1
|
Evans LS, Hussain R, Siligardi G, Williamson PT. Magnetically aligned membrane mimetics enabling comparable chiroptical and magnetic resonance spectroscopy studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183343. [DOI: 10.1016/j.bbamem.2020.183343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
|
2
|
Beaugrand M, Arnold AA, Bourgault S, Williamson PTF, Marcotte I. Comparative study of the structure and interaction of the pore helices of the hERG and Kv1.5 potassium channels in model membranes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 46:549-559. [PMID: 28314880 DOI: 10.1007/s00249-017-1201-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 10/19/2022]
Abstract
The hERG channel is a voltage-gated potassium channel found in cardiomyocytes that contributes to the repolarization of the cell membrane following the cardiac action potential, an important step in the regulation of the cardiac cycle. The lipids surrounding K+ channels have been shown to play a key role in their regulation, with anionic lipids shown to alter gating properties. In this study, we investigate how anionic lipids interact with the pore helix of hERG and compare the results with those from Kv1.5, which possesses a pore helix more typical of K+ channels. Circular dichroism studies of the pore helix secondary structure reveal that the presence of the anionic lipid DMPS within the bilayer results in a slight unfolding of the pore helices from both hERG and Kv1.5, albeit to a lesser extent for Kv1.5. In the presence of anionic lipids, the two pore helices exhibit significantly different interactions with the lipid bilayer. We demonstrate that the pore helix from hERG causes significant perturbation to the order in lipid bicelles, which contrasts with only small changes observed for Kv1.5. These observations suggest that the atypical sequence of the pore helix of hERG may play a key role in determining how anionic lipids influence its gating.
Collapse
Affiliation(s)
- Maïwenn Beaugrand
- Department of Chemistry, Université du Québec à Montréal, Downtown Station, PO Box 8888, Montreal, H3C 3P8, Canada
| | - Alexandre A Arnold
- Department of Chemistry, Université du Québec à Montréal, Downtown Station, PO Box 8888, Montreal, H3C 3P8, Canada
| | - Steve Bourgault
- Department of Chemistry, Université du Québec à Montréal, Downtown Station, PO Box 8888, Montreal, H3C 3P8, Canada
| | - Philip T F Williamson
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, Downtown Station, PO Box 8888, Montreal, H3C 3P8, Canada.
| |
Collapse
|
3
|
Beaugrand M, Arnold AA, Juneau A, Gambaro AB, Warschawski DE, Williamson PTF, Marcotte I. Magnetically Oriented Bicelles with Monoalkylphosphocholines: Versatile Membrane Mimetics for Nuclear Magnetic Resonance Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13244-13251. [PMID: 27951690 DOI: 10.1021/acs.langmuir.6b03099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bicelles (bilayered micelles) are model membranes used in the study of peptide structure and membrane interactions. They are traditionally made of long- and short-chain phospholipids, usually dimyristoylphosphatidylcholine (D14PC) and dihexanoyl-PC (D6PC). They are attractive membrane mimetics because their composition and planar surface are similar to the native membrane environment. In this work, to improve the solubilization of membrane proteins and allow their study in bicellar systems, D6PC was replaced by detergents from the monoalkylphosphocholine (MAPCHO) family, of which dodecylphosphocholine (12PC) is known for its ability to solubilize membrane proteins. More specifically 12PC, tetradecyl- (14PC), and hexadecyl-PC (16PC) have been employed. To verify the possibility of making bicelles with different hydrophobic thicknesses to better accommodate membrane proteins, D14PC was also replaced by phospholipids with different alkyl chain lengths: dilauroyl-PC (D12PC), dipalmitoyl-PC (D16PC), distearoyl-PC (D18PC), and diarachidoyl-PC (D20PC). Results obtained by 31P solid-state nuclear magnetic resonance (NMR) and isothermal titration calorimetry (ITC) at several lipid-to-detergent molar ratios (q) and temperatures indicate that these new MAPCHO bicelles can be formed under a variety of conditions. The quality of their alignment is similar to that of classical bicelles, and the low critical micelle concentration (CMC) of the surfactants and their miscibility with phospholipids are likely to be advantageous for the reconstitution of membrane proteins.
