1
|
Zhang X, Xu Y, Chen Q, Li C, Zhang YW. Control of Conformational Transitions by the Conserved GX 9P Motif in the Fifth Transmembrane Domain of Neurotransmitter Sodium Symporters. Int J Mol Sci 2025; 26:3054. [PMID: 40243663 PMCID: PMC11988846 DOI: 10.3390/ijms26073054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
The neurotransmitter sodium symporters (NSSs) play critical roles in the neurotransmission of monoamine and amino acid neurotransmitters and are the molecular targets of therapeutic agents in the treatment of several psychiatric disorders. Despite significant progress in characterizing structures and transport mechanisms, the management of conformational transitions by structural elements coupled with ion and substrate binding remains to be fully understood. In the present study, we biochemically identified a conserved GX9P motif in the fifth transmembrane domain (TM5) of the serotonin transporter (SERT) that plays a vital role in its transport function by facilitating conformational transitions. Mutations of the conserved Gly278 or Pro288 in the GX9P motif dramatically decreased specific transport activity by reducing the substrate binding-induced conformational transitions from an outward-open to an inward-open conformation. In addition, cysteine accessibility measurements demonstrated that the unwinding of the intracellular part of TM5 occurs during conformational transitions from an outward-open state, through an occluded state, to an inward-open state and that substrate binding triggers TM5 unwinding. Furthermore, mutations of the GX9P motif were shown to result in destructive effects on TM5 unwinding, suggesting that the GX9P motif controls conformational transitions through TM5 unwinding. Taken together, the present study provides new insights into the structural elements controlling conformational transitions in NSS transporters.
Collapse
Affiliation(s)
| | | | | | | | - Yuan-Wei Zhang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
2
|
Cross-Linking and Functional Analyses for Dimerization of a Cysteine Mutant of Glycine Transporter 1. Int J Mol Sci 2022; 23:ijms232416157. [PMID: 36555800 PMCID: PMC9781295 DOI: 10.3390/ijms232416157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Glycine transporter 1 (GlyT1) is responsible for the reuptake of glycine, which regulates glutamate signaling as a co-agonist with N-methyl-D-aspartic acid (NMDA) receptors in the excitatory synapse and has been proposed to be a potential target in the development of therapies for a broad range of disorders of the central nervous system. Despite significant progress in characterizing structure and transport mechanism of the transporter, the regulation of transport function through oligomerization remains to be understood. In the present work, association of two forms of GlyT1 into dimers and higher order oligomers was detected by coimmunoprecipitation. To investigate functional properties of dimers of a GlyT1 cysteine mutant L288C, we performed oxidative cross-linking of the positioned cysteine residues in extracellular loop 3 (EL3) near the extracellular end of TM6. By analyzing the effect of copper phenanthroline (CuP)-induced dimerization on transport function, cross-linking of L288C was found to inhibit transport activity. In addition, an intramolecular ion pair Lys286-Glu289 was revealed to be critical for stabilizing EL3 in a conformation that modulates CuP-induced dimerization and transport function of the GlyT1 L288C mutant. Furthermore, the influence of transporter conformation on GlyT1 L288C dimerization was investigated. The substrate glycine, in the presence of both Na+ and Cl-, significantly reduced oxidative cross-linking, suggesting a large-scale rotation of the bundle domain during substrate transport impairs interfacial interactions between L288C protomers. The present study provides new insights into structural and functional elements regulating GlyT1 transport activity through its dimerization or oligomerization.
Collapse
|
3
|
Chloride-dependent conformational changes in the GlyT1 glycine transporter. Proc Natl Acad Sci U S A 2021; 118:2017431118. [PMID: 33658361 DOI: 10.1073/pnas.2017431118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human GlyT1 glycine transporter requires chloride for its function. However, the mechanism by which Cl- exerts its influence is unknown. To examine the role that Cl- plays in the transport cycle, we measured the effect of Cl- on both glycine binding and conformational changes. The ability of glycine to displace the high-affinity radioligand [3H]CHIBA-3007 required Na+ and was potentiated over 1,000-fold by Cl- We generated GlyT1b mutants containing reactive cysteine residues in either the extracellular or cytoplasmic permeation pathways and measured changes in the reactivity of those cysteine residues as indicators of conformational changes in response to ions and substrate. Na+ increased accessibility in the extracellular pathway and decreased it in the cytoplasmic pathway, consistent with stabilizing an outward-open conformation as observed in other members of this transporter family. In the presence of Na+, both glycine and Cl- independently shifted the conformation of GlyT1b toward an outward-closed conformation. Together, Na+, glycine, and Cl- stabilized an inward-open conformation of GlyT1b. We then examined whether Cl- acts by interacting with a conserved glutamine to allow formation of an ion pair that stabilizes the closed state of the extracellular pathway. Molecular dynamics simulations of a GlyT1 homolog indicated that this ion pair is formed more frequently as that pathway closes. Mutation of the glutamine blocked the effect of Cl-, and substituting it with glutamate or lysine resulted in outward- or inward-facing transporter conformations, respectively. These results provide an unexpected insight into the role of Cl- in this family of transporters.
Collapse
|
4
|
Burbulla LF, Krainc D. The role of dopamine in the pathogenesis of GBA1-linked Parkinson's disease. Neurobiol Dis 2019; 132:104545. [PMID: 31351996 DOI: 10.1016/j.nbd.2019.104545] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/21/2019] [Accepted: 07/24/2019] [Indexed: 12/20/2022] Open
Abstract
Our understanding of the molecular mechanisms underlying differential vulnerability of substantia nigra dopamine neurons in Parkinson's disease (PD) remains limited, and previous therapeutic efforts targeting rodent nigral neurons have not been successfully translated to humans. However, recent emergence of induced pluripotent stem cell technology has highlighted some fundamental differences between human and rodent midbrain dopamine neurons that may at least in part explain relative resistance of rodent neurons to degeneration in genetic models of PD. Using GBA1-linked PD as an example, we discuss cellular pathways that may predispose human neurons to degeneration in PD, including mitochondrial oxidant stress, elevated intracellular calcium, altered synaptic vesicle endocytosis, accumulation of oxidized dopamine and neuromelanin. Recent studies have suggested that a combination of mitochondrial oxidant stress and accumulation of oxidized dopamine contribute to dysfunction of nigral neurons in various genetic and sporadic forms of PD. We also briefly summarize the development of targeted therapies for GBA1-associated synucleinopathies and highlight that modulation of wild-type GCase activity serves as an important target for the treatment of genetic and idiopathic forms of PD and dementia with Lewy bodies.
Collapse
Affiliation(s)
- Lena F Burbulla
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
5
|
Möller IR, Slivacka M, Nielsen AK, Rasmussen SGF, Gether U, Loland CJ, Rand KD. Conformational dynamics of the human serotonin transporter during substrate and drug binding. Nat Commun 2019; 10:1687. [PMID: 30976000 PMCID: PMC6459873 DOI: 10.1038/s41467-019-09675-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 03/22/2019] [Indexed: 12/24/2022] Open
Abstract
The serotonin transporter (SERT), a member of the neurotransmitter:sodium symporter family, is responsible for termination of serotonergic signaling by re-uptake of serotonin (5-HT) into the presynaptic neuron. Its key role in synaptic transmission makes it a major drug target, e.g. for the treatment of depression, anxiety and post-traumatic stress. Here, we apply hydrogen-deuterium exchange mass spectrometry to probe the conformational dynamics of human SERT in the absence and presence of known substrates and targeted drugs. Our results reveal significant changes in dynamics in regions TM1, EL3, EL4, and TM12 upon binding co-transported ions (Na+/K+) and ligand-mediated changes in TM1, EL3 and EL4 upon binding 5-HT, the drugs S-citalopram, cocaine and ibogaine. Our results provide a comprehensive direct view of the conformational response of SERT upon binding both biologically relevant substrate/ions and ligands of pharmaceutical interest, thus advancing our understanding of the structure-function relationship in SERT.
Collapse
Affiliation(s)
- Ingvar R Möller
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, Copenhagen, 2100, Denmark
- Laboratory for Membrane Protein Dynamics, Department of Neuroscience, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Marika Slivacka
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, Copenhagen, 2100, Denmark
- Laboratory for Membrane Protein Dynamics, Department of Neuroscience, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Anne Kathrine Nielsen
- Laboratory for Membrane Protein Dynamics, Department of Neuroscience, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Søren G F Rasmussen
- Department of Neuroscience, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Ulrik Gether
- Department of Neuroscience, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Claus J Loland
- Laboratory for Membrane Protein Dynamics, Department of Neuroscience, University of Copenhagen, Copenhagen, 2200, Denmark.
| | - Kasper D Rand
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, Copenhagen, 2100, Denmark.
| |
Collapse
|
6
|
Harriott ND, Williams JP, Smith EB, Bozigian HP, Grigoriadis DE. VMAT2 Inhibitors and the Path to Ingrezza (Valbenazine). PROGRESS IN MEDICINAL CHEMISTRY 2018; 57:87-111. [DOI: 10.1016/bs.pmch.2017.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
|
7
|
Abstract
Synthetic cathinones are derivatives of the naturally occurring compound cathinone, the main psychoactive ingredient in the khat plant Catha edulis. Cathinone is the β-keto analog of amphetamine, and all synthetic cathinones display a β-keto moiety in their structure. Several synthetic cathinones are widely prescribed medications (e.g., bupropion, Wellbutrin®), while others are problematic drugs of abuse (e.g., 4-methylmethcathinone, mephedrone). Similar to amphetamines, synthetic cathinones are psychomotor stimulants that exert their effects by impairing the normal function of plasma membrane transporters for dopamine (DAT), norepinephrine (NET), and 5-HT (SERT). Ring-substituted cathinones like mephedrone are transporter substrates that evoke neurotransmitter release by reversing the normal direction of transporter flux (i.e., releasers), whereas pyrrolidine-containing cathinones like 3,4-methylenedioxypyrovalerone (MDPV) are potent transporter inhibitors that block neurotransmitter uptake (i.e., blockers). Regardless of molecular mechanism, all synthetic cathinones increase extracellular monoamine concentrations in the brain, thereby enhancing cell-to-cell monoamine signaling. Here, we briefly review the mechanisms of action, structure-activity relationships, and in vivo pharmacology of synthetic cathinones. Overall, the findings show that certain synthetic cathinones are powerful drugs of abuse that could pose significant risk to users.
