1
|
Agostini A, Calcinoni A, Petrova AA, Bortolus M, Casazza AP, Carbonera D, Santabarbara S. An unusual triplet population pathway in the Reaction Centre of the Chlorophyll-d binding Photosystem I of A. marina, as revealed by a combination of TR-EPR and ODMR spectroscopies. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149515. [PMID: 39349288 DOI: 10.1016/j.bbabio.2024.149515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/03/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
Photo-induced Chlorophyll (Chl) triplet states in the isolated Photosystem I (PSI) of Acaryochloris marina, that harbours Chl d as its main pigment, were investigated by Optically Detected Magnetic Resonance (ODMR) and Time-Resolved Electron Paramagnetic Resonance (TR-EPR), and as a function of pre-illumination of the sample under reducing redox poising. Fluorescence Detected Magnetic Resonance (FDMR) allowed resolving four Chl d triplet (3Chl d) populations (T1-T4) both in untreated and illuminated samples in the presence of ascorbate and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). The FDMR signals increased following the pre-illumination treatment, particularly for the T3 and T4 populations, which are therefore sensitive to the redox state of PSI cofactors. Microwave-induced Triplet minus Singlet (TmS) spectra were detected in the |D|-|E| resonance window of the T3 and T4 triplets. These showed a broad singlet bleaching centred at 740 nm and also displayed complex spectral structure with several derivative-like features, indicating that both the T3 and T43Chl d populations are associated with the PSI reaction centre (RC) triplet, P3740. Parallel measurements by TR-EPR demonstrated that triplet signals observed under all conditions investigated are dominated by an electron spin polarisation (esp), which is typical of intersystem crossing, differently from what expected for recombination triplet states formed from a radical pair precursor. Moreover, stronger reductant conditions obtained by pre-illumination of the samples in the presence of dithionite and 5-methylphenazinium methyl sulfate (PMS) did not lead to a recombination triplet state esp, but rather to a decrease of the whole signal intensity. The energetics of A. marina PSI and the possible occurrence of distributions of cofactors redox properties are discussed in order to address the unexpected P3740 esp.
Collapse
Affiliation(s)
- Alessandro Agostini
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Andrea Calcinoni
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Anastasia A Petrova
- Photosynthesis Research Unit, Centro Studi sulla Biologia Cellulare e Molecolare delle Piante, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133 Milano, Italy; A. N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119992 Leninskye Gory 1 building, 40 Moscow, Russia
| | - Marco Bortolus
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Anna Paola Casazza
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via A. Corti 12, 20133 Milano, Italy
| | - Donatella Carbonera
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Stefano Santabarbara
- Photosynthesis Research Unit, Centro Studi sulla Biologia Cellulare e Molecolare delle Piante, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133 Milano, Italy; Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via A. Corti 12, 20133 Milano, Italy.
| |
Collapse
|
2
|
Santabarbara S, Agostini A, Petrova AA, Bortolus M, Casazza AP, Carbonera D. Chlorophyll triplet states in thylakoid membranes of Acaryochloris marina. Evidence for a triplet state sitting on the photosystem I primary donor populated by intersystem crossing. PHOTOSYNTHESIS RESEARCH 2024; 159:133-152. [PMID: 37191762 DOI: 10.1007/s11120-023-01023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
Photo-induced triplet states in the thylakoid membranes isolated from the cyanobacterium Acaryocholoris marina, that harbours Chlorophyll (Chl) d as its main chromophore, have been investigated by Optically Detected Magnetic Resonance (ODMR) and time-resolved Electron Paramagnetic Resonance (TR-EPR). Thylakoids were subjected to treatments aimed at poising the redox state of the terminal electron transfer acceptors and donors of Photosystem II (PSII) and Photosystem I (PSI), respectively. Under ambient redox conditions, four Chl d triplet populations were detectable, identifiable by their characteristic zero field splitting parameters, after deconvolution of the Fluorescence Detected Magnetic Resonance (FDMR) spectra. Illumination in the presence of the redox mediator N,N,N',N'-Tetramethyl-p-phenylenediamine (TMPD) and sodium ascorbate at room temperature led to a redistribution of the triplet populations, with T3 (|D|= 0.0245 cm-1, |E|= 0.0042 cm-1) becoming dominant and increasing in intensity with respect to untreated samples. A second triplet population (T4, |D|= 0.0248 cm-1, |E|= 0.0040 cm-1) having an intensity ratio of about 1:4 with respect to T3 was also detectable after illumination in the presence of TMPD and ascorbate. The microwave-induced Triplet-minus-Singlet spectrum acquired at the maximum of the |D|-|E| transition (610 MHz) displays a broad minimum at 740 nm, accompanied by a set of complex spectral features that overall resemble, despite showing further fine spectral structure, the previously reported Triplet-minus-Singlet spectrum attributed to the recombination triplet of PSI reaction centre,3 P 740 [Schenderlein M, Çetin M, Barber J, et al. Spectroscopic studies of the chlorophyll d containing photosystem I from the cyanobacterium Acaryochloris marina. Biochim Biophys Acta 1777:1400-1408]. However, TR-EPR experiments indicate that this triplet displays an eaeaea electron spin polarisation pattern which is characteristic of triplet sublevels populated by intersystem crossing rather than recombination, for which an aeeaae polarisation pattern is expected instead. It is proposed that the observed triplet, which leads to the bleaching of the P740 singlet state, sits on the PSI reaction centre.
Collapse
Affiliation(s)
- Stefano Santabarbara
- Photosynthesis Research Unit, Centro Studi Sulla Biologia Cellulare e Molecolare delle Piante, Consiglio Nazionale Delle Ricerche, Via Celoria 26, 20133, Milan, Italy.
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133, Milan, Italy.
| | - Alessandro Agostini
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131, Padua, Italy
| | - Anastasia A Petrova
- Photosynthesis Research Unit, Centro Studi Sulla Biologia Cellulare e Molecolare delle Piante, Consiglio Nazionale Delle Ricerche, Via Celoria 26, 20133, Milan, Italy
- A. N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1 Building 40, Moscow, Russia, 119992
| | - Marco Bortolus
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131, Padua, Italy
| | - Anna Paola Casazza
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133, Milan, Italy
| | - Donatella Carbonera
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131, Padua, Italy.
