1
|
Imrie RM, Wallace MA, Longdon B. Positive correlations in susceptibility to a diverse panel of viruses across Drosophilidae host species. Evol Lett 2025:qraf002. [PMID: 40007858 PMCID: PMC7617412 DOI: 10.1093/evlett/qraf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
Our ability to predict the emergence of novel viruses relies on there being generalisable patterns in the susceptibilities of hosts to novel infections. Studies investigating variation in susceptibility among host species have consistently shown that closely related hosts share similar susceptibilities to a given virus. However, the extent to which such phylogenetic patterns of susceptibility are correlated amongst diverse sets of viruses is unclear. Here, we investigate phylogenetic correlations in susceptibility among Drosophilidae hosts to a panel of eleven different invertebrate viruses, comprising seven unique virus species, six unique families, and both RNA and DNA viruses. The susceptibility of hosts to each pair of viruses tested was either positively correlated across host species or did not show evidence of correlation. No negative correlations, indicative of evolutionary trade-offs in host susceptibility to different viruses, were detected between any virus pairs. The strength of correlations were generally higher in viruses of the same species and family, consistent with virus phylogenetic patterns in host infectivity. Our results suggest that generalised host susceptibility can result in positive correlations, even between highly diverged viruses, while specialised interactions with individual viruses cause a stepwise decrease in correlation strength between viruses from the within-species, to the within-family, to the across-family level.
Collapse
Affiliation(s)
- Ryan M. Imrie
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | - Megan A. Wallace
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | - Ben Longdon
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, University of Exeter, Penryn Campus, Penryn, United Kingdom
| |
Collapse
|
2
|
Aktürk Dizman Y. Codon usage bias analysis of the gene encoding NAD +-dependent DNA ligase protein of Invertebrate iridescent virus 6. Arch Microbiol 2023; 205:352. [PMID: 37812231 DOI: 10.1007/s00203-023-03688-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
The genome of Invertebrate iridescent virus 6 (IIV6) contains a sequence that shows similarity to eubacterial NAD+-dependent DNA ligases. The 615-amino acid open reading frame (ORF 205R) consists of several domains, including an N-terminal domain Ia, followed by an adenylation domain, an OB-fold domain, a helix-hairpin-helix (HhH) domain, and a BRCT domain. Notably, the zinc finger domain, typically present in NAD+-dependent DNA ligases, is absent in ORF 205R. Since the protein encoded by ORF 205R (IIV6 DNA ligase gene) is involved in critical functions such as DNA replication, modification, and repair, it is crucial to comprehend the codon usage associated with this gene. In this paper, the codon usage bias (CUB) in DNA ligase gene of IIV6 and 11 reference iridoviruses was analyzed by comparing the nucleotide contents, relative synonymous codon usage (RSCU), effective number of codons (ENC), codon adaptation index (CAI), relative abundance of dinucleotides and other indices. Both the base content and the RCSU analysis indicated that the A- and T-ending codons were mostly favored in the DNA ligase gene of IIV6. The ENC value of 35.64 implied a high CUB in the IIV6 DNA ligase gene. The ENC plot, neutrality plot, parity rule 2 plot, correspondence analysis revealed that mutation pressure and natural selection had an impact on the CUB of the IIVs DNA ligase genes. Additionally, the analysis of codon adaptation index demonstrated that the IIV6 DNA ligase gene is strongly adapted to its host. These findings will improve our comprehension of the CUB of IIV6 DNA ligase and reference genes, which may provide the required information for a fundamental evolutionary analysis of these genes.
Collapse
Affiliation(s)
- Yeşim Aktürk Dizman
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, 53100, Rize, Turkey.