Collapse
|
8
|
Abstract
Products containing psychoactive synthetic cathinones, such as mephedrone and 3,4-methylenedioxypyrovalerone (MDPV) are prevalent in our society. Synthetic cathinones are structurally similar to methamphetamine, and numerous synthetics have biological activity at dopamine, serotonin, and norepinephrine transporters. Importantly, monoamine transporters co-transport sodium ions along with their substrate, and movement of substrates and ions through the transporter can generate measurable ionic currents. Here we review how electrophysiological information has enabled us to determine how synthetic cathinones affect transporter-mediated currents in cells that express these transporters. Specifically, drugs that act as transporter substrates induce inward depolarizing currents when cells are held near their resting membrane potential, whereas drugs that act as transporter blockers induce apparent outward currents by blocking an inherent inward leak current. We have employed the two-electrode voltage-clamp technique in Xenopus laevis oocytes overexpressing monoamine transporters to determine whether synthetic cathinones found in the so-called bath salts products behave as blockers or substrates. We also examined the structure-activity relationships for synthetic cathinone analogs related to the widely abused compound MDPV, a common constituent in "bath salts" possessing potent actions at the dopamine transporter.
Collapse
Affiliation(s)
- Ernesto Solis
- In Vivo Electrophysiology Unit, Behavioral Neuroscience Research Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Triad Technology Center, 333 Cassell Drive, Suite 2200, Baltimore, MD, 21224, USA.
| |
Collapse
|
9
|
Alsufyani HA, Docherty JR. Investigation of gender differences in the cardiovascular actions of direct and indirect sympathomimetic stimulants including cathinone in the anaesthetized rat. ACTA ACUST UNITED AC 2016; 36:14-9. [DOI: 10.1111/aap.12043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/15/2016] [Accepted: 06/22/2016] [Indexed: 11/28/2022]
Affiliation(s)
- H. A. Alsufyani
- Department of Physiology; Royal College of Surgeons in Ireland; Dublin Ireland
- Department of Physiology; King Abdulaziz University; Jeddah Kingdom of Saudi Arabia
| | - J. R. Docherty
- Department of Physiology; Royal College of Surgeons in Ireland; Dublin Ireland
| |
Collapse
|
10
|
Abstract
Serotonin transporters (SERTs) are largely recognized for one aspect of their function—to transport serotonin back into the presynaptic terminal after its release. Another aspect of their function, however, may be to generate currents large enough to have physiological consequences. The standard model for electrogenic transport is the alternating access model, in which serotonin is transported with a fixed ratio of co-transported ions resulting in net charge per cycle. The alternating access model, however, cannot account for all the observed currents through SERT or other monoamine transporters. Furthermore, SERT agonists like ecstasy or antagonists like fluoxetine generate or suppress currents that the standard model cannot support. Here we survey evidence for a channel mode of transport in which transmitters and ions move through a pore. Available structures for dopamine and serotonin transporters, however, provide no evidence for a pore conformation, raising questions of whether the proposed channel mode actually exists or whether the structural data are perhaps missing a transient open state.
Collapse
Affiliation(s)
- Louis J De Felice
- Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
11
|
Gregersen JL, Mattle D, Fedosova NU, Nissen P, Reinhard L. Isolation, crystallization and crystal structure determination of bovine kidney Na(+),K(+)-ATPase. Acta Crystallogr F Struct Biol Commun 2016; 72:282-7. [PMID: 27050261 PMCID: PMC4822984 DOI: 10.1107/s2053230x1600279x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/16/2016] [Indexed: 01/23/2023] Open
Abstract
Na(+),K(+)-ATPase is responsible for the transport of Na(+) and K(+) across the plasma membrane in animal cells, thereby sustaining vital electrochemical gradients that energize channels and secondary transporters. The crystal structure of Na(+),K(+)-ATPase has previously been elucidated using the enzyme from native sources such as porcine kidney and shark rectal gland. Here, the isolation, crystallization and first structure determination of bovine kidney Na(+),K(+)-ATPase in a high-affinity E2-BeF3(-)-ouabain complex with bound magnesium are described. Crystals belonging to the orthorhombic space group C2221 with one molecule in the asymmetric unit exhibited anisotropic diffraction to a resolution of 3.7 Å with full completeness to a resolution of 4.2 Å. The structure was determined by molecular replacement, revealing unbiased electron-density features for bound BeF3(-), ouabain and Mg(2+) ions.
Collapse
Affiliation(s)
- Jonas Lindholt Gregersen
- Centre for Membrane Pumps in Cells and Disease – PUMPkin, Danish National Research Foundation, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus, Denmark
| | - Daniel Mattle
- Centre for Membrane Pumps in Cells and Disease – PUMPkin, Danish National Research Foundation, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus, Denmark
| | - Natalya U. Fedosova
- Centre for Membrane Pumps in Cells and Disease – PUMPkin, Danish National Research Foundation, Denmark
- Department of Biomedicine, Aarhus University, Ole Worms Alle 6, DK-8000 Aarhus, Denmark
| | - Poul Nissen
- Centre for Membrane Pumps in Cells and Disease – PUMPkin, Danish National Research Foundation, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Denmark
| | - Linda Reinhard
- Centre for Membrane Pumps in Cells and Disease – PUMPkin, Danish National Research Foundation, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus, Denmark
| |
Collapse
|
12
|
Chloride requirement for monoamine transporters. Pflugers Arch 2016; 468:503-11. [PMID: 26794730 DOI: 10.1007/s00424-015-1783-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/20/2015] [Accepted: 12/22/2015] [Indexed: 12/18/2022]
Abstract
This review focuses on the Cl(-) requirement for dopamine, serotonin, and norepinephrine (DA, 5-HT, and NE) transport and induced current via the transporters for these transmitters, DAT, SERT, and NET. Indirect evidence exists for the passage of Cl(-) ions through monoamine transporters; however, direct evidence is sparse. An unanswered question is why in some preparations, notably native neurons, it appears that Cl(-) ions carry the current through DAT, whereas in heterologous expression systems Na(+) ions carry the current often referred to as the uncoupled current. It is suggested that different functional states in monoamine transporters represent conformational states that carry dominantly Cl(-) or Na(+). Structures of monoamine transporters contribute enormously to structure-function relationships; however, thus far no structural features support the functionally relevant ionic currents that are known to exist in monoamine transporters.
Collapse
|
13
|
Mortensen OV, Kortagere S. Designing modulators of monoamine transporters using virtual screening techniques. Front Pharmacol 2015; 6:223. [PMID: 26483692 PMCID: PMC4586420 DOI: 10.3389/fphar.2015.00223] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/17/2015] [Indexed: 12/15/2022] Open
Abstract
The plasma-membrane monoamine transporters (MATs), including the serotonin (SERT), norepinephrine (NET) and dopamine (DAT) transporters, serve a pivotal role in limiting monoamine-mediated neurotransmission through the reuptake of their respective monoamine neurotransmitters. The transporters are the main target of clinically used psychostimulants and antidepressants. Despite the availability of several potent and selective MAT substrates and inhibitors the continuing need for therapeutic drugs to treat brain disorders involving aberrant monoamine signaling provides a compelling reason to identify novel ways of targeting and modulating the MATs. Designing novel modulators of MAT function have been limited by the lack of three dimensional structure information of the individual MATs. However, crystal structures of LeuT, a bacterial homolog of MATs, in a substrate-bound occluded, substrate-free outward-open, and an apo inward-open state and also with competitive and non-competitive inhibitors have been determined. In addition, several structures of the Drosophila DAT have also been resolved. Together with computational modeling and experimental data gathered over the past decade, these structures have dramatically advanced our understanding of several aspects of SERT, NET, and DAT transporter function, including some of the molecular determinants of ligand interaction at orthosteric substrate and inhibitor binding pockets. In addition progress has been made in the understanding of how allosteric modulation of MAT function can be achieved. Here we will review all the efforts up to date that has been made through computational approaches employing structural models of MATs to design small molecule modulators to the orthosteric and allosteric sites using virtual screening techniques.