| |
Collapse
|
3
|
Pinevich AV, Averina SG. On the Edge of the Rainbow: Red-Shifted Chlorophylls and Far-Red Light Photoadaptation in Cyanobacteria. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722602019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
4
|
Discovery of Chlorophyll d: Isolation and Characterization of a Far-Red Cyanobacterium from the Original Site of Manning and Strain (1943) at Moss Beach, California. Microorganisms 2022; 10:microorganisms10040819. [PMID: 35456869 PMCID: PMC9029297 DOI: 10.3390/microorganisms10040819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
We have isolated a chlorophyll-d-containing cyanobacterium from the intertidal field site at Moss Beach, on the coast of Central California, USA, where Manning and Strain (1943) originally discovered this far-red chlorophyll. Here, we present the cyanobacterium’s environmental description, culturing procedure, pigment composition, ultrastructure, and full genome sequence. Among cultures of far-red cyanobacteria obtained from red algae from the same site, this strain was an epiphyte on a brown macroalgae. Its Qyin vivo absorbance peak is centered at 704–705 nm, the shortest wavelength observed thus far among the various known Acaryochloris strains. Its Chl a/Chl d ratio was 0.01, with Chl d accounting for 99% of the total Chl d and Chl a mass. TEM imagery indicates the absence of phycobilisomes, corroborated by both pigment spectra and genome analysis. The Moss Beach strain codes for only a single set of genes for producing allophycocyanin. Genomic sequencing yielded a 7.25 Mbp circular chromosome and 10 circular plasmids ranging from 16 kbp to 394 kbp. We have determined that this strain shares high similarity with strain S15, an epiphyte of red algae, while its distinct gene complement and ecological niche suggest that this strain could be the closest known relative to the original Chl d source of Manning and Strain (1943). The Moss Beach strain is designated Acaryochloris sp. (marina) strain Moss Beach.
Collapse
|
5
|
Tanaka M, Tanaka A, Saga Y. Effects of peripheral substituents on epimerization kinetics of formylated chlorophylls. J PORPHYR PHTHALOCYA 2022. [DOI: 10.1142/s1088424622500109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
C132-[Formula: see text]-epimers of chlorophyll (Chl) molecules are important cofactors in the photosystem I reaction centers in oxygenic photosynthetic organisms; however, their production mechanism is still unclear. The reaction properties of Chl epimerization are helpful for a better understanding of the molecular mechanism of the in vivo formation of Chl C132-[Formula: see text]-epimers. We report herein the kinetic properties of the epimerization of formylated Chl molecules, Chl [Formula: see text] and Chl [Formula: see text], by use of triethylamine. Both Chl [Formula: see text] and Chl [Formula: see text] performed faster epimerization kinetics than Chl [Formula: see text], indicating that the electron-withdrawing ability of the formyl groups directly linked to the chlorin macrocycle is responsible for acceleration of the epimerization. Comparing the rate constants of the two mono-formylated Chl molecules indicated that the epimerization of Chl [Formula: see text] was faster than that of Chl [Formula: see text]. This difference is rationalized by invoking a combination of the inductive effects of the C3- and C7-substituents in Chls; the sums of Hammett [Formula: see text] parameters of the C3- and C7-substituents exhibited high correlations with the epimerization rate constants of Chls [Formula: see text], [Formula: see text], and [Formula: see text].
Collapse
Affiliation(s)
- Masayuki Tanaka
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Aiko Tanaka
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Yoshitaka Saga
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
6
|
Xu C, Zhu Q, Chen JH, Shen L, Yi X, Huang Z, Wang W, Chen M, Kuang T, Shen JR, Zhang X, Han G. A unique photosystem I reaction center from a chlorophyll d-containing cyanobacterium Acaryochloris marina. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1740-1752. [PMID: 34002536 DOI: 10.1111/jipb.13113] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/12/2021] [Indexed: 05/10/2023]
Abstract
Photosystem I (PSI) is a large protein supercomplex that catalyzes the light-dependent oxidation of plastocyanin (or cytochrome c6 ) and the reduction of ferredoxin. This catalytic reaction is realized by a transmembrane electron transfer chain consisting of primary electron donor (a special chlorophyll (Chl) pair) and electron acceptors A0 , A1 , and three Fe4 S4 clusters, FX , FA , and FB . Here we report the PSI structure from a Chl d-dominated cyanobacterium Acaryochloris marina at 3.3 Å resolution obtained by single-particle cryo-electron microscopy. The A. marina PSI exists as a trimer with three identical monomers. Surprisingly, the structure reveals a unique composition of electron transfer chain in which the primary electron acceptor A0 is composed of two pheophytin a rather than Chl a found in any other well-known PSI structures. A novel subunit Psa27 is observed in the A. marina PSI structure. In addition, 77 Chls, 13 α-carotenes, two phylloquinones, three Fe-S clusters, two phosphatidyl glycerols, and one monogalactosyl-diglyceride were identified in each PSI monomer. Our results provide a structural basis for deciphering the mechanism of photosynthesis in a PSI complex with Chl d as the dominating pigments and absorbing far-red light.
Collapse
Affiliation(s)
- Caihuang Xu
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Qingjun Zhu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Science, Beijing, 100049, China
| | - Jing-Hua Chen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Liangliang Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Science, Beijing, 100049, China
| | - Xiaohan Yi
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zihui Huang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Min Chen
- School of Life and Environmental Science, Faculty of Science, University of Sydney, Sydney, NSW2006, Australia
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- Division of Photosynthesis and Structural Biology, Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Xing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
7
|
Hamaguchi T, Kawakami K, Shinzawa-Itoh K, Inoue-Kashino N, Itoh S, Ifuku K, Yamashita E, Maeda K, Yonekura K, Kashino Y. Structure of the far-red light utilizing photosystem I of Acaryochloris marina. Nat Commun 2021; 12:2333. [PMID: 33879791 PMCID: PMC8058080 DOI: 10.1038/s41467-021-22502-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/18/2021] [Indexed: 01/09/2023] Open
Abstract
Acaryochloris marina is one of the cyanobacterial species that can use far-red light to drive photochemical reactions for oxygenic photosynthesis. Here, we report the structure of A. marina photosystem I (PSI) reaction center, determined by cryo-electron microscopy at 2.58 Å resolution. The structure reveals an arrangement of electron carriers and light-harvesting pigments distinct from other type I reaction centers. The paired chlorophyll, or special pair (also referred to as P740 in this case), is a dimer of chlorophyll d and its epimer chlorophyll d'. The primary electron acceptor is pheophytin a, a metal-less chlorin. We show the architecture of this PSI reaction center is composed of 11 subunits and we identify key components that help explain how the low energy yield from far-red light is efficiently utilized for driving oxygenic photosynthesis.
Collapse
Affiliation(s)
- Tasuku Hamaguchi
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Hyogo, Japan
| | - Keisuke Kawakami
- Research Center for Artificial Photosynthesis (ReCAP), Osaka City University, Sumiyoshi-ku, Osaka, Japan.
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Hyogo, Japan.
| | | | | | - Shigeru Itoh
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Kentaro Ifuku
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Eiki Yamashita
- Laboratory of Supramolecular Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Kou Maeda
- Graduate School of Life Science, University of Hyogo, Ako-gun, Hyogo, Japan
| | - Koji Yonekura
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Hyogo, Japan.
