen bonding that is associated with a group having a pKa of approximately 3.8. Based on these observations, a crucial element for proton translocation involving a redox-linked conformational change near the heme a(3) formyl group is postulated.
Collapse
Affiliation(s)
- T K Das
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
27
|
Meunier B, Rich PR. Second-site reversion analysis is not a reliable method to determine distances in membrane proteins: an assessment using mutations in yeast cytochrome c oxidase subunits I and II. J Mol Biol 1998; 283:727-30. [PMID: 9790835 DOI: 10.1006/jmbi.1998.2132] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have examined deficiency mutations and reversions in subunits I and II of yeast cytochrome c oxidase in order to test the reliability of second-site reversion analysis in prediction of tertiary structure of a membrane protein complex. It appears that the method can not provide information on distance between residues, since reversions can be up to 30 A from the primary mutations. However, the reversions are not randomly located in the structure but reveal regions essential for assembly or functional units.
Collapse
Affiliation(s)
- B Meunier
- Department of Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | | |
Collapse
|
28
|
Affiliation(s)
- R B Gennis
- Department of Biochemistry, University of Illinois, 600 South Mathews Street, Urbana, IL 61801, USA.
| |
Collapse
|