Collapse
Affiliation(s)
- Ole V Mortensen
- Department of Pharmacology and Physiology, Drexel University College of Medicine , Philadelphia, PA, USA
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine , Philadelphia, PA, USA
| |
Collapse
|
14
|
Rannversson H, Wilson P, Kristensen KB, Sinning S, Kristensen AS, Strømgaard K, Andersen J. Importance of the Extracellular Loop 4 in the Human Serotonin Transporter for Inhibitor Binding and Substrate Translocation. J Biol Chem 2015; 290:14582-94. [PMID: 25903124 DOI: 10.1074/jbc.m114.629071] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Indexed: 12/20/2022] Open
Abstract
The serotonin transporter (SERT) terminates serotonergic neurotransmission by performing reuptake of released serotonin, and SERT is the primary target for antidepressants. SERT mediates the reuptake of serotonin through an alternating access mechanism, implying that a central substrate site is connected to both sides of the membrane by permeation pathways, of which only one is accessible at a time. The coordinated conformational changes in SERT associated with substrate translocation are not fully understood. Here, we have identified a Leu to Glu mutation at position 406 (L406E) in the extracellular loop 4 (EL4) of human SERT, which induced a remarkable gain-of-potency (up to >40-fold) for a range of SERT inhibitors. The effects were highly specific for L406E relative to six other mutations in the same position, including the closely related L406D mutation, showing that the effects induced by L406E are not simply charge-related effects. Leu(406) is located >10 Å from the central inhibitor binding site indicating that the mutation affects inhibitor binding in an indirect manner. We found that L406E decreased accessibility to a residue in the cytoplasmic pathway. The shift in equilibrium to favor a more outward-facing conformation of SERT can explain the reduced turnover rate and increased association rate of inhibitor binding we found for L406E. Together, our findings show that EL4 allosterically can modulate inhibitor binding within the central binding site, and substantiates that EL4 has an important role in controlling the conformational equilibrium of human SERT.
Collapse
Affiliation(s)
- Hafsteinn Rannversson
- From the Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen and
| | - Pamela Wilson
- From the Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen and
| | - Kristina Birch Kristensen
- the Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, DK-8240 Risskov, Denmark
| | - Steffen Sinning
- the Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, DK-8240 Risskov, Denmark
| | - Anders Skov Kristensen
- From the Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen and
| | - Kristian Strømgaard
- From the Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen and
| | - Jacob Andersen
- From the Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen and
| |
Collapse
|
15
|
Sitte HH, Freissmuth M. Amphetamines, new psychoactive drugs and the monoamine transporter cycle. Trends Pharmacol Sci 2014; 36:41-50. [PMID: 25542076 PMCID: PMC4502921 DOI: 10.1016/j.tips.2014.11.006] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/25/2014] [Accepted: 11/25/2014] [Indexed: 01/05/2023]
Abstract
In monoaminergic neurons, the vesicular transporters and the plasma membrane transporters operate in a relay. Amphetamine and its congeners target this relay to elicit their actions: most amphetamines are substrates, which pervert the relay to elicit efflux of monoamines into the synaptic cleft. However, some amphetamines act as transporter inhibitors. Both compound classes elicit profound psychostimulant effects, which render them liable to recreational abuse. Currently, a surge of new psychoactive substances occurs on a global scale. Chemists bypass drug bans by ingenuous structural variations, resulting in a rich pharmacology. A credible transport model must account for their distinct mode of action and link this to subtle differences in activity and undesired, potentially deleterious effects.
Collapse
Affiliation(s)
- Harald H Sitte
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University Vienna, Waehringerstrasse 13A, 1090 Vienna, Austria; Center for Addiction Research and Science (AddRess), Medical University Vienna, Waehringerstrasse 13A, 1090 Vienna, Austria.
| | - Michael Freissmuth
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University Vienna, Waehringerstrasse 13A, 1090 Vienna, Austria
| |
Collapse
|
16
|
Loland CJ. The use of LeuT as a model in elucidating binding sites for substrates and inhibitors in neurotransmitter transporters. Biochim Biophys Acta Gen Subj 2014; 1850:500-10. [PMID: 24769398 DOI: 10.1016/j.bbagen.2014.04.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 01/24/2023]
Abstract
BACKGROUND The mammalian neurotransmitter transporters are complex proteins playing a central role in synaptic transmission between neurons by rapid reuptake of neurotransmitters. The proteins which transport dopamine, noradrenaline and serotonin belong to the Neurotransmitter:Sodium Symporters (NSS). Due to their important role, dysfunctions are associated with several psychiatric and neurological diseases and they also serve as targets for a wide range of therapeutic and illicit drugs. Despite the central physiological and pharmacological importance, direct evidence on structure-function relationships on mammalian NSS proteins has so far been unsuccessful. The crystal structure of the bacterial NSS protein, LeuT, has been a turning point in structural investigations. SCOPE OF REVIEW To provide an update on what is known about the binding sites for substrates and inhibitors in the LeuT. The different binding modes and binding sites will be discussed with special emphasis on the possible existence of a second substrate binding site. It is the goal to give an insight into how investigations on ligand binding in LeuT have provided basic knowledge about transporter conformations and translocation mechanism which can pave the road for a deeper understanding of drug binding and function of the mammalian transporters. MAJOR CONCLUSIONS The LeuT is a suitable model for the structural investigation of NSS proteins including the possible location of drug binding sites. It is still debated whether the LeuT is a suitable model for the molecular mechanisms behind substrate translocation. GENERAL SIGNIFICANCE Structure and functional aspects of NSS proteins are central for understanding synaptic transmission. With the purification and crystallization of LeuT as well as the dopamine transporter from Drosophila melanogaster, the application of biophysical methods such as fluorescence spectroscopy, neutron- or x-ray scattering and NMR for understanding its function becomes increasingly available. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.
Collapse
Affiliation(s)
- Claus J Loland
- Molecular Neuropharmacology Laboratory, Department of Neuroscience and Pharmacology, The Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
17
|
Gabrielsen M, Kurczab R, Siwek A, Wolak M, Ravna AW, Kristiansen K, Kufareva I, Abagyan R, Nowak G, Chilmonczyk Z, Sylte I, Bojarski AJ. Identification of novel serotonin transporter compounds by virtual screening. J Chem Inf Model 2014; 54:933-43. [PMID: 24521202 PMCID: PMC3982395 DOI: 10.1021/ci400742s] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The serotonin (5-hydroxytryptamine, 5-HT) transporter (SERT) plays an essential role in the termination of serotonergic neurotransmission by removing 5-HT from the synaptic cleft into the presynaptic neuron. It is also of pharmacological importance being targeted by antidepressants and psychostimulant drugs. Here, five commercial databases containing approximately 3.24 million drug-like compounds have been screened using a combination of two-dimensional (2D) fingerprint-based and three-dimensional (3D) pharmacophore-based screening and flexible docking into multiple conformations of the binding pocket detected in an outward-open SERT homology model. Following virtual screening (VS), selected compounds were evaluated using in vitro screening and full binding assays and an in silico hit-to-lead (H2L) screening was performed to obtain analogues of the identified compounds. Using this multistep VS/H2L approach, 74 active compounds, 46 of which had K(i) values of ≤1000 nM, belonging to 16 structural classes, have been identified, and multiple compounds share no structural resemblance with known SERT binders.
Collapse
Affiliation(s)
- Mari Gabrielsen
- Medical Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health Sciences, UiT, The Arctic University of Norway , 9037 Tromsø, Norway
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Centurião FB, Braga A, Machado FR, Tagliari B, Müller LG, Kolling J, Poser GV, Wyse ATS, Rates SMK. Study of antidepressant-like activity of an enriched phloroglucinol fraction obtained from Hypericum caprifoliatum. PHARMACEUTICAL BIOLOGY 2014; 52:105-110. [PMID: 24102122 DOI: 10.3109/13880209.2013.816970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT Hypericum caprifoliatum Cham & Schlecht (Guttiferae) extracts have a potential antidepressant-like effect in rodents. However, the molecular mechanisms by which these extracts exert this effect remain unclear. OBJECTIVE This study evaluated the effect of HC1, a fraction obtained from H. caprifoliatum enriched in phloroglucinol derivatives, on the Na⁺, K⁺ ATPase activity in mouse brain and verified the influence of veratrine on the effect of HC1 in the forced swimming test (FST). MATERIALS AND METHODS Veratrine (0.06 mg/kg) and HC1 (360 mg/kg) were given alone or combined i.p. 60 and p.o. 30 min, respectively, before FST. The effect of single and repeated administration (once a day for 3 consecutive days) of HC1 (360 mg/kg) on Na⁺, K⁺ ATPase activity was evaluated ex vivo in the cerebral cortex and hippocampus of mice subjected or not to FST. RESULTS HC1 reduced the immobility time (103.15 ± 18.67 s), when compared to the control group (183.6 ± 9.51 s). This effect was prevented by veratrine (151.75 ± 22.19 s). Mice repeatedly treated with HC1 presented a significant increase in Na⁺, K⁺ ATPase activity, both in cerebral cortex (46 ± 2.41 nmol Pi/min·mg protein) and hippocampus (49.83 ± 2.31 nmol Pi/min·mg protein), in relation to the respective controls (30 ± 2.66 and 29.83 ± 2.31 nmol Pi/min·mg protein respectively). DISCUSSION AND CONCLUSION The HC1 antidepressant-like effect on FST might be related to its capacity to inhibit Na⁺ influx. HC1 increases hippocampal and cortical Na⁺, K⁺ ATPase activities possibly through long-term regulatory mechanisms.