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, Japan.
| | - Yasuhiro Kashino
- Graduate School of Life Science, University of Hyogo, Ako-gun, Hyogo, Japan.
| |
Collapse
|
8
|
Orf GS, Gisriel C, Redding KE. Evolution of photosynthetic reaction centers: insights from the structure of the heliobacterial reaction center. PHOTOSYNTHESIS RESEARCH 2018; 138:11-37. [PMID: 29603081 DOI: 10.1007/s11120-018-0503-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/22/2018] [Indexed: 05/24/2023]
Abstract
The proliferation of phototrophy within early-branching prokaryotes represented a significant step forward in metabolic evolution. All available evidence supports the hypothesis that the photosynthetic reaction center (RC)-the pigment-protein complex in which electromagnetic energy (i.e., photons of visible or near-infrared light) is converted to chemical energy usable by an organism-arose once in Earth's history. This event took place over 3 billion years ago and the basic architecture of the RC has diversified into the distinct versions that now exist. Using our recent 2.2-Å X-ray crystal structure of the homodimeric photosynthetic RC from heliobacteria, we have performed a robust comparison of all known RC types with available structural data. These comparisons have allowed us to generate hypotheses about structural and functional aspects of the common ancestors of extant RCs and to expand upon existing evolutionary schemes. Since the heliobacterial RC is homodimeric and loosely binds (and reduces) quinones, we support the view that it retains more ancestral features than its homologs from other groups. In the evolutionary scenario we propose, the ancestral RC predating the division between Type I and Type II RCs was homodimeric, loosely bound two mobile quinones, and performed an inefficient disproportionation reaction to reduce quinone to quinol. The changes leading to the diversification into Type I and Type II RCs were separate responses to the need to optimize this reaction: the Type I lineage added a [4Fe-4S] cluster to facilitate double reduction of a quinone, while the Type II lineage heterodimerized and specialized the two cofactor branches, fixing the quinone in the QA site. After the Type I/II split, an ancestor to photosystem I fixed its quinone sites and then heterodimerized to bind PsaC as a new subunit, as responses to rising O2 after the appearance of the oxygen-evolving complex in an ancestor of photosystem II. These pivotal events thus gave rise to the diversity that we observe today.
Collapse
Affiliation(s)
- Gregory S Orf
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, AZ, 85287, USA
| | - Christopher Gisriel
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, AZ, 85287, USA
- The Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287, USA
| | - Kevin E Redding
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
- Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
9
|
Tian L, Liu Z, Wang F, Shen L, Chen J, Chang L, Zhao S, Han G, Wang W, Kuang T, Qin X, Shen JR. Isolation and characterization of PSI-LHCI super-complex and their sub-complexes from a red alga Cyanidioschyzon merolae. PHOTOSYNTHESIS RESEARCH 2017; 133:201-214. [PMID: 28405862 DOI: 10.1007/s11120-017-0384-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/05/2017] [Indexed: 06/07/2023]
Abstract
Photosystem I (PSI)-light-harvesting complex I (LHCI) super-complex and its sub-complexes PSI core and LHCI, were purified from a unicellular red alga Cyanidioschyzon merolae and characterized. PSI-LHCI of C. merolae existed as a monomer with a molecular mass of 580 kDa. Mass spectrometry analysis identified 11 subunits (PsaA, B, C, D, E, F, I, J, K, L, O) in the core complex and three LHCI subunits, CMQ142C, CMN234C, and CMN235C in LHCI, indicating that at least three Lhcr subunits associate with the red algal PSI core. PsaG was not found in the red algae PSI-LHCI, and we suggest that the position corresponding to Lhca1 in higher plant PSI-LHCI is empty in the red algal PSI-LHCI. The PSI-LHCI complex was separated into two bands on native PAGE, suggesting that two different complexes may be present with slightly different protein compositions probably with respective to the numbers of Lhcr subunits. Based on the results obtained, a structural model was proposed for the red algal PSI-LHCI. Furthermore, pigment analysis revealed that the C. merolae PSI-LHCI contained a large amount of zeaxanthin, which is mainly associated with the LHCI complex whereas little zeaxanthin was found in the PSI core. This indicates a unique feature of the carotenoid composition of the Lhcr proteins and may suggest an important role of Zea in the light-harvesting and photoprotection of the red algal PSI-LHCI complex.
Collapse
Affiliation(s)
- Lirong Tian
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Zheyi Liu
- Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Fangjun Wang
- Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Liangliang Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Jinghua Chen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Lijing Chang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Songhao Zhao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Xiaochun Qin
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China.
- School of Biological Science and Technology, University of Jinan, No.336, Nanxinzhuang West Road, Jinan, 250022, China.
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China.
- Research Institute of Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Tsushima Naka 3-1-1, Okayama, 700-8530, Japan.
| |
Collapse
|
10
|
Sinnecker S, Lubitz W. Probing the Electronic Structure of Bacteriochlorophyll Radical Ions-A Theoretical Study of the Effect of Substituents on Hyperfine Parameters. Photochem Photobiol 2017; 93:755-761. [PMID: 28120345 DOI: 10.1111/php.12724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/01/2016] [Indexed: 11/29/2022]
Abstract
In reaction centers (RCs) of photosynthesis, a light-induced charge separation takes place creating radical cations and anions of the participating cofactors. In photosynthetic bacteria, different bacteriochlorophylls (BChl) are involved in this process. Information about the electronic structure of the BChl radical cations and anions can be obtained by measuring the electron spin density distribution via the electron-nuclear hyperfine interaction using EPR and ENDOR techniques. In this communication, we report isotropic hyperfine coupling constants (hfcs) of the BChl b and g radical cations and anions, calculated by density functional theory, and compare them with the more common radical ions of BChl a and with available experimental data. The observed differences in the computed hyperfine data are discussed in view of a possible distinction between these species by EPR/ENDOR methods. In addition, 14 N nuclear quadrupole coupling constants (nqcs) computed for BChl a, b, g, and also for Chl a in their charge neutral, radical cation and radical anion states are presented. These nqcs are compared with experimental values obtained by ESEEM spectroscopy on several different radical ions.
