1
|
Nie J, Zhang Z, Wang B, Li H, Xu J, Wu S, Zhu C, Yang X, Liu B, Wu Y, Tan S, Wen Z, Zheng J, Shu S, Ma L. Different memory patterns of digits: a functional MRI study. J Biomed Sci 2019; 26:22. [PMID: 30832663 PMCID: PMC6398246 DOI: 10.1186/s12929-019-0516-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 02/26/2019] [Indexed: 11/10/2022] Open
Abstract
Background Psychological investigations and functional imaging technology have been used to describe neural correlations of different types of memory with various stimuli. Memory with limited storage capacity and a short retention time can be classified as short-term memory (STM) while long-term memory (LTM) can be life-long without defined capacity. Methods To identify brain activation pattern associated with different modes of memory for numerical figures, we detected brain activities from twenty-two healthy subjects when performing three types of memory tasks for numbers, namely STM, LTM and working memory (WM), by using functional magnetic resonance imaging (fMRI) technique. Results The result revealed variable patterns of activation in different brain regions responding to different types of memory tasks. The activation regions with primary processing and transient maintenance of STM for numerical figures are located in the visual cortex and mainly encoded by visual representations, while LTM was encoded by semantics and mainly recruiting left frontal cortex. We also found that subcortical structures, such as the caudate nucleus and the marginal division of the striatum, plays important roles in working memory. Conclusions Activation of different brain regions in these three kinds of memories, indicating that different kinds of memories rely on different neural correlates and mental processes.
Collapse
Affiliation(s)
- Jingxin Nie
- School of Psychology, Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Zengqiang Zhang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Bin Wang
- Pediatric Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Hong Li
- Pediatric Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jianghua Xu
- Hangzhou Sanatorium of air force, 15th Yanggongdi Road, Hangzhou, 310007, China
| | - Sheng Wu
- Hangzhou Sanatorium of Army, 27 Yang-gong Di, Hangzhou, 310007, China
| | - Chunhua Zhu
- Hangzhou Sanatorium of Army, 27 Yang-gong Di, Hangzhou, 310007, China
| | - Xin Yang
- The first Sanatorium of PLA Navy, Qingdao, 266071, China
| | - Bin Liu
- Department of Emergency, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yongming Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Sheng Tan
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zhibo Wen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jinlong Zheng
- Department of Neurology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an Jiangsu, 223300, China
| | - Siyun Shu
- Pediatric Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Lin Ma
- Department of Radiology, The General Hospital of Chinese People's Liberation Army, Bejing, 100853, China.
| |
Collapse
|
2
|
Wang B, Chen YC, Jiang G, Ning Q, Ma L, Chan WY, Wu S, Zhou GQ, Bao R, Zheng ZC, Yang X, Luo JX, Zheng W, Guo HW, Zeng C, Zeng QY, Shu SY. New learning and memory related pathways among the hippocampus, the amygdala and the ventromedial region of the striatum in rats. J Chem Neuroanat 2015; 71:13-9. [PMID: 26698223 DOI: 10.1016/j.jchemneu.2015.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND The hippocampus, central amygdaloid nucleus and the ventromedial region (marginal division) of the striatum have been reported to be involved in the mechanism of learning and memory. This study aimed elucidating anatomical and functional connections among these brain areas during learning and memory. RESULTS In the first part of this study, the c-Fos protein was used to explore functional connections among these structures. Chemical stimulation of either hippocampus or central amygdaloid nucleus results in dense expression of c-Fos protein in nuclei of neurons in the marginal division of the striatum, indicating that the hippocampus and the central amygdaloid nucleus might be functionally connected with the marginal division. In the second part of the study, the cholera toxin subunit B-horseradish peroxidase was injected into the central amygdaloid nucleus to observe anatomical connections among them. The retrogradely transported conjugated horseradish peroxidase was observed in neurons of both the marginal division and dorsal part of the hippocampus following the injection. Hence, neural fibers from both the marginal division and the hippocampus directly projected to the central amygdaloid nucleus. CONCLUSION The results implicated potential new functional and structural pathways through these brain areas during the process of learning and memory. The pathways ran from ventromedial portion (the marginal division) of the striatum to the central amygdaloid nucleus and then to the hippocampus before going back to the marginal division of the striatum. Two smaller circuits were between the marginal division and the central amygdaloid nucleus, and between the central amygdaloid nucleus and the hippocampus. These connections have added new dimensions of neural networks of learning and memory, and might be involved in the pathogenesis of dementia and Alzheimer disease.
