1
|
Tomioka Y, Akuta T, Tokunaga M, Arakawa T. Different behavior of Ferguson plot between agarose and polyacrylamide gels. Biophys Chem 2024; 307:107200. [PMID: 38367540 DOI: 10.1016/j.bpc.2024.107200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
In this study, we conducted Ferguson plot analyses using both agarose and polyacrylamide gels in native electrophoresis and SDS-PAGE. The results revealed intriguing differences in the behavior of bovine serum albumin (BSA) and other model proteins. Specifically, BSA exhibited Ferguson plot slopes that were dependent on the oligomer size in agarose native gel electrophoresis, while such size-dependent behavior was not observed in native-PAGE or SDS-PAGE. These findings suggest that Ferguson plot analysis is a suitable approach when using agarose gel under the electrophoretic conditions employed in this study. Furthermore, our investigation extended to model proteins with acidic isoelectric points and larger molecular weights, namely Ferritin and caseinolytic peptidase B (ClpB). Notably, these proteins displayed distinct Ferguson plot slopes when subjected to agarose gel electrophoresis. Intriguingly, when polyacrylamide gel was employed, ClpB exhibited multiple bands, each with its unique Ferguson plot slope, deviating from the expected behavior based on molecular size. This divergence in Ferguson plot characteristics between agarose and polyacrylamide gels points to an interesting and complex interplay between protein properties and gel electrophoresis conditions.
Collapse
Affiliation(s)
- Yui Tomioka
- Product Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki 318-0004, Japan.
| | - Teruo Akuta
- Product Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki 318-0004, Japan.
| | - Masao Tokunaga
- Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima-shi 890-0065, Japan
| | - Tsutomu Arakawa
- Alliance Protein Laboratories, 13380 Pantera Rd, San Diego, CA 92130, USA.
| |
Collapse
|
2
|
Nagaoka S, Sugiyama N, Yatsunami R, Nakamura S. Characterization of 3-isopropylmalate dehydrogenase from extremely halophilic archaeon Haloarcula japonica. Biosci Biotechnol Biochem 2021; 85:1986-1994. [PMID: 34215877 DOI: 10.1093/bbb/zbab122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/21/2021] [Indexed: 11/12/2022]
Abstract
3-Isopropylmalate dehydrogenase (IPMDH) catalyzes oxidative decarboxylation of (2R, 3S)-3-isopropylmalate to 2-oxoisocaproate in leucine biosynthesis. In this study, recombinant IPMDH (HjIPMDH) from an extremely halophilic archaeon, Haloarcula japonica TR-1, was characterized. Activity of HjIPMDH increased as KCl concentration increased, and the maximum activity was observed at 3.0 m KCl. Analytical ultracentrifugation revealed that HjIPMDH formed a homotetramer at high KCl concentrations, and it dissociated to a monomer at low KCl concentrations. Additionally, HjIPMDH was thermally stabilized by higher KCl concentrations. This is the first report on haloarchaeal IPMDH.
Collapse
Affiliation(s)
- Shintaro Nagaoka
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Noriko Sugiyama
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Rie Yatsunami
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Satoshi Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan.,National Institute of Technology (KOSEN), Numazu College, Numazu, Shizuoka, Japan
| |
Collapse
|
3
|
Ten-Caten F, Vêncio RZN, Lorenzetti APR, Zaramela LS, Santana AC, Koide T. Internal RNAs overlapping coding sequences can drive the production of alternative proteins in archaea. RNA Biol 2018; 15:1119-1132. [PMID: 30175688 PMCID: PMC6161675 DOI: 10.1080/15476286.2018.1509661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Prokaryotic genomes show a high level of information compaction often with different molecules transcribed from the same locus. Although antisense RNAs have been relatively well studied, RNAs in the same strand, internal RNAs (intraRNAs), are still poorly understood. The question of how common is the translation of overlapping reading frames remains open. We address this question in the model archaeon Halobacterium salinarum. In the present work we used differential RNA-seq (dRNA-seq) in H. salinarum NRC-1 to locate intraRNA signals in subsets of internal transcription start sites (iTSS) and establish the open reading frames associated to them (intraORFs). Using C-terminally flagged proteins, we experimentally observed isoforms accurately predicted by intraRNA translation for kef1, acs3 and orc4 genes. We also recovered from the literature and mass spectrometry databases several instances of protein isoforms consistent with intraRNA translation such as the gas vesicle protein gene gvpC1. We found evidence for intraRNAs in horizontally transferred genes such as the chaperone dnaK and the aerobic respiration related cydA in both H. salinarum and Escherichia coli. Also, intraRNA translation evidence in H. salinarum, E. coli and yeast of a universal elongation factor (aEF-2, fusA and eEF-2) suggests that this is an ancient phenomenon present in all domains of life.