Collapse
Affiliation(s)
- Sebastian Sinnecker
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim an der Ruhr, Germany
| |
Collapse
|
11
|
Loughlin P, Lin Y, Chen M. Chlorophyll d and Acaryochloris marina: current status. PHOTOSYNTHESIS RESEARCH 2013; 116:277-93. [PMID: 23615924 DOI: 10.1007/s11120-013-9829-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/14/2013] [Indexed: 05/03/2023]
Abstract
The discovery of the chlorophyll d-containing cyanobacterium Acaryochloris marina in 1996 precipitated a shift in our understanding of oxygenic photosynthesis. The presence of the red-shifted chlorophyll d in the reaction centre of the photosystems of Acaryochloris has opened up new avenues of research on photosystem energetics and challenged the unique status of chlorophyll a in oxygenic photosynthesis. In this review, we detail the chemistry and role of chlorophyll d in photosynthesis and summarise the unique adaptations that have allowed the proliferation of Acaryochloris in diverse ecological niches around the world.
Collapse
Affiliation(s)
- Patrick Loughlin
- School of Biological Sciences (A08), University of Sydney, Sydney, NSW, 2006, Australia
| | | | | |
Collapse
|
12
|
Saito K, Shen JR, Ishikita H. Cationic state distribution over the chlorophyll d-containing P(D1)/P(D2) pair in photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:1191-5. [PMID: 22192718 DOI: 10.1016/j.bbabio.2011.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/02/2011] [Accepted: 12/06/2011] [Indexed: 11/25/2022]
Abstract
Most of the chlorophyll (Chl) cofactors in photosystem II (PSII) from Acaryochloris marina are Chld, although a few Chla molecules are also present. To evaluate the possibility that Chla may participate in the P(D1)/P(D2) Chl pair in PSII from A. marina, the P(D1)(•+)/P(D2)(•+) charge ratio was investigated using the PSII crystal structure analyzed at 1.9-Å resolution, while considering all possibilities for the Chld-containing P(D1)/P(D2) pair, i.e., Chld/Chld, Chla/Chld, and Chld/Chla pairs. Chld/Chld and Chla/Chld pairs resulted in a large P(D1)(•+) population relative to P(D2)(•+), as identified in Chla/Chla homodimer pairs in PSII from other species, e.g., Thermosynechococcus elongatus PSII. However, the Chld/Chla pair possessed a P(D1)(•+)/P(D2)(•+) ratio of approximately 50/50, which is in contrast to previous spectroscopic studies on A. marina PSII. The present results strongly exclude the possibility that the Chld/Chla pair serves as P(D1)/P(D2) in A. marina PSII. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- Keisuke Saito
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
13
|
Schliep M, Crossett B, Willows RD, Chen M. 18O labeling of chlorophyll d in Acaryochloris marina reveals that chlorophyll a and molecular oxygen are precursors. J Biol Chem 2010; 285:28450-6. [PMID: 20610399 DOI: 10.1074/jbc.m110.146753] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The cyanobacterium Acaryochloris marina was cultured in the presence of either H(2)(18)O or (18)O(2), and the newly synthesized chlorophylls (Chl a and Chl d) were isolated using high performance liquid chromatography and analyzed by mass spectroscopy. In the presence of H(2)(18)O, newly synthesized Chl a and d, both incorporated up to four isotopic (18)O atoms. Time course H(2)(18)O labeling experiments showed incorporation of isotopic (18)O atoms originating from H(2)(18)O into Chl a, with over 90% of Chl a (18)O-labeled at 48 h. The incorporation of isotopic (18)O atoms into Chl d upon incubation in H(2)(18)O was slower compared with Chl a with approximately 50% (18)O-labeled Chl d at 115 h. The rapid turnover of newly synthesized Chl a suggested that Chl a is the direct biosynthetic precursor of Chl d. In the presence of (18)O(2) gas, one isotopic (18)O atom was incorporated into Chl a with approximately the same kinetic incorporation rate observed in the H(2)(18)O labeling experiment, reaching over 90% labeling intensity at 48 h. The incorporation of two isotopic (18)O atoms derived from molecular oxygen ((18)O(2)) was observed in the extracted Chl d, and the percentage of double isotopic (18)O-labeled Chl d increased in parallel with the decrease of non-isotopic-labeled Chl d. This clearly indicated that the oxygen atom in the C3(1)-formyl group of Chl d is derived from dioxygen via an oxygenase-type reaction mechanism.
Collapse
Affiliation(s)
- Martin Schliep
- Schools of Biological Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | |
Collapse
|
14
|
Ohashi S, Iemura T, Okada N, Itoh S, Furukawa H, Okuda M, Ohnishi-Kameyama M, Ogawa T, Miyashita H, Watanabe T, Itoh S, Oh-oka H, Inoue K, Kobayashi M. An overview on chlorophylls and quinones in the photosystem I-type reaction centers. PHOTOSYNTHESIS RESEARCH 2010; 104:305-19. [PMID: 20165917 DOI: 10.1007/s11120-010-9530-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 01/16/2010] [Indexed: 05/08/2023]
Abstract
Minor but key chlorophylls (Chls) and quinones in photosystem (PS) I-type reaction centers (RCs) are overviewed in regard to their molecular structures. In the PS I-type RCs, the prime-type chlorophylls, namely, bacteriochlorophyll (BChl) a' in green sulfur bacteria, BChl g' in heliobacteria, Chl a' in Chl a-type PS I, and Chl d' in Chl d-type PS I, function as the special pairs, either as homodimers, (BChl a')(2) and (BChl g')(2) in anoxygenic organisms, or heterodimers, Chl a/a' and Chl d/d' in oxygenic photosynthesis. Conversions of BChl g to Chl a and Chl a to Chl d take place spontaneously under mild condition in vitro. The primary electron acceptors, A (0), are Chl a-derivatives even in anoxygenic PS I-type RCs. The secondary electron acceptors are naphthoquinones, whereas the side chains may have been modified after the birth of cyanobacteria, leading to succession from menaquinone to phylloquinone in oxygenic PS I.
Collapse
Affiliation(s)
- Shunsuke Ohashi
- Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hoober JK, Eggink LL, Chen M, Larkum AWD. Chapter 15 The Chemistry and Biology of Light-Harvesting Complex II and Thylakoid Biogenesis: raison d’etre of Chlorophylls b and c. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/978-90-481-8531-3_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
16
|
Schenderlein M, Çetin M, Barber J, Telfer A, Schlodder E. Spectroscopic studies of the chlorophyll d containing photosystem I from the cyanobacterium, Acaryochloris marina. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1400-8. [DOI: 10.1016/j.bbabio.2008.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 07/16/2008] [Accepted: 08/14/2008] [Indexed: 11/28/2022]
|
17
|
Ohashi S, Miyashita H, Okada N, Iemura T, Watanabe T, Kobayashi M. Unique photosystems in Acaryochloris marina. PHOTOSYNTHESIS RESEARCH 2008; 98:141-149. [PMID: 18985431 DOI: 10.1007/s11120-008-9383-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 10/10/2008] [Indexed: 05/27/2023]
Abstract
A short overview is given on the discovery of the chlorophyll d-dominated cyanobacterium Acaryochloris marina and the minor pigments that function as key components therein. In photosystem I, chlorophyll d', chlorophyll a, and phylloquinone function as the primary electron donor, the primary electron acceptor and the secondary electron acceptor, respectively. In photosystem II, pheophytin a serves as the primary electron acceptor. The oxidation potential of chlorophyll d was higher than that of chlorophyll a in vitro, while the oxidation potential of P740 was almost the same as that of P700. These results help us to broaden our view on the questions about the unique photosystems in Acaryochloris marina.