Collapse
Affiliation(s)
- Fernanda B Centurião
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul , Porto Alegre , Brasil and
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Transport Reversal during Heteroexchange: A Kinetic Study. JOURNAL OF BIOPHYSICS 2013; 2013:683256. [PMID: 24307897 PMCID: PMC3825127 DOI: 10.1155/2013/683256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/18/2013] [Accepted: 08/18/2013] [Indexed: 10/26/2022]
Abstract
It is known that secondary transporters, which utilize transmembrane ionic gradients to drive their substrates up a concentration gradient, can reverse the uptake and instead release their substrates. Unfortunately, the Michaelis-Menten kinetic scheme, which is popular in transporter studies, does not include transporter reversal, and it completely neglects the possibility of equilibrium between the substrate concentrations on both sides of the membrane. We have developed a complex two-substrate kinetic model that includes transport reversal. This model allows us to construct analytical formulas allowing the calculation of a "heteroexchange" and "transacceleration" using standard Michaelis coefficients for respective substrates. This approach can help to understand how glial and other cells accumulate substrates without synthesis and are able to release such substrates and gliotransmitters.
Collapse
|
20
|
Schweikhard ES, Ziegler CM. Amino acid secondary transporters: toward a common transport mechanism. CURRENT TOPICS IN MEMBRANES 2013. [PMID: 23177982 DOI: 10.1016/b978-0-12-394316-3.00001-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Solute carriers (SLC) that transport amino acids are key players in health and diseases in humans. Their prokaryotic relatives are often involved in essential physiological processes in microorganisms, e.g. in homeostasis and acidic/osmotic stress response. High-resolution X-ray structures of the sequence-unrelated amino acid transporters unraveled a striking structural similarity between carriers, which were formerly assigned to different families. The highly conserved fold is characterized by two inverted structural repeats of five transmembrane helices each and indicates common mechanistic transport concepts if not an evolutionary link among a large number of amino acid transporters. Therefore, these transporters are classified now into the structural amino acid-polyamine-organocation superfamily (APCS). The APCS includes among others the mammalian SLC6 transporters and the heterodimeric SLC7/SLC3 transporters. However, it has to be noted that the APCS is not limited entirely to amino acid transporters but contains also transporters for, e.g. amino acid derivatives and sugars. For instance, the betaine-choline-carnitine transporter family of bacterial activity-regulated Na(+)- and H(+)-coupled symporters for glycine betaine and choline is also part of this second largest structural superfamily. The APCS fold provides different possibilities to transport the same amino acid. Arginine can be transported by an H(+)-coupled symport or by antiport mechanism in exchange against agmatine for example. The convergence of the mechanistic concept of transport under comparable physiological conditions allows speculating if structurally unexplored amino acid transporters, e.g. the members of the SLC36 and SLC38 family, belong to the APCS, too. In the kidney, which is an organ that depends critically on the regulated amino acid transport, these different SLC transporters have to work together to account for proper function. Here, we will summarize the basic concepts of Na(+)- and H(+)-coupled amino acid symport and amino acid-product antiport in the light of the respective physiological requirements.
Collapse
Affiliation(s)
- Eva S Schweikhard
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | | |
Collapse
|
21
|
Abstract
The solute carrier 6 (SLC6) family of the human genome comprises transporters for neurotransmitters, amino acids, osmolytes and energy metabolites. Members of this family play critical roles in neurotransmission, cellular and whole body homeostasis. Malfunction or altered expression of these transporters is associated with a variety of diseases. Pharmacological inhibition of the neurotransmitter transporters in this family is an important strategy in the management of neurological and psychiatric disorders. This review provides an overview of the biochemical and pharmacological properties of the SLC6 family transporters.
Collapse
Affiliation(s)
- Stefan Bröer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| | | |
Collapse
|
22
|
Rodriguez-Menchaca AA, Solis E, Cameron K, De Felice LJ. S(+)amphetamine induces a persistent leak in the human dopamine transporter: molecular stent hypothesis. Br J Pharmacol 2012; 165:2749-57. [PMID: 22014068 DOI: 10.1111/j.1476-5381.2011.01728.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Wherever they are located, dopamine transporters (DATs) clear dopamine (DA) from the extracellular milieu to help regulate dopaminergic signalling. Exposure to amphetamine (AMPH) increases extracellular DA in the synaptic cleft, which has been ascribed to DAT reverse transport. Increased extracellular DA prolongs postsynaptic activity and reinforces abuse and hedonic behaviour. EXPERIMENTAL APPROACH Xenopus laevis oocytes expressing human (h) DAT were voltage-clamped and exposed to DA, R(-)AMPH, or S(+)AMPH. KEY RESULTS At -60mV, near neuronal resting potentials, S(+)AMPH induced a depolarizing current through hDAT, which after removing the drug, persisted for more than 30 min. This persistent leak in the absence of S(+)AMPH was in contrast to the currents induced by R(-)AMPH and DA, which returned to baseline immediately after their removal. Our data suggest that S(+)AMPH and Na(+) carry the initial S(+)AMPH-induced current, whereas Na+ and Cl(-) carry the persistent leak current. We propose that the persistent current results from the internal action of S(+)AMPH on hDAT because the temporal effect was consistent with S(+)AMPH influx, and intracellular S(+)AMPH activated the effect. The persistent current was dependent on Na(+) and was blocked by cocaine. Intracellular injection of S(+)AMPH also activated a DA-induced persistent leak current. CONCLUSIONS AND IMPLICATIONS We report a hitherto unknown action of S(+)AMPH on hDAT that potentially affects AMPH-induced DA release. We propose that internal S(+)AMPH acts as a molecular stent that holds the transporter open even after external S(+)AMPH is removed. Amphetamine-induced persistent leak currents are likely to influence dopaminergic signalling, DA release mechanisms, and amphetamine abuse.
Collapse
Affiliation(s)
- Aldo A Rodriguez-Menchaca
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | |
Collapse
|
23
|
Solis E, Zdravkovic I, Tomlinson ID, Noskov SY, Rosenthal SJ, De Felice LJ. 4-(4-(dimethylamino)phenyl)-1-methylpyridinium (APP+) is a fluorescent substrate for the human serotonin transporter. J Biol Chem 2012; 287:8852-63. [PMID: 22291010 DOI: 10.1074/jbc.m111.267757] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Monoamine transporters terminate synaptic neurotransmission and are molecular targets for antidepressants and psychostimulants. Fluorescent reporters can monitor real-time transport and are amenable for high-throughput screening. However, until now, their use has mostly been successful to study the catecholamine transporters but not the serotonin (5HT) transporter. Here, we use fluorescence microscopy, electrophysiology, pharmacology, and molecular modeling to compare fluorescent analogs of 1-methyl-4-phenylpyridinium (MPP(+)) as reporters for the human serotonin transporter (hSERT) in single cells. The fluorescent substrate 4-(4-(dimethylamino)phenyl)-1-methylpyridinium (APP(+)) exhibits superior fluorescence uptake in hSERT-expressing HEK293 cells than other MPP(+) analogs tested. APP(+) uptake is Na(+)- and Cl(-)-dependent, displaced by 5HT, and inhibited by fluoxetine, suggesting APP(+) specifically monitors hSERT activity. ASP(+), which was previously used to study catecholamine transporters, is 10 times less potent than APP(+) at inhibiting 5HT uptake and has minimal hSERT-mediated uptake. Furthermore, in hSERT-expressing oocytes voltage-clamped to -60 mV, APP(+) induced fluoxetine-sensitive hSERT-mediated inward currents, indicating APP(+) is a substrate, whereas ASP(+) induced hSERT-mediated outward currents and counteracted 5HT-induced hSERT currents, indicating ASP(+) possesses activity as an inhibitor. Extra-precise ligand receptor docking of APP(+) and ASP(+) in an hSERT homology model showed both ASP(+) and APP(+) docked favorably within the active region; accordingly, comparable concentrations are required to elicit their opposite electrophysiological responses. We conclude APP(+) is better suited than ASP(+) to study hSERT transport fluorometrically.
Collapse
Affiliation(s)
- Ernesto Solis
- Graduate Training Program in Neuroscience, Vanderbilt University School of Medicine, Nashville, Tennessee 23235, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Ion-coupled solute transporters are responsible for transporting nutrients, ions, and signaling molecules across a variety of biological membranes. Recent high-resolution crystal structures of several transporters from protein families that were previously thought to be unrelated show common structural features indicating a large structural family representing transporters from all kingdoms of life. This review describes studies that led to an understanding of the conformational changes required for solute transport in this family. The first structure in this family showed the bacterial amino acid transporter LeuT, which is homologous to neurotransmitter transporters, in an extracellularly oriented conformation with a molecule of leucine occluded at the substrate site. Studies with the mammalian serotonin transporter identified positions, buried in the LeuT structure, that defined a potential pathway leading from the cytoplasm to the substrate binding site. Modeling studies utilized an inverted structural repeat within the LeuT crystal structure to predict the conformation of LeuT in which the cytoplasmic permeation pathway, consisting of positions identified in SERT, was open for diffusion of the substrate to the cytoplasm. From the difference between the model and the crystal structures, a simple "rocking bundle" mechanism was proposed, in which a four-helix bundle changed its orientation with respect to the rest of the protein to close the extracellular pathway and open the cytoplasmic one. Subsequent crystal structures from structurally related proteins provide evidence supporting this model for transport.