| |
Collapse
|
3
|
Yesilyurt A, Demirbag Z, van Oers MM, Nalcacioglu R. Conserved motifs in the invertebrate iridescent virus 6 (IIV6) genome regulate virus transcription. J Invertebr Pathol 2020; 177:107496. [PMID: 33127354 DOI: 10.1016/j.jip.2020.107496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022]
Abstract
Invertebrate iridescent virus 6 (IIV6) is the type species of the Iridovirus genus in the Betairidovirinae subfamily of the Iridoviridae family. Transcription of the 215 predicted IIV6 genes is temporally regulated, dividing the genes into three kinetic classes: immediate-early (IE), delayed-early (DE), and late (L). So far, the transcriptional class has been determined for a selection of virion protein genes and only for three genes the potential promoter regions have been analyzed in detail. In this study, we investigated the transcriptional class of all IIV6 genes that had not been classified until now. RT-PCR analysis of total RNA isolated from virus-infected insect cells in the presence or absence of protein and DNA synthesis inhibitors, placed 113, 23 and 22 of the newly analyzed viral ORFs into the IE, DE and L gene classes, respectively. Afterwards, in silico analysis was performed to the upstream regions (200 bp) of all viral ORFs using the MEME Suite Software. The AA(A/T)(T/A)TG(A/G)A and (T/A/C)(T/G/C)T(T/A)ATGG motifs were identified in the upstream region of IE and DE genes, respectively. These motifs were validated by luciferase reporter assays as crucial sequences for promoter activity. For the L genes two conserved motifs were identified for all analyzed genes: (T/G)(C/T)(A/C)A(T/G/C)(T/C)T(T/C) and (C/G/T)(G/A/C)(T/A)(T/G) (G/T)(T/C). However, the presence of these two motifs did not influence promoter activity. Conversely, the presence of these two sequences upstream of the reporter decreased its expression. Single nucleotide mutations in the highly conserved nucleotides at the end of the second motif (TTGT) showed that this motif acted as a repressor sequence for late genes in the IIV6 genome. Next, upstream sequences of IIV6 L genes from which we removed this second motif in silico, were re-analyzed for the presence of potential conserved promoter sequences. Two additional motifs were identified in this way for L genes: (T/A)(A/T)(A/T/G)(A/T)(T/C)(A/G)(A/C)(A/C) and (C/G)(T/C)(T/A/C)C(A/T)(A/T)T(T/G) (T/G)(T/G/A). Independent mutations in either motif caused a severe decrease in luciferase expression. Information on temporal classes and upstream regulatory sequences will contribute to our understanding of the transcriptional mechanisms in IIV6.
Collapse
Affiliation(s)
- Aydin Yesilyurt
- Department of Biology, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey; Laboratory of Virology, Wageningen University and Research, 6708 PB Wageningen, the Netherlands
| | - Zihni Demirbag
- Department of Biology, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University and Research, 6708 PB Wageningen, the Netherlands
| | - Remziye Nalcacioglu
- Department of Biology, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey
| |
Collapse
|
4
|
Papp T, Marschang RE. Detection and Characterization of Invertebrate Iridoviruses Found in Reptiles and Prey Insects in Europe over the Past Two Decades. Viruses 2019; 11:E600. [PMID: 31269721 PMCID: PMC6669658 DOI: 10.3390/v11070600] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/05/2023] Open
Abstract
Invertebrate iridoviruses (IIVs), while mostly described in a wide range of invertebrate hosts, have also been repeatedly detected in diagnostic samples from poikilothermic vertebrates including reptiles and amphibians. Since iridoviruses from invertebrate and vertebrate hosts differ strongly from one another based not only on host range but also on molecular characteristics, a series of molecular studies and bioassays were performed to characterize and compare IIVs from various hosts and evaluate their ability to infect a vertebrate host. Eight IIV isolates from reptilian and orthopteran hosts collected over a period of six years were partially sequenced. Comparison of eight genome portions (total over 14 kbp) showed that these were all very similar to one another and to an earlier described cricket IIV isolate, thus they were given the collective name lizard-cricket IV (Liz-CrIV). One isolate from a chameleon was also subjected to Illumina sequencing and almost the entire genomic sequence was obtained. Comparison of this longer genome sequence showed several differences to the most closely related IIV, Invertebrateiridovirus6 (IIV6), the type species of the genus Iridovirus, including several deletions and possible recombination sites, as well as insertions of genes of non-iridoviral origin. Three isolates from vertebrate and invertebrate hosts were also used for comparative studies on pathogenicity in crickets (Gryllusbimaculatus) at 20 and 30 °C. Finally, the chameleon isolate used for the genome sequencing studies was also used in a transmission study with bearded dragons. The transmission studies showed large variability in virus replication and pathogenicity of the three tested viruses in crickets at the two temperatures. In the infection study with bearded dragons, lizards inoculated with a Liz-CrIV did not become ill, but the virus was detected in numerous tissues by qPCR and was also isolated in cell culture from several tissues. Highest viral loads were measured in the gastro-intestinal organs and in the skin. These studies demonstrate that Liz-CrIV circulates in the pet trade in Europe. This virus is capable of infecting both invertebrates and poikilothermic vertebrates, although its involvement in disease in the latter has not been proven.