Collapse
Affiliation(s)
- Shunsuke Ohashi
- Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Cser K, Deák Z, Telfer A, Barber J, Vass I. Energetics of Photosystem II charge recombination in Acaryochloris marina studied by thermoluminescence and flash-induced chlorophyll fluorescence measurements. PHOTOSYNTHESIS RESEARCH 2008; 98:131-40. [PMID: 18839331 DOI: 10.1007/s11120-008-9373-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 09/17/2008] [Indexed: 05/08/2023]
Abstract
We studied the charge recombination characteristics of Photosystem II (PSII) redox components in whole cells of the chlorophyll (Chl) d-dominated cyanobacterium, Acaryochloris marina, by flash-induced chlorophyll fluorescence and thermoluminescence measurements. Flash-induced chlorophyll fluorescence decay was retarded in the mus and ms time ranges and accelerated in the s time range in Acaryochloris marina relative to that in the Chl a-containing cyanobacterium, Synechocystis PCC 6803. In the presence of 3-(3,4-dichlorophenyl)-1, 1-dimethylurea, which blocks the Q(B) site, the relaxation of fluorescence decay arising from S(2)Q(A)(-) recombination was somewhat faster in Acaryochloris marina than in Synechocystis PCC 6803. Thermoluminescence intensity of the so called B band, arising from the recombination of the S(2)Q(B)(-) charge separated state, was enhanced significantly (2.5 fold) on the basis of equal amounts of PSII in Acaryochloris marina as compared with Synechocystis 6803. Our data show that the energetics of charge recombination is modified in Acaryochloris marina leading to a approximately 15 meV decrease of the free energy gap between the Q(A) and Q(B) acceptors. In addition, the total free energy gap between the ground state and the excited state of the reaction center chlorophyll is at least approximately 25-30 meV smaller in Acaryochloris marina, suggesting that the primary donor species cannot consist entirely of Chl a in Acaryochloris marina, and there is a contribution from Chl d as well.
Collapse
Affiliation(s)
- Krisztián Cser
- Institute of Plant Biology, Biological Resarch Center, Szeged, Hungary
| | | | | | | | | |
Collapse
|
19
|
Tomo T, Kato Y, Suzuki T, Akimoto S, Okubo T, Noguchi T, Hasegawa K, Tsuchiya T, Tanaka K, Fukuya M, Dohmae N, Watanabe T, Mimuro M. Characterization of highly purified photosystem I complexes from the chlorophyll d-dominated cyanobacterium Acaryochloris marina MBIC 11017. J Biol Chem 2008; 283:18198-209. [PMID: 18458090 DOI: 10.1074/jbc.m801805200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photochemically active photosystem (PS) I complexes were purified from the chlorophyll (Chl) d-dominated cyanobacterium Acaryochloris marina MBIC 11017, and several of their properties were characterized. PS I complexes consist of 11 subunits, including PsaK1 and PsaK2; a new small subunit was identified and named Psa27. The new subunit might replace the function of PsaI that is absent in A. marina. The amounts of pigments per one molecule of Chl d' were 97.0 +/- 11.0 Chl d, 1.9 +/- 0.5 Chl a, 25.2 +/- 2.4 alpha-carotene, and two phylloquinone molecules. The light-induced Fourier transform infrared difference spectroscopy and light-induced difference absorption spectra reconfirmed that the primary electron donor of PS I (P740) was the Chl d dimer. In addition to P740, the difference spectrum contained an additional band at 728 nm. The redox potentials of P740 were estimated to be 439 mV by spectroelectrochemistry; this value was comparable with the potential of P700 in other cyanobacteria and higher plants. This suggests that the overall energetics of the PS I reaction were adjusted to the electron acceptor side to utilize the lower light energy gained by P740. The distribution of charge in P740 was estimated by a density functional theory calculation, and a partial localization of charge was predicted to P1 Chl (special pair Chl on PsaA). Based on differences in the protein matrix and optical properties of P740, construction of the PS I core in A. marina was discussed.
Collapse
Affiliation(s)
- Tatsuya Tomo
- Department of Technology and Ecology, Hall of Global Environmental Research, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hastings G, Wang R. Vibrational mode frequency calculations of chlorophyll-d for assessing (P740(+)-P740) FTIR difference spectra obtained using photosystem I particles from Acaryochloris marina. PHOTOSYNTHESIS RESEARCH 2008; 95:55-62. [PMID: 17710563 DOI: 10.1007/s11120-007-9228-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 07/16/2007] [Indexed: 05/16/2023]
Abstract
Acaryochloris marina is an oxygen-evolving organism that utilizes chlorophyll-d for light induced photochemistry. In photosystem I particles from Acaryochloris marina, the primary electron donor is called P740, and it is thought that P740 consist of two chlorophyll-d molecules. (P740(+)-P740) FTIR difference spectra have been produced, and vibrational features that are specific to chlorophyll-d (and not chlorophyll-a) were observed, supporting the idea that P740 consists chlorophyll-d molecules. Although bands in the (P740(+)-P740) FTIR difference spectra were assigned specifically to chlorophyll-d, how these bands shifted, and how their intensities changed, upon cation formation was never considered. Without this information it is difficult to draw unambiguous conclusions from the FTIR difference spectra. To gain a more detailed understanding of cation induced shifting of bands associated with vibrational modes of P740 we have used density functional theory to calculate the vibrational properties of a chlorophyll-d model in the neutral, cation and anion states. These calculations are shown to be of considerable use in interpreting bands in (P740(+)-P740) FTIR difference spectra. Our calculations predict that the 3(1) formyl C-H mode of chlorophyll-d upshifts/downshifts upon cation/anion formation, respectively. The mode intensity also decreases/increases upon cation/anion formation, respectively. The cation induced bandshift of the 3(1) formyl C-H mode of chlorophyll-d is also strongly dependant on the dielectric environment of the chlorophyll-d molecules. With this new knowledge we reassess the interpretation of bands that were assigned to 3(1) formyl C-H modes of chlorophyll-d in (P740(+)-P740) FTIR difference spectra. Considering our calculations in combination with (P740(+)-P740) FTIR DS we find that the most likely conclusions are that P740 is a dimeric Chl-d species, in an environment of low effective dielectric constant ( approximately 2-8). In the P740(+) state, charge is asymmetrically distributed over the two Chl-d pigments in a roughly 60:40 ratio.