Collapse
Affiliation(s)
- Gary Rudnick
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, United States.
| |
Collapse
|
25
|
Wimalasena K. Vesicular monoamine transporters: structure-function, pharmacology, and medicinal chemistry. Med Res Rev 2011; 31:483-519. [PMID: 20135628 PMCID: PMC3019297 DOI: 10.1002/med.20187] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vesicular monoamine transporters (VMAT) are responsible for the uptake of cytosolic monoamines into synaptic vesicles in monoaminergic neurons. Two closely related VMATs with distinct pharmacological properties and tissue distributions have been characterized. VMAT1 is preferentially expressed in neuroendocrine cells and VMAT2 is primarily expressed in the CNS. The neurotoxicity and addictive properties of various psychostimulants have been attributed, at least partly, to their interference with VMAT2 functions. The quantitative assessment of the VMAT2 density by PET scanning has been clinically useful for early diagnosis and monitoring of the progression of Parkinson's and Alzheimer's diseases and drug addiction. The classical VMAT2 inhibitor, tetrabenazine, has long been used for the treatment of chorea associated with Huntington's disease in the United Kingdom, Canada, and Australia, and recently approved in the United States. The VMAT2 imaging may also be useful for exploiting the onset of diabetes mellitus, as VMAT2 is also expressed in the β-cells of the pancreas. VMAT1 gene SLC18A1 is a locus with strong evidence of linkage with schizophrenia and, thus, the polymorphic forms of the VMAT1 gene may confer susceptibility to schizophrenia. This review summarizes the current understanding of the structure-function relationships of VMAT2, and the role of VMAT2 on addiction and psychostimulant-induced neurotoxicity, and the therapeutic and diagnostic applications of specific VMAT2 ligands. The evidence for the linkage of VMAT1 gene with schizophrenia and bipolar disorder I is also discussed.
Collapse
|
26
|
Tavoulari S, Rizwan AN, Forrest LR, Rudnick G. Reconstructing a chloride-binding site in a bacterial neurotransmitter transporter homologue. J Biol Chem 2011; 286:2834-42. [PMID: 21115480 PMCID: PMC3024779 DOI: 10.1074/jbc.m110.186064] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/23/2010] [Indexed: 01/23/2023] Open
Abstract
In ion-coupled transport proteins, occupation of selective ion-binding sites is required to trigger conformational changes that lead to substrate translocation. Neurotransmitter transporters, targets of abused and therapeutic drugs, require Na(+) and Cl(-) for function. We recently proposed a chloride-binding site in these proteins not present in Cl(-)-independent prokaryotic homologues. Here we describe conversion of the Cl(-)-independent prokaryotic tryptophan transporter TnaT to a fully functional Cl(-)-dependent form by a single point mutation, D268S. Mutations in TnaT-D268S, in wild type TnaT and in serotonin transporter provide direct evidence for the involvement of each of the proposed residues in Cl(-) coordination. In both SERT and TnaT-D268S, Cl(-) and Na(+) mutually increased each other's potency, consistent with electrostatic interaction through adjacent binding sites. These studies establish the site where Cl(-) binds to trigger conformational change during neurotransmitter transport.
Collapse
Affiliation(s)
- Sotiria Tavoulari
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066
| | | | - Lucy R. Forrest
- Computational Structural Biology Group, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany, and
| | - Gary Rudnick
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066
| |
Collapse
|
27
|
The substrate-driven transition to an inward-facing conformation in the functional mechanism of the dopamine transporter. PLoS One 2011; 6:e16350. [PMID: 21298009 PMCID: PMC3029329 DOI: 10.1371/journal.pone.0016350] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 12/13/2010] [Indexed: 11/30/2022] Open
Abstract
Background The dopamine transporter (DAT), a member of the neurotransmitter:Na+ symporter (NSS) family, terminates dopaminergic neurotransmission and is a major molecular target for psychostimulants such as cocaine and amphetamine, and for the treatment of attention deficit disorder and depression. The crystal structures of the prokaryotic NSS homolog of DAT, the leucine transporter LeuT, have provided critical structural insights about the occluded and outward-facing conformations visited during the substrate transport, but only limited clues regarding mechanism. To understand the transport mechanism in DAT we have used a homology model based on the LeuT structure in a computational protocol validated previously for LeuT, in which steered molecular dynamics (SMD) simulations guide the substrate along a pathway leading from the extracellular end to the intracellular (cytoplasmic) end. Methodology/Principal Findings Key findings are (1) a second substrate binding site in the extracellular vestibule, and (2) models of the conformational states identified as occluded, doubly occupied, and inward-facing. The transition between these states involve a spatially ordered sequence of interactions between the two substrate-binding sites, followed by rearrangements in structural elements located between the primary binding site and the cytoplasmic end. These rearrangements are facilitated by identified conserved hinge regions and a reorganization of interaction networks that had been identified as gates. Conclusions/Significance Computational simulations supported by information available from experiments in DAT and other NSS transporters have produced a detailed mechanistic proposal for the dynamic changes associated with substrate transport in DAT. This allosteric mechanism is triggered by the binding of substrate in the S2 site in the presence of the substrate in the S1 site. Specific structural elements involved in this mechanism, and their roles in the conformational transitions illuminated here describe, a specific substrate-driven allosteric mechanism that is directly amenable to experiment as shown previously for LeuT.
Collapse
|
28
|
Sinning S, Musgaard M, Jensen M, Severinsen K, Celik L, Koldsø H, Meyer T, Bols M, Jensen HH, Schiøtt B, Wiborg O. Binding and orientation of tricyclic antidepressants within the central substrate site of the human serotonin transporter. J Biol Chem 2009; 285:8363-74. [PMID: 19948720 DOI: 10.1074/jbc.m109.045401] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tricyclic antidepressants (TCAs) have been used for decades, but their orientation within and molecular interactions with their primary target is yet unsettled. The recent finding of a TCA binding site in the extracellular vestibule of the bacterial leucine transporter 11 A above the central site has prompted debate about whether this vestibular site in the bacterial transporter is applicable to binding of antidepressants to their relevant physiological target, the human serotonin transporter (hSERT). We present an experimentally validated structural model of imipramine and analogous TCAs in the central substrate binding site of hSERT. Two possible binding modes were observed from induced fit docking calculations. We experimentally validated a single binding mode by combining mutagenesis of hSERT with uptake inhibition studies of different TCA analogs according to the paired mutation ligand analog complementation paradigm. Using this experimental method, we identify a salt bridge between the tertiary aliphatic amine and Asp(98). Furthermore, the 7-position of the imipramine ring is found vicinal to Phe(335), and the pocket lined by Ala(173) and Thr(439) is utilized by 3-substituents. These protein-ligand contact points unambiguously orient the TCA within the central binding site and reveal differences between substrate binding and inhibitor binding, giving important clues to the inhibition mechanism. Consonant with the well established competitive inhibition of uptake by TCAs, the resulting binding site for TCAs in hSERT is fully overlapping with the serotonin binding site in hSERT and dissimilar to the low affinity noncompetitive TCA site reported in the leucine transporter (LeuT).
Collapse
Affiliation(s)
- Steffen Sinning
- Laboratory of Molecular Neurobiology, Centre for Psychiatric Research, Aarhus University Hospital, Skovagervej 2, 8240 Risskov, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bröer A, Balkrishna S, Kottra G, Davis S, Oakley A, Bröer S. Sodium translocation by the iminoglycinuria associated imino transporter (SLC6A20). Mol Membr Biol 2009; 26:333-46. [DOI: 10.1080/09687680903150027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Andersen J, Kristensen AS, Bang-Andersen B, Strømgaard K. Recent advances in the understanding of the interaction of antidepressant drugs with serotonin and norepinephrine transporters. Chem Commun (Camb) 2009:3677-92. [PMID: 19557250 DOI: 10.1039/b903035m] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The biogenic monoamine transporters are integral membrane proteins that perform active transport of extracellular dopamine, serotonin and norepinephrine into cells. These transporters are targets for therapeutic agents such as antidepressants, as well as addictive substances such as cocaine and amphetamine. Seminal advances in the understanding of the structure and function of this transporter family have recently been accomplished by structural studies of a bacterial transporter, as well as medicinal chemistry and pharmacological studies of mammalian transporters. This feature article focuses on antidepressant drugs that act on the serotonin and/or the norepinephrine transporters. Specifically, we focus on structure-activity relationships of these drugs with emphasis on relationships between their molecular properties and the current knowledge of transporter structure.
Collapse
Affiliation(s)
- Jacob Andersen
- Department of Medicinal Chemistry, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
31
|
Orun O, Rasmussen S, Gether U. Introducing tetraCys motifs at two different sites results in a functional dopamine transporter. ACTA BIOLOGICA HUNGARICA 2009; 60:15-25. [PMID: 19378920 DOI: 10.1556/abiol.60.2009.1.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have introduced tetracysteine motifs into different positions of the dopamine transporter (DAT) for specific FlAsH labeling. Two of the constructs expressed at the cell surface and were functional as determined by [3H] dopamine uptake experiments. The N-terminally modified transporter showed uptake levels comparable to the wild-type DAT, while the construct with tetracysteine motif at position 511 displayed an uptake level about 1/3 of its wild-type counterpart. In addition, these two transporter constructs were visualized on the cell surface following labeling with a fluorescent cocaine analog. YFP introduced into the same N-terminal position was also shown to have surface staining in agreement with activity tests. We propose that these two sites are suitable targets for tetracysteine labeling to be used in FlAsH staining studies, while p134, p342, p427, p433 and p517 sites are not.