Collapse
Affiliation(s)
- Felipe Ten-Caten
- a Department of Biochemistry and Immunology , Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto , Brazil
| | - Ricardo Z N Vêncio
- b Department of Computation and Mathematics, Faculdade de Filosofia , Ciências e Letras de Ribeirão Preto, University of São Paulo , Ribeirão Preto , Brazil
| | - Alan Péricles R Lorenzetti
- a Department of Biochemistry and Immunology , Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto , Brazil
| | - Livia Soares Zaramela
- a Department of Biochemistry and Immunology , Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto , Brazil
| | - Ana Carolina Santana
- c Department of Cell and Molecular Biology and Pathogenic Bioagents , Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto , Brazil
| | - Tie Koide
- a Department of Biochemistry and Immunology , Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto , Brazil
| |
Collapse
|
4
|
Deciphering the Translation Initiation Factor 5A Modification Pathway in Halophilic Archaea. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2016; 2016:7316725. [PMID: 28053595 PMCID: PMC5178350 DOI: 10.1155/2016/7316725] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/27/2016] [Accepted: 11/06/2016] [Indexed: 11/17/2022]
Abstract
Translation initiation factor 5A (IF5A) is essential and highly conserved in Eukarya (eIF5A) and Archaea (aIF5A). The activity of IF5A requires hypusine, a posttranslational modification synthesized in Eukarya from the polyamine precursor spermidine. Intracellular polyamine analyses revealed that agmatine and cadaverine were the main polyamines produced in Haloferax volcanii in minimal medium, raising the question of how hypusine is synthesized in this halophilic Archaea. Metabolic reconstruction led to a tentative picture of polyamine metabolism and aIF5A modification in Hfx. volcanii that was experimentally tested. Analysis of aIF5A from Hfx. volcanii by LC-MS/MS revealed it was exclusively deoxyhypusinylated. Genetic studies confirmed the role of the predicted arginine decarboxylase gene (HVO_1958) in agmatine synthesis. The agmatinase-like gene (HVO_2299) was found to be essential, consistent with a role in aIF5A modification predicted by physical clustering evidence. Recombinant deoxyhypusine synthase (DHS) from S. cerevisiae was shown to transfer 4-aminobutyl moiety from spermidine to aIF5A from Hfx. volcanii in vitro. However, at least under conditions tested, this transfer was not observed with the Hfx. volcanii DHS. Furthermore, the growth of Hfx. volcanii was not inhibited by the classical DHS inhibitor GC7. We propose a model of deoxyhypusine synthesis in Hfx. volcanii that differs from the canonical eukaryotic pathway, paving the way for further studies.