Collapse
Affiliation(s)
- Gary Hastings
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, 30303, USA.
| | | |
Collapse
|
21
|
Hoober JK, Eggink LL, Chen M. Chlorophylls, ligands and assembly of light-harvesting complexes in chloroplasts. PHOTOSYNTHESIS RESEARCH 2007; 94:387-400. [PMID: 17505910 PMCID: PMC2117338 DOI: 10.1007/s11120-007-9181-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 04/19/2007] [Indexed: 05/15/2023]
Abstract
Chlorophyll (Chl) b serves an essential function in accumulation of light-harvesting complexes (LHCs) in plants. In this article, this role of Chl b is explored by considering the properties of Chls and the ligands with which they interact in the complexes. The overall properties of the Chls, not only their spectral features, are altered as consequences of chemical modifications on the periphery of the molecules. Important modifications are introduction of oxygen atoms at specific locations and reduction or desaturation of sidechains. These modifications influence formation of coordination bonds by which the central Mg atom, the Lewis acid, of Chl molecules interacts with amino acid sidechains, as the Lewis base, in proteins. Chl a is a versatile Lewis acid and interacts principally with imidazole groups but also with sidechain amides and water. The 7-formyl group on Chl b withdraws electron density toward the periphery of the molecule and consequently the positive Mg is less shielded by the molecular electron cloud than in Chl a. Chl b thus tends to form electrostatic bonds with Lewis bases with a fixed dipole, such as water and, in particular, peptide backbone carbonyl groups. The coordination bonds are enhanced by H-bonds between the protein and the 7-formyl group. These additional strong interactions with Chl b are necessary to achieve assembly of stable LHCs.
Collapse
Affiliation(s)
- J Kenneth Hoober
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA.
| | | | | |
Collapse
|
22
|
Itoh S, Mino H, Itoh K, Shigenaga T, Uzumaki T, Iwaki M. Function of Chlorophyll d in Reaction Centers of Photosystems I and II of the Oxygenic Photosynthesis of Acaryochloris marina. Biochemistry 2007; 46:12473-81. [DOI: 10.1021/bi7008085] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shigeru Itoh
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan, and Department of Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Hiroyuki Mino
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan, and Department of Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Kunihiro Itoh
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan, and Department of Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Takatoshi Shigenaga
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan, and Department of Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Tatsuya Uzumaki
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan, and Department of Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Masayo Iwaki
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan, and Department of Biology, University College London, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
23
|
Tamiaki H, Shibata R, Mizoguchi T. The 17-propionate function of (bacterio)chlorophylls: biological implication of their long esterifying chains in photosynthetic systems. Photochem Photobiol 2007; 83:152-62. [PMID: 16776548 DOI: 10.1562/2006-02-27-ir-819] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Molecular structures of (bacterio)chlorophylls [= (B)Chls] in photosynthetic apparatus are surveyed, and a diversity of the ester groups of the 17-propionate substituent is particularly focused on in this review. In oxygenic photosynthetic species including green plants and algae, the ester of Chl molecules is limited to a phytyl group. Geranylgeranyl and farnesyl groups in addition to phytyl are observed in (B)Chl molecules inside photosynthetic proteins of anoxygenic bacteria. In main light-harvesting antennas of green bacteria (chlorosomes), a greater variety of ester groups including long straight chains are used in the composite BChl molecules. This diversity is ascribable to the fact that chlorosomal BChls self-aggregate to form a core part of chlorosomes without any specific interaction of oligopeptides. Biological significance of the long chains is discussed in photosynthetic apparatus, especially in chlorosomes.
Collapse
Affiliation(s)
- Hitoshi Tamiaki
- Department of Bioscience and Biotechnology, Ritsumeikan University, Kusatsu, Japan.
| | | | | |
Collapse
|
24
|
Schlodder E, Cetin M, Eckert HJ, Schmitt FJ, Barber J, Telfer A. Both chlorophylls a and d are essential for the photochemistry in photosystem II of the cyanobacteria, Acaryochloris marina. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:589-95. [PMID: 17428440 DOI: 10.1016/j.bbabio.2007.02.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 02/02/2007] [Accepted: 02/23/2007] [Indexed: 11/20/2022]
Abstract
We have measured the flash-induced absorbance difference spectrum attributed to the formation of the secondary radical pair, P(+)Q(-), between 270 nm and 1000 nm at 77 K in photosystem II of the chlorophyll d containing cyanobacterium, Acaryochloris marina. Despite the high level of chlorophyll d present, the flash-induced absorption difference spectrum of an approximately 2 ms decay component shows a number of features which are typical of the difference spectrum seen in oxygenic photosynthetic organisms containing no chlorophyll d. The spectral shape in the near-UV indicates that a plastoquinone is the secondary acceptor molecule (Q(A)). The strong C-550 change at 543 nm confirms previous reports that pheophytin a is the primary electron acceptor. The bleach at 435 nm and increase in absorption at 820 nm indicates that the positive charge is stabilized on a chlorophyll a molecule. In addition a strong electrochromic band shift, centred at 723 nm, has been observed. It is assigned to a shift of the Qy band of the neighbouring accessory chlorophyll d, Chl(D1). It seems highly likely that it accepts excitation energy from the chlorophyll d containing antenna. We therefore propose that primary charge separation is initiated from this chlorophyll d molecule and functions as the primary electron donor. Despite its lower excited state energy (0.1 V less), as compared to chlorophyll a, this chlorophyll d molecule is capable of driving the plastoquinone oxidoreductase activity of photosystem II. However, chlorophyll a is used to stabilize the positive charge and ultimately to drive water oxidation.
Collapse
Affiliation(s)
- Eberhard Schlodder
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17.Juni 135, 10623 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
25
|
Kobayashi M, Ohashi S, Iwamoto K, Shiraiwa Y, Kato Y, Watanabe T. Redox potential of chlorophyll d in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:596-602. [PMID: 17418087 DOI: 10.1016/j.bbabio.2007.02.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 02/14/2007] [Accepted: 02/23/2007] [Indexed: 11/20/2022]
Abstract
Chlorophyll (Chl) d is a major chlorophyll in a novel oxygenic prokaryote Acaryochloris marina. Here we first report the redox potential of Chl d in vitro. The oxidation potential of Chl d was +0.88 V vs. SHE in acetonitrile; the value was higher than that of Chl a (+0.81 V) and lower than that of Chl b (+0.94 V). The oxidation potential order, Chl b>Chl d>Chl a, can be explained by inductive effect of substituent groups on the conjugated pi-electron system on the macrocycle. Corresponding pheophytins showed the same order; Phe b (+1.25 V)>Phe d (+1.21 V)>Phe a (+1.14 V), but the values were significantly higher than those of Chls, which are rationalized in terms of an electron density decrease in the pi-system by the replacement of magnesium with more electronegative hydrogen. Consequently, oxidation potential of Chl a was found to be the lowest among Chls and Phes. The results will help us to broaden our views on photosystems in A. marina.