Collapse
Affiliation(s)
- Oya Orun
- Dept. of Biophysics, Marmara Univ. School of Medicine, Istanbul, Turkey.
| | | | | |
Collapse
|
32
|
Riherd DN, Galindo DG, Krause LR, Mayfield RD. Ethanol potentiates dopamine uptake and increases cell surface distribution of dopamine transporters expressed in SK-N-SH and HEK-293 cells. Alcohol 2008; 42:499-508. [PMID: 18579334 DOI: 10.1016/j.alcohol.2008.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 04/29/2008] [Accepted: 04/29/2008] [Indexed: 11/15/2022]
Abstract
Ethanol increases dopaminergic release in the reward and reinforcement areas of the brain. The primary protein responsible for terminating dopamine (DA) neurotransmission is the plasma membrane-bound dopamine transporter (DAT). In vitro electrophysiological and biochemical studies in Xenopus laevis oocytes have previously shown ethanol potentiates DAT function and increases transporter-binding sites. The potentiating effect of ethanol on the transporter is eliminated in Xenopus oocytes by the DAT mutation glycine 130 to threonine. However, ethanol's action on DAT functional regulation has yet to be examined in mammalian cell expression systems. To further understand the molecular mechanisms of ethanol's action on DAT, we determined the direct mechanistic action of short-term (< or =2 h) ethanol exposure on transporter function and cell surface distribution in non-neuronal human embryonic kidney cells-293 (HEK-293) and neuronal SK-N-SH neuroblastoma cells expressing the transporter. Wild-type or G130T mutant DAT were overexpressed in HEK-293 and SK-N-SH cells. Ethanol potentiated DAT mediated [(3)H]DA uptake in a dose (25, 50, 100 mM), but not time dependent manner in cells expressing wild-type DAT. Ethanol-induced potentiation of uptake was significantly reduced in cells expressing the G130T mutant. Analysis of DA uptake kinetic parameters indicates 100-mM ethanol exposure increased [(3)H]DA uptake velocity (V(max)), while affinity for DA (K(m)) remained unchanged. The effect of ethanol on wild-type DAT surface expression was measured by biotinylation cell surface labeling. DAT surface expression increased 40%-50% after 1-h, 100-mM ethanol exposure. These studies show ethanol potentiates DAT functional regulation in both neuronal and non-neuronal cells, suggesting a direct mechanistic action of ethanol on transporter trafficking in mammalian systems. Our findings demonstrate ethanol's action on DAT function and regulation is consistent across multiple model systems.
Collapse
Affiliation(s)
- D Nicole Riherd
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
33
|
Protein kinase C modulates synaptic vesicle acidification in a ribbon type nerve terminal in the retina. Neurochem Int 2008; 53:155-64. [PMID: 18691623 DOI: 10.1016/j.neuint.2008.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 06/27/2008] [Accepted: 07/14/2008] [Indexed: 11/23/2022]
Abstract
The driving force for neurotransmitter accumulation into synaptic vesicles is provided by the generation of a transmembrane electrochemical gradient (DeltamicroH+) that has two components: a chemical gradient (DeltapH, inside acidic) and an electrical potential across the vesicular membrane (DeltaPsi, inside positive). This gradient is generated in situ by the electrogenic vacuolar H(+)-ATPase, which is responsible for the acidification and positive membrane potential of the vesicle lumen. Here, we investigate the modulation of vesicle acidification by using the acidic-organelle probe LysoTracker and the pH-sensitive probe LysoSensor at goldfish Mb-type bipolar cell terminals. Since phosphorylation can modulate secretory granule acidification in neuroendocrine cells, we investigated if drugs that affect protein kinases modulate LysoTracker staining of bipolar cell terminals. We find that protein kinase C (PKC) activation induces an increase in LysoTracker-fluorescence. By contrast, protein kinase A (PKA) or calcium/calmodulin kinase II (CaMKII) activation or inhibition did not change LysoTracker-fluorescence. Using a pH-dependent fluorescent dye (LysoSensor) we show that the PKC activation with PMA induces an increase in LysoSensor-fluorescence, whereas the inactive analog 4alpha-PMA was unable to cause the same effect. This increase induced by PMA was blocked by PKC inhibitors, calphostin C and staurosporine. These results suggest that phosphorylation by PKC may increase synaptic vesicle acidification in retinal bipolar cells and therefore has the potential to modulate glutamate concentrations inside synaptic vesicles.
Collapse
|
34
|
Parnas ML, Gaffaney JD, Zou MF, Lever JR, Newman AH, Vaughan RA. Labeling of dopamine transporter transmembrane domain 1 with the tropane ligand N-[4-(4-azido-3-[125I]iodophenyl)butyl]-2beta-carbomethoxy-3beta-(4-chlorophenyl)tropane implicates proximity of cocaine and substrate active sites. Mol Pharmacol 2008; 73:1141-50. [PMID: 18216182 DOI: 10.1124/mol.107.043679] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The novel photoaffinity ligand N-[4-(4-azido-3-(125)I-iodophenyl)-butyl]-2-beta-carbomethoxy-3beta-(4-chlorophenyl) tropane ([(125)I]MFZ 2-24) was used to investigate the site for cocaine binding on the dopamine transporter (DAT). [(125)I]MFZ 2-24 irreversibly labeled both rat striatal and expressed human DAT with high affinity and appropriate pharmacological specificity. Tryptic proteolysis of [(125)I]MFZ 2-24 labeled DAT followed by epitope-specific immunoprecipitation demonstrated that the ligand becomes adducted almost exclusively to transmembrane domains (TMs) 1-2. Further localization of [(125)I]MFZ 2-24 incorporation achieved by proteolyzing labeled wild-type and methionine mutant DATs with cyanogen bromide identified the sequence between residues 68 and 80 in TM1 as the ligand adduction site. This is in marked contrast to the previously identified attachment of the photoaffinity label [(125)I]RTI 82 in TM6. Because [(125)I]MFZ 2-24 and [(125)I]RTI 82 possess identical tropane pharmacophores and differ only in the placement of the reactive azido moieties, their distinct incorporation profiles identify the regions of the protein adjacent to different aspects of the cocaine molecule. These findings thus strongly support the direct interaction of cocaine on DAT with TM1 and TM6, both of which have been implicated by mutagenesis and homology to a bacterial leucine transporter as active sites for substrates. These results directly establish the proximity of TMs 1 and 6 in DAT and suggest that the mechanism of transport inhibition by cocaine involves close interactions with multiple regions of the substrate permeation pathway.
Collapse
Affiliation(s)
- M Laura Parnas
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | | | | | | | | | | |
Collapse
|
35
|
Gopalakrishnan A, Sievert M, Ruoho AE. Identification of the substrate binding region of vesicular monoamine transporter-2 (VMAT-2) using iodoaminoflisopolol as a novel photoprobe. Mol Pharmacol 2007; 72:1567-75. [PMID: 17766642 DOI: 10.1124/mol.107.034439] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Monoamines, such as serotonin, dopamine, and norepinephrine, are sequestered into synaptic vesicles by specific transporters (vesicular monoamine transporter-2; VMAT2) using energy from an electrochemical proton gradient across the vesicle membranes. Based on our previous studies using photoaffinity-labeling techniques in characterizing the VMAT2-specific ligands ketanserin and tetrabenazine, this study describes the synthesis and characterization of a fluorenone-based compound, iodoaminoflisopolol (IAmF), as a photoprobe to identify the substrate binding site(s) of VMAT2. Using vesicles prepared from rat VMAT2 containing recombinant baculovirus-infected Sf9 cells, we show the inhibition of [3H]5-hydroxytryptamine (5-HT) uptake and [3H]dihydrotetrabenazine (TBZOH) binding by aminoflisopolol and iodoaminoflisopolol. The interaction of [125I]IAmF with VMAT2 is highly dependent on the presence of ATP and an intact proton gradient. We report a simple and novel method to distinguish between a ligand and substrate using classic compounds such as [3H]5-HT and [3H]TBZOH by incubating the compound with the vesicles followed by washes with isotonic and hypotonic solutions. Using this method, we confirm the characterization of IAmF as a novel VMAT2 substrate. Sf9 vesicles expressing VMAT2 show reserpine- and tetrabenazine-protectable photolabeling by [125I]IAmF. [125I]IAmF photolabeling of recombinant VMAT2, expressed in SH-SY5Y cells with an engineered thrombin site between transmembranes 6 and 7, followed by thrombin digestion, retained photolabel in a 22-kDa fragment, indicating that iodoaminoflisopolol binds to the C-terminal half of the VMAT2 molecule. Thus, IAmF possesses a unique combination of VMAT2 substrate properties and a photoprobe and is, therefore, useful to identify the substrate binding site of the vesicular transporter.
Collapse
|
36
|
Livesay DR, Kidd PD, Eskandari S, Roshan U. Assessing the ability of sequence-based methods to provide functional insight within membrane integral proteins: a case study analyzing the neurotransmitter/Na+ symporter family. BMC Bioinformatics 2007; 8:397. [PMID: 17941992 PMCID: PMC2194793 DOI: 10.1186/1471-2105-8-397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 10/17/2007] [Indexed: 01/09/2023] Open
Abstract
Background Efforts to predict functional sites from globular proteins is increasingly common; however, the most successful of these methods generally require structural insight. Unfortunately, despite several recent technological advances, structural coverage of membrane integral proteins continues to be sparse. ConSequently, sequence-based methods represent an important alternative to illuminate functional roles. In this report, we critically examine the ability of several computational methods to provide functional insight within two specific areas. First, can phylogenomic methods accurately describe the functional diversity across a membrane integral protein family? And second, can sequence-based strategies accurately predict key functional sites? Due to the presence of a recently solved structure and a vast amount of experimental mutagenesis data, the neurotransmitter/Na+ symporter (NSS) family is an ideal model system to assess the quality of our predictions. Results The raw NSS sequence dataset contains 181 sequences, which have been aligned by various methods. The resultant phylogenetic trees always contain six major subfamilies are consistent with the functional diversity across the family. Moreover, in well-represented subfamilies, phylogenetic clustering recapitulates several nuanced functional distinctions. Functional sites are predicted using six different methods (phylogenetic motifs, two methods that identify subfamily-specific positions, and three different conservation scores). A canonical set of 34 functional sites identified by Yamashita et al. within the recently solved LeuTAa structure is used to assess the quality of the predictions, most of which are predicted by the bioinformatic methods. Remarkably, the importance of these sites is largely confirmed by experimental mutagenesis. Furthermore, the collective set of functional site predictions qualitatively clusters along the proposed transport pathway, further demonstrating their utility. Interestingly, the various prediction schemes provide results that are predominantly orthogonal to each other. However, when the methods do provide overlapping results, specificity is shown to increase dramatically (e.g., sites predicted by any three methods have both accuracy and coverage greater than 50%). Conclusion The results presented herein clearly establish the viability of sequence-based bioinformatic strategies to provide functional insight within the NSS family. As such, we expect similar bioinformatic investigations will streamline functional investigations within membrane integral families in the absence of structure.