Collapse
Affiliation(s)
- Tibor Papp
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungaria krt 21, H-1143 Budapest, Hungary
| | - Rachel E Marschang
- Cell Culture Lab, Microbiology Department, Laboklin GmbH & Co. KG, 97688 Bad Kissingen, Germany.
| |
Collapse
|
5
|
Ozsahin E, van Oers MM, Nalcacioglu R, Demirbag Z. Protein–protein interactions among the structural proteins of Chilo iridescent virus. J Gen Virol 2018; 99:851-859. [DOI: 10.1099/jgv.0.001067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Emine Ozsahin
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Monique M. van Oers
- Wageningen University and Research, Laboratory of Virology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Remziye Nalcacioglu
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Zihni Demirbag
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey
| |
Collapse
|
6
|
İnce İA, Pijlman GP, Vlak JM, van Oers MM. Hairpin structures with conserved sequence motifs determine the 3' ends of non-polyadenylated invertebrate iridovirus transcripts. Virology 2017; 511:344-353. [PMID: 28709684 DOI: 10.1016/j.virol.2017.06.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 10/19/2022]
Abstract
Previously, we observed that the transcripts of Invertebrate iridescent virus 6 (IIV6) are not polyadenylated, in line with the absence of canonical poly(A) motifs (AATAAA) downstream of the open reading frames (ORFs) in the genome. Here, we determined the 3' ends of the transcripts of fifty-four IIV6 virion protein genes in infected Drosophila Schneider 2 (S2) cells. By using ligation-based amplification of cDNA ends (LACE) it was shown that the IIV6 mRNAs often ended with a CAUUA motif. In silico analysis showed that the 3'-untranslated regions of IIV6 genes have the ability to form hairpin structures (22-56 nt in length) and that for about half of all IIV6 genes these 3' sequences contained complementary TAATG and CATTA motifs. We also show that a hairpin in the 3' flanking region with conserved sequence motifs is a conserved feature in invertebrate-infecting iridoviruses (genus Iridovirus and Chloriridovirus).
Collapse
Affiliation(s)
- İkbal Agah İnce
- Department of Medical Microbiology, Acıbadem University Medical School, Atasehir, 34752 Istanbul, Turkey.
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Just M Vlak
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
7
|
Dizman YA, Muratoglu H, Sandalli C, Nalcacioglu R, Demirbag Z. Chilo iridescent virus (CIV) ORF 012L encodes a protein with both exonuclease and endonuclease functions. Arch Virol 2016; 161:3029-37. [PMID: 27496102 DOI: 10.1007/s00705-016-3007-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/01/2016] [Indexed: 10/21/2022]
Abstract
Chilo iridescent virus (CIV) is the type member of the genus Iridovirus within the family Iridoviridae. The virions of CIV contain a single linear dsDNA molecule that is circularly permuted and terminally redundant. The genome of CIV contains an open reading frame (ORF 012L) encoding a protein homologous to exonuclease II of Schizosaccharomyces pombe. In this study, we focused on the characterization of CIV ORF 012L. The target ORF was cloned into the pET28a vector, expressed in E. coli strain BL21 (DE3) pLysS with an N-terminal His tag and purified to homogeneity by using Ni-NTA affinity chromatography. Biochemical characterization of the purified CIV 012L confirmed that this viral protein is a functional 5'-3' exonuclease that digests 3'-biotin-labelled oligonucleotides and linear double-stranded DNA (dsDNA) molecules from their 5' termini in a highly processive manner. CIV 012L also has a potent endonuclease activity on dsDNA in vitro. In addition, CIV 012L converted supercoiled plasmid DNA (replicative form I, RFI) into the open circular form (RFII) and then open circular form into linear form (RFIII). Endonuclease activity of CIV 012L was optimal in the presence of 10 mM Mg(2+) or 30 mM Mn(2+) ions and at 150 mM NaCl or KCl salt concentrations. The highest endonuclease activity was obtained at pH 8, and it reached a maximum at 55 °C. The CIV 012L protein showed deficiencies for both double- and single-stranded RNAs.