Collapse
Affiliation(s)
- Masami Kobayashi
- Institute of Materials Science, University of Tsukuba, Tsukuba 305-8573, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
An electron paramagnetic resonance investigation of the electron transfer reactions in the chlorophyll d containing photosystem I of Acaryochloris marina. FEBS Lett 2007; 581:1567-71. [PMID: 17382323 DOI: 10.1016/j.febslet.2007.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 03/05/2007] [Accepted: 03/06/2007] [Indexed: 11/19/2022]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy reveals functional and structural similarities between the reaction centres of the chlorophyll d-binding photosystem I (PS I) and chlorophyll a-binding PS I. Continuous wave EPR spectrometry at 12K identifies iron-sulphur centres as terminal electron acceptors of chlorophyll d-binding PS I. A transient light-induced electron spin echo (ESE) signal indicates the presence of a quinone as the secondary electron acceptor (Q) between P(740)(+) and the iron-sulphur centres. The distance between P(740)(+) and Q(-) was estimated within point-dipole approximation as 25.23+/-0.05A, by the analysis of the electron spin echo envelope modulation.
Collapse
|
27
|
Chen M, Cai ZL. Theoretical study on the thermodynamic properties of chlorophyll d-peptides coordinating ligand. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:603-9. [PMID: 17306215 DOI: 10.1016/j.bbabio.2007.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 12/26/2006] [Accepted: 01/08/2007] [Indexed: 10/23/2022]
Abstract
The chlorophyll d containing cyanobacterium, Acaryochloris marina has provided a model system for the study of chlorophyll replacement in the function of oxygenic photosynthesis. Chlorophyll d replaces most functions of chlorophyll a in Acaryochloris marina. It not only functions as the major light-harvesting pigment, but also acts as an electron transfer cofactor in the primary charge separation reaction in the two photosystems. The Mg-chlorophyll d-peptide coordinating interaction between the amino acid residues and chlorophylls using the latest semi-empirical PM5 method were examined. It is suggested that chlorophyll d possesses similar coordination ligand properties to chlorophyll a, but chlorophyll b possesses different ligand properties. Compared with other studies involving theoretical correlation and our prior experiments, this study suggests that the chlorophyll a-bound proteins will bind chlorophyll d without difficulty when chlorophyll d is available.
Collapse
Affiliation(s)
- Min Chen
- School of Biological Sciences, The University of Sydney, NSW 2006, Australia.
| | | |
Collapse
|
28
|
|
29
|
Shevela D, Nöring B, Eckert HJ, Messinger J, Renger G. Characterization of the water oxidizing complex of photosystem II of the Chl d-containing cyanobacterium Acaryochloris marina via its reactivity towards endogenous electron donors and acceptors. Phys Chem Chem Phys 2006; 8:3460-6. [PMID: 16855726 DOI: 10.1039/b604389e] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acaroychloris (A.) marina is a unique oxygen evolving organism that contains a large amount of chlorophyll d (Chl d) and only very few Chl a molecules. This feature raises questions on the nature of the photoactive pigment, which supports light-induced oxidative water splitting in Photosystem II (PS II). In this study, flash-induced oxygen evolution patterns (FIOPs) were measured to address the question whether the S(i) state transition probabilities and/or the redox-potentials of the water oxidizing complex (WOC) in its different S(i) states are altered in A. marina cells compared to that of spinach thylakoids. The analysis of the obtained data within the framework of different versions of the Kok model reveals that in light activated A. marina cells the miss probability is similar compared to spinach thylakoids. This finding indicates that the redox-potentials and kinetics within the WOC, of the reaction center (P680) and of Y(Z) are virtually the same for both organisms. This conclusion is strongly supported by lifetime measurements of the S(2) and S(3) states. Virtually identical time constants were obtained for the slow phase of deactivation. Kinetic differences in the fast phase of S(2) and S(3) decay between A. marina cells and spinach thylakoids reflect a shift of the E(m) of Y(D)/Y(D)(ox) to lower values in the former compared to the latter organisms, as revealed by the observation of an opposite change in the kinetics of S(0) oxidation to S(1) by Y(D)(ox). A slightly increased double hit probability in A. marina cells is indicative of a faster Q(A)(-) to Q(B) electron transfer in these cells compared to spinach thylakoids.
Collapse
Affiliation(s)
- Dmitriy Shevela
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 32-34, D-45470, Mülheim an der Ruhr, Germany
| | | | | | | | | |
Collapse
|
30
|
Swingley WD, Hohmann-Marriott MF, Le Olson T, Blankenship RE. Effect of iron on growth and ultrastructure of Acaryochloris marina. Appl Environ Microbiol 2006; 71:8606-10. [PMID: 16332853 PMCID: PMC1317473 DOI: 10.1128/aem.71.12.8606-8610.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cyanobacterial genus Acaryochloris is the only known group of oxygenic phototrophs that contain chlorophyll d rather than chlorophyll a as the major photosynthetic pigment. Studies on this organism are still in their earliest stages, and biochemical analysis has rapidly outpaced growth optimization. We have investigated culture growth of the major strains of Acaryochloris marina (MBIC11017 and MBIC10697) by using several published and some newly developed growth media. It was determined that heavy addition of iron significantly enhanced culture longevity. These high-iron cultures showed an ultrastructure with thylakoid stacks that resemble traditional cyanobacteria (unlike previous studies). These cultures also show a novel reversal in the pigment ratios of the photosystem II signature components chlorophyll a and pheophytin a, as opposed to those in previous studies.
Collapse
Affiliation(s)
- Wesley D Swingley
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA
| | | | | | | |
Collapse
|
31
|
Chen M, Telfer A, Lin S, Pascal A, Larkum AWD, Barber J, Blankenship RE. The nature of the photosystem II reaction centre in the chlorophyll d-containing prokaryote, Acaryochloris marina. Photochem Photobiol Sci 2005; 4:1060-4. [PMID: 16307123 DOI: 10.1039/b507057k] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pigment-protein complexes enriched in photosystem II (PS II) have been isolated from the chlorophyll (Chl) d containing cyanobacterium, Acaryochloris marina. A small PS II-enriched particle, we call 'crude reaction centre', contained 20 Chl d, 0.5 Chl a and 1 redox active cytochrome b-559 per 2 pheophytin a, plus the D1 and D2 proteins. A larger PS II-enriched particle, we call 'core', additionally bound the antenna complexes, CP47 and CP43, and had a higher chlorophyll per pheophytin ratio. Pheophytin a could be photoreduced in the presence of a strong reductant, indicating that it is the primary electron acceptor in photosystem II of A. marina. A substoichiometric amount of Chl a (less than one chlorophyll a per 2 pheophytin a) strongly suggests that Chl a does not have an essential role in the photochemistry of PS II in this organism. We conclude that PS II, in A. marina, utilizes Chl d and not Chl a as primary electron donor and that the primary electron acceptor is one of two molecules of pheophytin a.