Collapse
Affiliation(s)
- Dennis R Livesay
- Department of Computer Science and Bioinformatics Research Center, University of North Carolina at Charlotte, Charlotte, NC 28262, USA.
| | | | | | | |
Collapse
|
37
|
Abstract
Traditionally, substrate translocation by neurotransmitter transporters has been described by the alternate access model. Recent structural data obtained with three distantly related transporters have also been interpreted as supportive of this model, because conformational correlates were visualized (inward-facing conformation, occluded state). However, the experimental evidence is overwhelmingly in favour of a more complex mode of operation: Transporters also exist in conformations that do not seal the permeation pathway. These conformations support a channel-like activity, including random permeation of substrate and co-substrate ions in a single-file mode. It is likely that the channel-like activity is modified by the interaction of the transporters with accessory proteins and regulatory kinases. Finally, channel-like activity is instrumental to understand the mechanism of action of amphetamines.
Collapse
Affiliation(s)
- K Gerstbrein
- Institute of Pharmacology, Center for Biomolecular Medicine and Pharmacology, Medical University Vienna, Währingerstrasse 13a, 1090 Vienna, Austria
| | | |
Collapse
|
38
|
Affiliation(s)
- Gary Rudnick
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8066, USA.
| |
Collapse
|
39
|
Abstract
Serotonin transporter (SERT) catalyzes reuptake of the neurotransmitter serotonin (5-HT) and is a target for antidepressant drugs and psychostimulants. It is a member of a large family of neurotransmitter and amino acid transporters. A recent study using site-directed cysteine modification identified a helical region of the transporter with high accessibility to the cytoplasm. Subsequently, the high resolution structure of LeuT, a prokaryotic homologue, showed that the residues corresponding to this helical region are part of the fifth transmembrane domain. The accessibility of these positions is now shown to depend on conformational changes corresponding to interconversion of SERT between two forms that face the extracellular medium and the cytoplasm, respectively. Binding of the extracellular inhibitor cocaine decreased accessibility at these positions, whereas 5-HT, the transported substrate, increased it. The effect of 5-HT required the simultaneous presence of Na+ and Cl-, which are transported into the cell together (symported) with 5-HT. In light of the LeuT structure, these results begin to define the pathway through which 5-HT diffuses between its binding site and the cytoplasm. They also confirm a prediction of the alternating access model for transport, namely, that all symported substrates must bind together before translocation.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, USA
| | | |
Collapse
|
40
|
Foster JD, Cervinski MA, Gorentla BK, Vaughan RA. Regulation of the dopamine transporter by phosphorylation. Handb Exp Pharmacol 2006:197-214. [PMID: 16722237 DOI: 10.1007/3-540-29784-7_10] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The dopamine transporter (DAT) is a neuronal phosphoprotein and target for psychoactive drugs that plays a critical role in terminating dopaminergic transmission by reuptake of dopamine from the synaptic space. Control of DAT activity and plasma membrane expression are therefore central to drug actions and the spatial and temporal regulation of synaptic dopamine levels. DATs rapidly traffic between the plasma membrane and endosomal compartments in both constitutive and protein kinase C-dependent manners. Kinase activators, phosphatase inhibitors, and transported substrates modulate DAT phosphorylation and activity, but the underlying mechanisms and role of phosphorylation in these processes are poorly understood. Complex adaptive changes in DAT function potentially related to these processes are also induced by psychostimulant and therapeutic transport blockers such as cocaine and methylphenidate. This chapter provides an overview of the current state of knowledge regarding DAT phosphorylation and its relationship to transporter activity and trafficking. A better understanding of how dopaminergic neurons regulate DAT function and the role of phosphorylation may lead to the identification of novel therapeutic targets for the treatment and prevention of dopaminergic disorders.
Collapse
Affiliation(s)
- J D Foster
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, 501 North Columbia Road, Grand Forks, ND 58203, USA
| | | | | | | |
Collapse
|
41
|
Bröer S. The SLC6 orphans are forming a family of amino acid transporters. Neurochem Int 2006; 48:559-67. [PMID: 16540203 DOI: 10.1016/j.neuint.2005.11.021] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 11/07/2005] [Indexed: 11/21/2022]
Abstract
Transporters in the human genome are grouped in solute carrier families (SLC). The SLC6 family is one of the biggest transporter families in the human genome comprising 20 members. It is usually referred to as the neurotransmitter transporter family because its founding members encode transporters for the neurotransmitters GABA, noradrenaline, serotonin and dopamine. The family also includes a number of 'orphan' transporters, the function of which has remained elusive until recently. Identification of the broadly specific neutral amino acid transporter SLC6A19 (also called B(0)AT1) suggested that all orphan transporters may in fact be amino acid transporters. This was subsequently confirmed by the identification of SLC6A20 as the long-sought IMINO system, a proline transporter found in kidney, intestine and brain. Very recently, SLC6A15 was identified as the neutral amino acid transporter B(0)AT2. All amino acid transporters appear to cotransport only 1Na(+) together with the amino acid substrate. Both, B(0)AT1 and B(0)AT2 are chloride independent, whereas IMINO is chloride dependent. The amino acid transporters of the SLC6 family are functionally and sequence related to the recently crystallized leucine transporter from Aquifex aeolicus. The structure elegantly explains many of the mechanistic features of the SLC6 amino acid transporters.
Collapse
Affiliation(s)
- Stefan Bröer
- School of Biochemistry & Molecular Biology, Building 41, Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
42
|
Quick MW. The role of SNARE proteins in trafficking and function of neurotransmitter transporters. Handb Exp Pharmacol 2006:181-96. [PMID: 16722236 DOI: 10.1007/3-540-29784-7_9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The SNARE hypothesis of vesicle fusion proposes that a series of protein-protein interactions governs the delivery of vesicles to various membrane targets such as the Golgi network and the plasma membrane. Key players in this process include members of the syntaxin family of membrane proteins. The first member identified in this family, syntaxin 1A, plays an essential role in the docking and fusion of neurotransmitter-containing vesicles to the presynaptic membrane of neurons. Syntaxin 1A and other syntaxin family members have also been shown to interact with, and directly regulate, a variety of ion channels. More recently, the family of plasma membrane neurotransmitter transporters, proteins that function in part to control transmitter levels in brain, have been shown to be direct targets of syntaxin 1A regulation. This regulation involves both the trafficking of transporters as well as the control of ion and transmitter flux through transporters. In this chapter, the functional effects of syntaxin-transporter interactions are reviewed, and how such interactions may regulate neuronal signaling are considered.
Collapse
Affiliation(s)
- M W Quick
- Department of Biological Sciences, University of Southern California, HNB 228, 3641 Watt Way, Los Angeles, CA 90089-2520, USA.
| |
Collapse
|
43
|
Abstract
Glycine has multiple neurotransmitter functions in the central nervous system (CNS). In the spinal cord and brainstem of vertebrates, it serves as a major inhibitory neurotransmitter. In addition, it participates in excitatory neurotransmission by modulating the activity of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors. The extracellular concentrations of glycine are regulated by Na+/Cl(-)-dependent glycine transporters (GlyTs), which are expressed in neurons and adjacent glial cells. Considerable progress has been made recently towards elucidating the in vivo roles of GlyTs in the CNS. The generation and analysis of animals carrying targeted disruptions of GlyT genes (GlyT knockout mice) have allowed investigators to examine the different contributions of individual GlyT subtypes to synaptic transmission. In addition, they have provided animal models for two hereditary human diseases, glycine encephalopathy and hyperekplexia. Selective GlyT inhibitors have been shown to modulate neurotransmission and might constitute promising therapeutic tools for the treatment of psychiatric and neurological disorders such as schizophrenia and pain. Therefore, pharmacological and genetic studies indicate that GlyTs are key regulators of both glycinergic inhibitory and glutamatergic excitatory neurotransmission. This chapter describes our present understanding of the functions of GlyTs and their involvement in the fine-tuning of neuronal communication.