Collapse
Affiliation(s)
- Yesim Akturk Dizman
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey.,Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, 53100, Rize, Turkey
| | - Hacer Muratoglu
- Department of Molecular Biology and Genetic, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Cemal Sandalli
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, 53100, Rize, Turkey
| | - Remziye Nalcacioglu
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey.
| | - Zihni Demirbag
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
| |
Collapse
|
8
|
İnce İA, Boeren S, van Oers MM, Vlak JM. Temporal proteomic analysis and label-free quantification of viral proteins of an invertebrate iridovirus. J Gen Virol 2015; 96:196-205. [DOI: 10.1099/vir.0.068312-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- İkbal Agah İnce
- Department of Medical Microbiology, School of Medicine, Acibadem University, 34752 Ataşehir, Istanbul, Turkey
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - Monique M. van Oers
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Just M. Vlak
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
9
|
Ozgen A, Muratoglu H, Demirbag Z, Vlak JM, van Oers MM, Nalcacioglu R. Construction and characterization of a recombinant invertebrate iridovirus. Virus Res 2014; 189:286-92. [PMID: 24930447 DOI: 10.1016/j.virusres.2014.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 05/09/2014] [Accepted: 05/13/2014] [Indexed: 01/04/2023]
Abstract
Chilo iridescent virus (CIV), officially named Insect iridescent virus 6 (IIV6), is the type species of the genus Iridovirus (family Iridoviridae). In this paper we constructed a recombinant CIV, encoding the green fluorescent protein (GFP). This recombinant can be used to investigate viral replication dynamics. We showed that homologous recombination is a valid method to make CIV gene knockouts and to insert foreign genes. The CIV 157L gene, putatively encoding a non-functional inhibitor of apoptosis (IAP), was chosen as target for foreign gene insertion. The gfp open reading frame preceded by the viral mcp promoter was inserted into the 157L locus by homologous recombination in Anthonomus grandis BRL-AG-3A cells. Recombinant virus (rCIV-Δ157L-gfp) was purified by successive rounds of plaque purification. All plaques produced by the purified recombinant virus emitted green fluorescence due to the presence of GFP. One-step growth curves for recombinant and wild-type CIV were similar and the recombinant was fully infectious in vivo. Hence, CIV157L can be inactivated without altering the replication kinetics of the virus. Consequently, the CIV 157L locus can be used as a site for insertion of foreign DNA, e.g. to modify viral properties for insect biocontrol.
Collapse
Affiliation(s)
- Arzu Ozgen
- Karadeniz Technical University, Faculty of Science, Department of Biology, 61080 Trabzon, Turkey
| | - Hacer Muratoglu
- Karadeniz Technical University, Faculty of Science, Department of Molecular Biology and Genetics, 61080 Trabzon, Turkey
| | - Zihni Demirbag
- Karadeniz Technical University, Faculty of Science, Department of Biology, 61080 Trabzon, Turkey
| | - Just M Vlak
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Remziye Nalcacioglu
- Karadeniz Technical University, Faculty of Science, Department of Biology, 61080 Trabzon, Turkey.
| |
Collapse
|
10
|
İnce İA, Özcan K, Vlak JM, van Oers MM. Temporal classification and mapping of non-polyadenylated transcripts of an invertebrate iridovirus. J Gen Virol 2013; 94:187-192. [DOI: 10.1099/vir.0.046359-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The temporal expression of the 54 Chilo iridescent virus (CIV) virion protein genes was investigated by combining drug treatments that inhibit protein or DNA synthesis and an RT-PCR strategy particularly suitable for non-polyadenylated mRNAs. This method generates a uniform 3′ terminus by ligation of a 5′-phosphorylated oligonucleotide to the 3′ end of the transcript that is recognized by a complementary primer during RT-PCR. This analysis showed that CIV virion proteins are encoded by genes in all three predetermined temporal classes: 23 immediate-early, 11 delayed-early and seven late virion gene transcripts were identified and assigned to ORFs. Early transcription of many virion protein genes supports the notion that virion proteins may also play essential roles in the initial stages of infection. In addition, some of the early gene products present in the virion may reflect the intracellular path that the virus follows during infection.