Collapse
Affiliation(s)
- Bin Wang
- Center of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Yan-chen Chen
- Center of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Gang Jiang
- Department of Ear, Nose and Throat, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China.
| | - Qun Ning
- Department of Neurology, 153 PLA Central Hospital, Zhengzhou City, Henan Province 450042, China
| | - Lin Ma
- Department of Radiology, PLA General Hospital, Beijing, 100853, China
| | - Wood-yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Sheng Wu
- Nanjing Junqu Hangzhou Sanatorium, 14 Ling-ying Road, Hangzhou, 310007, China
| | - Guo-qing Zhou
- Jinan Junqu Qingdao First Sanatorium, 27 West Xianggan Road, Qingdao,266071 China
| | - Rong Bao
- Department of Pediatrics, Sun Yet-San Hospital, Zhong-Shan University, Guangzhou, 510120, China
| | - Zhao-cong Zheng
- Department of Neurosurgery, Fuzhou Central Hospital of Nanjing Junqu, Fuzhou, Fujian, 350025, China
| | - Xin Yang
- Jinan Junqu Qingdao First Sanatorium, 27 West Xianggan Road, Qingdao,266071 China
| | - Ji-xuan Luo
- Center of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Wei Zheng
- Center of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Hai-wen Guo
- Center of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Cheng Zeng
- Center of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Qi-yi Zeng
- Center of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China.
| | - Si-yun Shu
- Center of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China.
| |
Collapse
|
3
|
Ma Y, Zhou C, Li G, Tian Y, Liu J, Yan L, Jiang Y, Tian S. Effects on Spatial Cognition and Nociceptive Behavior Following Peripheral Nerve Injury in Rats with Lesion of the Striatal Marginal Division Induced by Kainic Acid. Neurochem Res 2015; 40:2357-64. [DOI: 10.1007/s11064-015-1727-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 08/16/2015] [Accepted: 09/23/2015] [Indexed: 10/23/2022]
|
4
|
Yu Y, Zeng C, Shu S, Liu X, Li C. Similar effects of substance P on learning and memory function between hippocampus and striatal marginal division. Neural Regen Res 2014; 9:857-63. [PMID: 25206901 PMCID: PMC4146251 DOI: 10.4103/1673-5374.131603] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2014] [Indexed: 11/27/2022] Open
Abstract
Substance P is an endogenous neurokinin that is present in the central and peripheral nervous systems. The neuropeptide substance P and its high-affinity receptor neurokinin 1 receptor are known to play an important role in the central nervous system in inflammation, blood pressure, motor behavior and anxiety. The effects of substance P in the hippocampus and the marginal division of the striatum on memory remain poorly understood. Compared with the hippocampus as a control, immunofluorescence showed high expression of the substance P receptor, neurokinin 1, in the marginal division of the striatum of normal rats. Unilateral or bilateral injection of an antisense oligonucleotide against neurokinin 1 receptor mRNA in the rat hippocampus or marginal division of the striatum effectively reduced neurokinin 1 receptor expression. Independent of injection site, rats that received this antisense oligonucleotide showed obviously increased footshock times in a Y-maze test. These results indicate that the marginal division of the striatum plays a similar function in learning and memory to the hippocampus, which is a valuable addition to our mechanistic understanding of the learning and memory functions of the marginal division of the striatum.