Collapse
Affiliation(s)
- J Gomeza
- Department of Pharmacology, The Panum Institute, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
44
|
Rudnick G. Structure/function relationships in serotonin transporter: new insights from the structure of a bacterial transporter. Handb Exp Pharmacol 2006:59-73. [PMID: 16722230 DOI: 10.1007/3-540-29784-7_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Serotonin transporter (SERT) serves the important function of taking up serotonin (5-HT) released during serotonergic neurotransmission. It is the target for important therapeutic drugs and psychostimulants. SERT catalyzes the influx of 5-HT together with Na+ and Cl- in a 1:1:1 stoichiometry. In the same catalytic cycle, there is coupled efflux of one K+ ion. SERT is one member of a large family of amino acid and amine transporters that is believed to utilize similar mechanisms of transport. A bacterial member of this family was recently crystallized, revealing the structural basis of these transporters. In light of the new structure, previous results with SERT have been re-interpreted, providing new insight into the substrate binding site, the permeation pathway, and the conformational changes that occur during the transport cycle.
Collapse
Affiliation(s)
- G Rudnick
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA.
| |
Collapse
|
45
|
Seidel S, Singer EA, Just H, Farhan H, Scholze P, Kudlacek O, Holy M, Koppatz K, Krivanek P, Freissmuth M, Sitte HH. Amphetamines Take Two to Tango: an Oligomer-Based Counter-Transport Model of Neurotransmitter Transport Explores the Amphetamine Action. Mol Pharmacol 2004. [DOI: 10.1124/mol.67.1.140] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
46
|
Wimalasena DS, Wimalasena K. Kinetic evidence for channeling of dopamine between monoamine transporter and membranous dopamine-beta-monooxygenase in chromaffin granule ghosts. J Biol Chem 2004; 279:15298-304. [PMID: 14732710 DOI: 10.1074/jbc.m313325200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nature of coupling between the uptake and dopamine-beta-monooxygenase (DbetaM) catalyzed hydroxylation of dopamine (DA) was studied in bovine chromaffin granule ghosts. Initial rate and transient kinetics of DA uptake and conversion were determined under a variety of conditions. The uptake kinetics of DA, norepinephrine (NE), and epinephrine demonstrate that DA is a better substrate than NE and epinephrine under optimal uptake conditions. The transient kinetics of DA accumulation and NE production under both optimal uptake and uptake and conversion conditions were zero-order with no detectable lag or burst periods. The mathematical analyses of the data show that a normal sequential uptake followed by the conversion process could not explain the observed kinetics, under any condition. On the other hand, all experimental data are in agreement with a mechanism in which DA is efficiently channeled from the vesicular monoamine transporter to membranous DbetaM for hydroxylation, prior to the release into the bulk medium of the ghost interior. The slow accumulation of DA under optimal conversion conditions appears to be caused by the slow leakage of DA from the channeling pathway to the ghost interior. Because DbetaM activity in intact granules is equally distributed between soluble and membranous forms of DbetaM, if an efficient channeling mechanism is operative in vivo, soluble DbetaM may not have access to the substrate, making the catalytic activity of soluble DbetaM physiologically insignificant, which is consistent with the increasing experimental evidence that membranous DbetaM may be the physiologically functional form.
Collapse
|
47
|
Abstract
Glycine exerts multiple functions in the central nervous system, as an inhibitory neurotransmitter through activation of specific, Cl--permeable, ligand-gated ionotropic receptors and as an obligatory co-agonist with glutamate on the activation of N-methyl-D-aspartate (NMDA) receptors. In some areas of the central nervous system, glycine seems to be co-released with gamma-aminobutyric acid (GABA), the main inhibitory amino acid neurotransmitter. The synaptic action of glycine ends by active recapture through sodium- and chloride-coupled glycine transporters located in glial and neuronal plasma membranes, whose structure-function relationship is being studied. The trafficking and plasma membrane expressions of these proteins are controlled by regulatory mechanisms. Glycine transporter inhibitors may find application in the treatment of muscle tone defects, epilepsy, schizophrenia, pain and neurodegenerative disorders. This review deals on recent progress on localization, transport mechanisms, structure, regulation and pharmacology of the glycine transporters (GLYTs).
Collapse
Affiliation(s)
- Carmen Aragón
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | | |
Collapse
|
48
|
Sacchi VF, Castagna M, Mari SA, Perego C, Bossi E, Peres A. Glutamate 59 is critical for transport function of the amino acid cotransporter KAAT1. Am J Physiol Cell Physiol 2003; 285:C623-32. [PMID: 12736138 DOI: 10.1152/ajpcell.00349.2002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
KAAT1 is a neutral amino acid transporter activated by K+ or by Na+ (9). The protein shows significant homology with members of the Na+/Cl--dependent neurotransmitter transporter super family. E59G KAAT1, expressed in Xenopus oocytes, exhibited a reduced leucine uptake [20-30% of wild-type (WT)], and kinetic analysis indicated that the loss of activity was due to reduction of Vmax and apparent affinity for substrates. Electrophysiological analysis revealed that E59G KAAT1 has presteady-state and uncoupled currents larger than WT but no leucine-induced currents. Site-directed mutagenesis analysis showed the requirement of a negative charge in position 59 of KAAT1. The analysis of permeant and impermeant methanethiosulfonate reagent effects confirmed the intracellular localization of glutamate 59. Because the 2-aminoethyl methanethiosulfonate hydrobromid inhibition was not prevented by the presence of Na+ or leucine, we concluded that E59 is not directly involved in the binding of substrates. N-ethylmaleimide inhibition was qualitatively and quantitatively different in the two transporters, WT and E59G KAAT1, having the same cysteine residues. This indicates an altered accessibility of native cysteine residues due to a modified spatial organization of E59G KAAT1. The arginine modifier phenylglyoxal effect supports this hypothesis: not only cysteine but also arginine residues become more accessible to the modifying reagents in the mutant E59G. In conclusion, the results presented indicate that glutamate 59 plays a critical role in the three-dimensional organization of KAAT1.
Collapse
Affiliation(s)
- V Franca Sacchi
- Institute of General Physiology and Biological Chemistry, University of Milano, Via Trentacoste 2, 20134 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
49
|
Grossman TR, Nelson N. Effect of sodium lithium and proton concentrations on the electrophysiological properties of the four mouse GABA transporters expressed in Xenopus oocytes. Neurochem Int 2003; 43:431-43. [PMID: 12742089 DOI: 10.1016/s0197-0186(03)00032-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mouse GABA transporters belong to the family of Na(+) and Cl(-) dependent neurotransmitter transporter. GABA transport, by these family members, was shown to be electrogenic and driven by sodium ions. It was demonstrated that, as in several other transporters, sodium binding and release by GAT1, GAT3 and BGT-1, the canine homolog of GAT2, resulted in the appearance of presteady-state currents. In this work we show that each of the four GABA transporters exhibit unique presteady-state currents when expressed in Xenopus oocytes. The properties of the presteady-state currents correspond to the transporters affinities to Na(+). At 100 mM GAT1 exhibited symmetric presteady-state currents at all imposed potentials, whereas GAT2 exhibited asymmetric presteady-state currents exclusively at negative imposed potentials, GAT3 or GAT4 exhibited presteady-state currents predominantly at positive imposed potentials. GABA uptake by GAT2 and GAT4 was much more sensitive to external pH than GAT1 and GAT3. Reducing the external Na(+) concentration rendered the GABA uptake activity by GAT1 and GAT3 to be sensitive to pH. Lowering the external pH reduced the Na(+) affinity of GAT1. Substitution of the external Na(+) to Li(+) resulted in the appearance of leak currents exclusively at negative potentials in Xenopus oocyte expressing GAT1 and GAT3. Low Na(+) concentrations inhibited the leak currents of GAT1 but Na(+) had little effect on the leak currents of GAT3. Washing of occluded Na(+) in GAT1 enhanced the leak currents. Similarly addition of GABA in the presence of 80 mM Li(+), that presumably accelerated the release of the bound Na(+), also induced the leak currents. Conversely, addition of GABA to GAT3 expressing oocytes, in the presence of 80 mM Li(+), inhibited the leak currents.
Collapse
Affiliation(s)
- Tamar R Grossman
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | |
Collapse
|
50
|
Perera RP, Wimalasena DS, Wimalasena K. Characterization of a series of 3-amino-2-phenylpropene derivatives as novel bovine chromaffin vesicular monoamine transporter inhibitors. J Med Chem 2003; 46:2599-605. [PMID: 12801224 DOI: 10.1021/jm030004p] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of 3-amino-2-phenylpropene (APP) derivatives have been synthesized and characterized as novel competitive inhibitors, with K(i) values in the microM range, for the bovine chromaffin granule membrane monoamine transporter(s) (bVMAT). Although, these inhibitors are structurally similar to the bVMAT substrate tyramine, none of them were measurably transported into the granule. Structure-activity studies have revealed that, while the 3'- or 4'-OH groups on the aromatic ring enhance the inhibition potency, Me or OMe groups in these positions reduce the inhibition potency. Halogen substitution on the 4'-position of the aromatic ring causes gradual increase of the inhibition potency parallel to the electron donor ability of the halogen. Substituents on the NH(2) as well as on the 3-position of the alkyl chain reduce the inhibition potency. Comparative structure-activity analyses of APP derivatives with tyramine and the neurotoxin 1-methyl-4-phenylpyridinium suggest that the flexibility of the side chain and the relative orientation of the NH(2) group may be critical for the efficient transport of the substrate through the bVMAT. Comparable bVMAT affinities of these inhibitors to that of DA and other pharmacologically active amines suggest that they are suitable for the structure-activity and mechanistic studies of monoamine transporters and may also be useful in modeling the mechanism of action of amphetamine-related derivatives.
Collapse
Affiliation(s)
- Rohan P Perera
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260-0051, USA
| | | | | |
Collapse
|