Collapse
Affiliation(s)
- İkbal Agah İnce
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Department of Genetics and Bioengineering, Yeditepe University, 34755, Istanbul, Turkey
- Department of Biosystems Engineering, Faculty of Engineering, Giresun University, 28100, Giresun, Turkey
| | - Kadriye Özcan
- Department of Biosystems Engineering, Faculty of Engineering, Giresun University, 28100, Giresun, Turkey
| | - Just M. Vlak
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Monique M. van Oers
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
11
|
|
12
|
Delhon G, Tulman ER, Afonso CL, Lu Z, Becnel JJ, Moser BA, Kutish GF, Rock DL. Genome of invertebrate iridescent virus type 3 (mosquito iridescent virus). J Virol 2006; 80:8439-49. [PMID: 16912294 PMCID: PMC1563875 DOI: 10.1128/jvi.00464-06] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iridoviruses (IVs) are classified into five genera: Iridovirus and Chloriridovirus, whose members infect invertebrates, and Ranavirus, Lymphocystivirus, and Megalocytivirus, whose members infect vertebrates. Until now, Chloriridovirus was the only IV genus for which a representative and complete genomic sequence was not available. Here, we report the genome sequence and comparative analysis of a field isolate of Invertebrate iridescent virus type 3 (IIV-3), also known as mosquito iridescent virus, currently the sole member of the genus Chloriridovirus. Approximately 20% of the 190-kbp IIV-3 genome was repetitive DNA, with DNA repeats localized in 15 apparently noncoding regions. Of the 126 predicted IIV-3 genes, 27 had homologues in all currently sequenced IVs, suggesting a genetic core for the family Iridoviridae. Fifty-two IIV-3 genes, including those encoding DNA topoisomerase II, NAD-dependent DNA ligase, SF1 helicase, IAP, and BRO protein, are present in IIV-6 (Chilo iridescent virus, prototype species of the genus Iridovirus) but not in vertebrate IVs, likely reflecting distinct evolutionary histories for vertebrate and invertebrate IVs and potentially indicative of genes that function in aspects of virus-invertebrate host interactions. Thirty-three IIV-3 genes lack homologues in other IVs. Most of these encode proteins of unknown function but also encode IIV3-053L, a protein with similarity to DNA-dependent RNA polymerase subunit 7; IIV3-044L, a putative serine/threonine protein kinase; and IIV3-080R, a protein with similarity to poxvirus MutT-like proteins. The absence of genes present in other IVs, including IIV-6; the lack of obvious colinearity with any sequenced IV; the low levels of amino acid identity of predicted proteins to IV homologues; and phylogenetic analyses of conserved proteins indicate that IIV-3 is distantly related to other IV genera.
Collapse
Affiliation(s)
- Gustavo Delhon
- Plum Island Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Greenport, New York 11944, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Affiliation(s)
- Trevor Williams
- Departmento de Producción Agraria, Universidad Pública de Navarra 31006 Pamplona, Spain
| | | | | |
Collapse
|
14
|
Otto H, Reche PA, Bazan F, Dittmar K, Haag F, Koch-Nolte F. In silico characterization of the family of PARP-like poly(ADP-ribosyl)transferases (pARTs). BMC Genomics 2005; 6:139. [PMID: 16202152 PMCID: PMC1266365 DOI: 10.1186/1471-2164-6-139] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Accepted: 10/04/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND ADP-ribosylation is an enzyme-catalyzed posttranslational protein modification in which mono(ADP-ribosyl)transferases (mARTs) and poly(ADP-ribosyl)transferases (pARTs) transfer the ADP-ribose moiety from NAD onto specific amino acid side chains and/or ADP-ribose units on target proteins. RESULTS Using a combination of database search tools we identified the genes encoding recognizable pART domains in the public genome databases. In humans, the pART family encompasses 17 members. For 16 of these genes, an orthologue exists also in the mouse, rat, and pufferfish. Based on the degree of amino acid sequence similarity in the catalytic domain, conserved intron positions, and fused protein domains, pARTs can be divided into five major subgroups. All six members of groups 1 and 2 contain the H-Y-E trias of amino acid residues found also in the active sites of Diphtheria toxin and Pseudomonas exotoxin A, while the eleven members of groups 3 - 5 carry variations of this motif. The pART catalytic domain is found associated in Lego-like fashion with a