Collapse
Affiliation(s)
- Min Chen
- School of Biological Sciences, University of Sydney, NSW 2006, Australia
| | | | | | | | | | | | | |
Collapse
|
32
|
Grotjohann I, Fromme P. Structure of cyanobacterial photosystem I. PHOTOSYNTHESIS RESEARCH 2005; 85:51-72. [PMID: 15977059 DOI: 10.1007/s11120-005-1440-4] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2004] [Accepted: 01/28/2005] [Indexed: 05/03/2023]
Abstract
Photosystem I is one of the most fascinating membrane protein complexes for which a structure has been determined. It functions as a bio-solar energy converter, catalyzing one of the first steps of oxygenic photosynthesis. It captures the light of the sun by means of a large antenna system, consisting of chlorophylls and carotenoids, and transfers the energy to the center of the complex, driving the transmembrane electron transfer from plastoquinone to ferredoxin. Cyanobacterial Photosystem I is a trimer consisting of 36 proteins to which 381 cofactors are non-covalently attached. This review discusses the complex function of Photosystem I based on the structure of the complex at 2.5 A resolution as well as spectroscopic and biochemical data.
Collapse
|
33
|
Sivakumar V, Wang R, Hastings G. Photo-oxidation of P740, the primary electron donor in photosystem I from Acaryochloris marina. Biophys J 2004; 85:3162-72. [PMID: 14581216 PMCID: PMC1303592 DOI: 10.1016/s0006-3495(03)74734-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Fourier transform infrared spectroscopy (FTIR) difference spectroscopy in combination with deuterium exchange experiments has been used to study the photo-oxidation of P740, the primary electron donor in photosystem I from Acaryochloris marina. Comparison of (P740(+)-P740) and (P700(+)-P700) FTIR difference spectra show that P700 and P740 share many structural similarities. However, there are several distinct differences also: 1), The (P740(+)-P740) FTIR difference spectrum is significantly altered upon proton exchange, considerably more so than the (P700(+)-P700) FTIR difference spectrum. The P740 binding pocket is therefore more accessible than the P700 binding pocket. 2), Broad, "dimer" absorption bands are observed for both P700(+) and P740(+). These bands differ significantly in substructure, however, suggesting differences in the electronic organization of P700(+) and P740(+). 3), Bands are observed at 2727(-) and 2715(-) cm(-1) in the (P740(+)-P740) FTIR difference spectrum, but are absent in the (P700(+)-P700) FTIR difference spectrum. These bands are due to formyl CH modes of chlorophyll d. Therefore, P740 consists of two chlorophyll d molecules. Deuterium-induced modification of the (P740(+)-P740) FTIR difference spectrum indicates that only the highest frequency 13(3) ester carbonyl mode of P740 downshifts, indicating that this ester mode is weakly H-bonded. In contrast, the highest frequency ester carbonyl mode of P700 is free from H-bonding. Deuterium-induced changes in (P740(+)-P740) FTIR difference spectrum could also indicate that one of the chlorophyll d 3(1) carbonyls of P740 is hydrogen bonded.
Collapse
Affiliation(s)
- Velautham Sivakumar
- Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | |
Collapse
|
34
|
Mimuro M, Akimoto S, Gotoh T, Yokono M, Akiyama M, Tsuchiya T, Miyashita H, Kobayashi M, Yamazaki I. Identification of the primary electron donor in PS II of the Chl d
-dominated cyanobacterium Acaryochloris marina. FEBS Lett 2003; 556:95-8. [PMID: 14706833 DOI: 10.1016/s0014-5793(03)01383-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The primary electron donor of photosystem (PS) II in the chlorophyll (Chl) d-dominated cyanobacterium Acaryochloris marina was confirmed by delayed fluorescence (DF) and further proved by pigment contents of cells grown under several light intensities. The DF was found only in the Chl a region, identical to Synechocystis sp. PCC 6803, and disappeared following heat treatment. Pigment analyses indicated that at least two Chl a molecules were present per each two pheophytin a molecules, and these Chl a molecules are assigned to P(D1) and P(D2). These findings clearly indicate that Chl a is required for water oxidation in PS II.
Collapse
Affiliation(s)
- Mamoru Mimuro
- Department of Technology and Ecology, Hall of Global Environmental Research, Kyoto University, 606-8501, Kyoto, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yoshida E, Nakamura A, Watanabe T. Reversed-phase HPLC determination of chlorophyll a' and naphthoquinones in photosystem I of red algae: existence of two menaquinone-4 molecules in photosystem I of Cyanidium caldarium. ANAL SCI 2003; 19:1001-5. [PMID: 12880082 DOI: 10.2116/analsci.19.1001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chlorophyll (Chl) a', the C13(2)-epimer of Chl a, is one of the two Chl molecules constituting the primary electron donor (P700) of photosystem (PS) I of a thermophilic cyanobacterium Synechococcus elongatus. To examine whether PS I of other oxygenic photosynthetic organisms in general contain one Chl a' molecule in P700, the pigment composition of thylakoid membranes and PS I preparations isolated from red algae Porphyridium purpureum and Cyanidium caldarium was examined by reversed-phase HPLC with particular attention to Chl a' and phylloquinone (PhQ), the secondary electron acceptor of PS I. The two red algae contained one Chl a' molecule at the core part of PS I. In PS I of C. caldarium, two menaquinone-4 (MQ-4) molecules were detected in place of PhQ used by higher plants and cyanobacteria. The 1:2:1 stoichiometry among Chl a', PhQ (MQ-4) and P700 in PS I of the red algae indicates that one Chl a' molecule universally exists in PS I of oxygenic photosynthetic organisms, and two MQ-4 molecules are associated with PS I of C. caldarium.
Collapse
Affiliation(s)
- Emi Yoshida
- Institute of Industrial Science, The University of Tokyo, Komaba, Meguro, Tokyo 153-8505, Japan
| | | | | |
Collapse
|
36
|
Green BR, Anderson JM, Parson WW. Photosynthetic Membranes and Their Light-Harvesting Antennas. LIGHT-HARVESTING ANTENNAS IN PHOTOSYNTHESIS 2003. [DOI: 10.1007/978-94-017-2087-8_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|