Collapse
Affiliation(s)
- Yan Yu
- MOE Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong Province, China
| | - Changchun Zeng
- MOE Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong Province, China
| | - Siyun Shu
- Institute of Cognitive Neuroscience, South China Normal University, Guangzhou, Guangdong Province, China
| | - Xuemei Liu
- MOE Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong Province, China
| | - Chuhua Li
- School of Life Science, South China Normal University, Guangzhou, Guangdong Province, China
| |
Collapse
|
5
|
Shu SY, Qing D, Wang B, Zeng QY, Chen YC, Jin Y, Zeng CC, Bao R. Comparison of microRNA expression in hippocampus and the marginal division (MrD) of the neostriatum in rats. J Biomed Sci 2013; 20:9. [PMID: 23425148 PMCID: PMC3615960 DOI: 10.1186/1423-0127-20-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/01/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs), a class of highly conserved small non-coding RNA molecules, are known to play essential roles in central nervous system (CNS) by causing post-transcriptional gene silencing. There is much evidence that miRNAs have specific temporal and spatial expression patterns in the mammal brain, but little is known about the role of the region specificity for the gene regulatory networks of the brain. This study represents the first attempt to perform a profiling analysis of the differential expression of miRNAs between hippocampus and the Marginal division (MrD) of the neostriatum in the rat brain. RESULTS Microarray was used to detect the expression of 357 miRNAs in hippocampus and the MrD from three rats. A short-list of the most dysregulated 30 miRNAs per rat was generated for data analysis, and the miRNAs that were represented in two or three short-lists were then further analyzed. Quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) was employed to validate the aberrantly expressed miRNAs obtained from the miRNA microarray analysis. A family of 11 miRNAs demonstrated differential expression between the MrD and hippocampus in more than one rat. Amongst these, miR-383 was differentially expressed in all three rats and up-regulated to the largest degree in rat one, and the ten other miRNAs, let-7d*, miR-181b, miR-187, miR-195, miR-214, miR-382, miR-411, miR-466b, miR-592 and miR-1224 were differentially expressed in at least two rats. Of these ten, besides miR-382 and miR-411 which were up-regulated in one rat and down-regulated in another, the other eight miRNAs retained a uniform direction of regulation (up-regulation or down-regulation) between different specimens. When further examined by RT-PCR, the aberrantly expressed miRNAs, except miR-383 and let-7d*, demonstrated differential expression that significantly correlated with the microarray findings. CONCLUSION This study reported that the miRNA expression patterns in MrD was distinct from that of Hip, suggesting the role of miRNAs in the learning and memory function of the MrD probably different from hippocampus.
Collapse
Affiliation(s)
- Si Yun Shu
- Center of Pediatrics, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, Guangdong, China.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Alpha1-adrenoceptors are one of three subfamilies of receptors (alpha1, alpha2, beta) mediating responses to adrenaline and noradrenaline. Three alpha1-adrenoceptor subtypes are known (alpha1A, alpha1B, alpha1D) which are all members of the G protein coupled receptor family, and splice variants have been reported in the C-terminus of the alpha1A. They are expressed in many tissues, particularly smooth muscle where they mediate contraction. Certain subtype-selective agonists and antagonists are now available, and alpha1A-adrenoceptor selective antagonists are used to treat benign prostatic hypertrophy. All subtypes activate phospholipase C through the G(q/11) family of G proteins, release stored Ca2+, and activate protein kinase C, although with significant differences in coupling efficiency (alpha1A > alpha1B > alpha1D). Other second messenger pathways are also activated by these receptors, including Ca2+ influx, arachidonic acid release, and phospholipase D. Alpha1-adrenoceptors also activate mitogen-activated protein kinase pathways in many cells, and some of these responses are independent of Ca2+ and protein kinase C but involve small G proteins and tyrosine kinases. Direct interactions of alpha1-adrenoceptors with proteins other than G proteins have not yet been reported, however there is a consensus binding motif for the immediate early gene Homer in the C-terminal tail of the alpha1D subtype. Current research is focused on discovering new subtype-selective drugs, identifying non-traditional signaling pathways activated by these receptors, clarifying how multiple signals are integrated, and identifying proteins interacting directly with the receptors to influence their functions.
Collapse
Affiliation(s)
- H Zhong
- Department of Pharmacology, Emory University Medical School, Atlanta, GA 30322, USA
| | | |
Collapse
|