variety of domains, including nucleic acid-binding, protein-protein interaction, and ubiquitylation domains. Some of these domain associations appear to be very ancient since they are observed also in insects, fungi, amoebae, and plants. The recently completed genome of the pufferfish T. nigroviridis contains recognizable orthologues for all pARTs except for pART7. The nearly completed albeit still fragmentary chicken genome contains recognizable orthologues for twelve pARTs. Simpler eucaryotes generally contain fewer pARTs: two in the fly D. melanogaster, three each in the mosquito A. gambiae, the nematode C. elegans, and the ascomycete microfungus G. zeae, six in the amoeba E. histolytica, nine in the slime mold D. discoideum, and ten in the cress plant A. thaliana. GenBank contains two pART homologues from the large double stranded DNA viruses Chilo iridescent virus and Bacteriophage Aeh1 and only a single entry (from V. cholerae) showing recognizable homology to the pART-like catalytic domains of Diphtheria toxin and Pseudomonas exotoxin A. CONCLUSION The pART family, which encompasses 17 members in the human and 16 members in the mouse, can be divided into five subgroups on the basis of sequence similarity, phylogeny, conserved intron positions, and patterns of genetically fused protein domains.
Collapse
Affiliation(s)
- Helge Otto
- Institute of Immunology, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Pedro A Reche
- DNAX Research Institute, Palo Alto, CA 94304, USA
- Dana-Farber Cancer Institute, Harvard University, Boston, MA 02115, USA
| | - Fernando Bazan
- DNAX Research Institute, Palo Alto, CA 94304, USA
- Depts. of Molecular Biology and Protein Engineering, Genentech, SF, CA 94080, USA
| | - Katharina Dittmar
- Department of Integrative Biology, Brigham Young University, Provo, UT 84602, USA
| | - Friedrich Haag
- Institute of Immunology, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
15
|
Zhang QY, Xiao F, Xie J, Li ZQ, Gui JF. Complete genome sequence of lymphocystis disease virus isolated from China. J Virol 2004; 78:6982-94. [PMID: 15194775 PMCID: PMC421667 DOI: 10.1128/jvi.78.13.6982-6994.2004] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lymphocystis diseases in fish throughout the world have been extensively described. Here we report the complete genome sequence of lymphocystis disease virus isolated in China (LCDV-C), an LCDV isolated from cultured flounder (Paralichthys olivaceus) with lymphocystis disease in China. The LCDV-C genome is 186,250 bp, with a base composition of 27.25% G+C. Computer-assisted analysis revealed 240 potential open reading frames (ORFs) and 176 nonoverlapping putative viral genes, which encode polypeptides ranging from 40 to 1,193 amino acids. The percent coding density is 67%, and the average length of each ORF is 702 bp. A search of the GenBank database using the 176 individual putative genes revealed 103 homologues to the corresponding ORFs of LCDV-1 and 73 potential genes that were not found in LCDV-1 and other iridoviruses. Among the 73 genes, there are 8 genes that contain conserved domains of cellular genes and 65 novel genes that do not show any significant homology with the sequences in public databases. Although a certain extent of similarity between putative gene products of LCDV-C and corresponding proteins of LCDV-1 was revealed, no colinearity was detected when their ORF arrangements and coding strategies were compared to each other, suggesting that a high degree of genetic rearrangements between them has occurred. And a large number of tandem and overlapping repeated sequences were observed in the LCDV-C genome. The deduced amino acid sequence of the major capsid protein (MCP) presents the highest identity to those of LCDV-1 and other iridoviruses among the LCDV-C gene products. Furthermore, a phylogenetic tree was constructed based on the multiple alignments of nine MCP amino acid sequences. Interestingly, LCDV-C and LCDV-1 were clustered together, but their amino acid identity is much less than that in other clusters. The unexpected levels of divergence between their genomes in size, gene organization, and gene product identity suggest that LCDV-C and LCDV-1 shouldn't belong to a same species and that LCDV-C should be considered a species different from LCDV-1.
Collapse
Affiliation(s)
- Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Wuhan Center for Developmental Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China.
| | | | | | | | | |
Collapse
|