Collapse
|
5
|
Halophilic beta-lactamase as a new solubility- and folding-enhancing tag protein: production of native human interleukin 1alpha and human neutrophil alpha-defensin. Appl Microbiol Biotechnol 2009; 86:649-58. [PMID: 19902204 DOI: 10.1007/s00253-009-2325-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 10/09/2009] [Accepted: 10/20/2009] [Indexed: 10/20/2022]
Abstract
The amino acid composition of halophilic enzymes is characterized by an abundant content of acidic amino acid, which confers to the halophilic enzymes extensive negative charges at neutral pH and high aqueous solubility. This negative charge prevents protein aggregation when denatured and thereby leads to highly efficient protein refolding. Beta-lactamase from periplasmic space of moderate halophile (BLA), a typical halophilic enzyme, can be readily expressed as a native, active form in Escherichia coli cytoplasm. Similar to other halophilic enzymes, BLA is soluble upon denaturation by heat or urea treatments and, hence, can be efficiently refolded. Such high solubility and refolding efficiency make BLA a potential fusion partner for expression of aggregation-prone heterologous proteins to be expressed in E. coli. Here, we succeeded in the soluble expression of several "difficult-to-express" proteins as a BLA fusion protein and verified biological activities of human interleukin 1alpha and human neutrophil alpha-defensin, HNP-1.
Collapse
|
6
|
Tokunaga H, Arakawa T, Tokunaga M. Engineering of halophilic enzymes: two acidic amino acid residues at the carboxy-terminal region confer halophilic characteristics to Halomonas and Pseudomonas nucleoside diphosphate kinases. Protein Sci 2008; 17:1603-10. [PMID: 18573868 DOI: 10.1110/ps.035725.108] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Nucleoside diphosphate kinase from Halomonas sp. 593 (HaNDK) exhibits halophilic characteristics. Residues 134 and 135 in the carboxy-terminal region of HaNDK are Glu-Glu, while those of its homologous counterpart of non-halophilic Pseudomonas NDK (PaNDK) are Ala-Ala. The double mutation, E134A-E135A, in HaNDK results in the loss of the halophilic characteristics, and, conversely, the double mutation of A134E-A135E in PaNDK confers halophilic characters to this enzyme, indicating that the charged state of these two residues that are located in the C-terminal region plays a critical role in determining halophilic characteristics. The importance of these two residues versus the net negative charges will be discussed in relation to the halophilicity of NDK.
Collapse
Affiliation(s)
- Hiroko Tokunaga
- Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | | | | |
Collapse
|
7
|
Yonezawa Y, Tokunaga H, Ishibashi M, Taura S, Tokunaga M. Cloning, expression, and efficient purification in Escherichia coli of a halophilic nucleoside diphosphate kinase from the moderate halophile Halomonas sp. #593. Protein Expr Purif 2003; 27:128-33. [PMID: 12509994 DOI: 10.1016/s1046-5928(02)00594-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Most typical halophilic enzymes from extremely halophilic archaea require high concentrations of salt for their activity and stability. These enzymes are inactive in Escherichia coli unless refolded in the presence of salts in vitro. In this report, we describe cloning of the ndk gene of nucleoside diphosphate kinase from a moderately halophilic eubacterium and overexpression of the protein in E. coli as an N-terminal hexa-His fusion to facilitate its purification on Ni-NTA affinity resin. We demonstrate evidence that the protein is properly folded and exhibits the same specific activity and stability as the native protein from Halomonas cells.
Collapse
Affiliation(s)
- Yasushi Yonezawa
- Laboratory of Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | | | | | | | | |
Collapse
|
8
|
Ishibashi M, Tokunaga H, Hiratsuka K, Yonezawa Y, Tsurumaru H, Arakawa T, Tokunaga M. NaCl-activated nucleoside diphosphate kinase from extremely halophilic archaeon, Halobacterium salinarum, maintains native conformation without salt. FEBS Lett 2001; 493:134-8. [PMID: 11287010 DOI: 10.1016/s0014-5793(01)02292-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Enzymes from extremely halophilic archaea are readily denatured in the absence of a high salt concentration. However, we have observed here that a nucleoside diphosphate kinase prepared from Halobacterium salinarum was active and stable in the absence of salt, though it has the amino acid composition characteristic of halophilic enzymes. Recombinant nucleoside diphosphate kinase expressed in Escherichia coli requires salt for activation in vitro, but once it acquires the proper folding, it no longer requires the presence of salts for its activity and stability.
Collapse
Affiliation(s)
- M Ishibashi
- Laboratory of Applied Microbiology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | | | | | | | | | | | | |
Collapse
|