Collapse
Affiliation(s)
- Maïwenn Beaugrand
- Département de Chimie, Université du Québec à Montréal , P.O. Box 8888, Downtown Station, Montreal H3C 3P8, Canada
| | - Alexandre A Arnold
- Département de Chimie, Université du Québec à Montréal , P.O. Box 8888, Downtown Station, Montreal H3C 3P8, Canada
| | - Antoine Juneau
- Département de Chimie, Université du Québec à Montréal , P.O. Box 8888, Downtown Station, Montreal H3C 3P8, Canada
| | - Aline Balieiro Gambaro
- Département de Chimie, Université du Québec à Montréal , P.O. Box 8888, Downtown Station, Montreal H3C 3P8, Canada
| | - Dror E Warschawski
- Département de Chimie, Université du Québec à Montréal , P.O. Box 8888, Downtown Station, Montreal H3C 3P8, Canada
- UMR 7099, CNRS - Université Paris Diderot, IBPC, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Philip T F Williamson
- Centre for Biological Sciences/Institute of Life Sciences, Highfield Campus, University of Southampton , Southampton SO17 1BJ, United Kingdom
| | - Isabelle Marcotte
- Département de Chimie, Université du Québec à Montréal , P.O. Box 8888, Downtown Station, Montreal H3C 3P8, Canada
| |
Collapse
|
4
|
Martin RW, Kelly JE, Collier KA. Spatial reorientation experiments for NMR of solids and partially oriented liquids. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 90-91:92-122. [PMID: 26592947 PMCID: PMC6936739 DOI: 10.1016/j.pnmrs.2015.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 06/05/2023]
Abstract
Motional reorientation experiments are extensions of Magic Angle Spinning (MAS) where the rotor axis is changed in order to average out, reintroduce, or scale anisotropic interactions (e.g. dipolar couplings, quadrupolar interactions or chemical shift anisotropies). This review focuses on Variable Angle Spinning (VAS), Switched Angle Spinning (SAS), and Dynamic Angle Spinning (DAS), all of which involve spinning at two or more different angles sequentially, either in successive experiments or during a multidimensional experiment. In all of these experiments, anisotropic terms in the Hamiltonian are scaled by changing the orientation of the spinning sample relative to the static magnetic field. These experiments vary in experimental complexity and instrumentation requirements. In VAS, many one-dimensional spectra are collected as a function of spinning angle. In SAS, dipolar couplings and/or chemical shift anisotropies are reintroduced by switching the sample between two different angles, often 0° or 90° and the magic angle, yielding a two-dimensional isotropic-anisotropic correlation spectrum. Dynamic Angle Spinning (DAS) is a related experiment that is used to simultaneously average out the first- and second-order quadrupolar interactions, which cannot be accomplished by spinning at any unique rotor angle in physical space. Although motional reorientation experiments generally require specialized instrumentation and data analysis schemes, some are accessible with only minor modification of standard MAS probes. In this review, the mechanics of each type of experiment are described, with representative examples. Current and historical probe and coil designs are discussed from the standpoint of how each one accomplishes the particular objectives of the experiment(s) it was designed to perform. Finally, applications to inorganic materials and liquid crystals, which present very different experimental challenges, are discussed. The review concludes with perspectives on how motional reorientation experiments can be applied to current problems in chemistry, molecular biology, and materials science, given the many advances in high-field NMR magnets, fast spinning, and sample preparation realized in recent years.
Collapse
Affiliation(s)
- Rachel W Martin
- Department of Chemistry, University of California, Irvine 92697-2025, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine 92697-3900, United States.
| | - John E Kelly
- Department of Chemistry, University of California, Irvine 92697-2025, United States
| | - Kelsey A Collier
- Department of Physics and Astronomy, University of California, Irvine 92697-4575, United States
| |
Collapse
|
5
|
Wang T, Hong M. Investigation of the curvature induction and membrane localization of the influenza virus M2 protein using static and off-magic-angle spinning solid-state nuclear magnetic resonance of oriented bicelles. Biochemistry 2015; 54:2214-26. [PMID: 25774685 DOI: 10.1021/acs.biochem.5b00127] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A wide variety of membrane proteins induce membrane curvature for function; thus, it is important to develop new methods to simultaneously determine membrane curvature and protein binding sites in membranes with multiple curvatures. We introduce solid-state nuclear magnetic resonance (NMR) methods based on magnetically oriented bicelles and off-magic-angle spinning (OMAS) to measure membrane curvature and the binding site of proteins in mixed-curvature membranes. We demonstrate these methods on the influenza virus M2 protein, which not only acts as a proton channel but also mediates virus assembly and membrane scission. An M2 peptide encompassing the transmembrane (TM) domain and an amphipathic helix, M2(21-61), was studied and compared with the TM peptide (M2TM). Static (31)P NMR spectra of magnetically oriented 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) bicelles exhibit a temperature-independent isotropic chemical shift in the presence of M2(21-61) but not M2TM, indicating that the amphipathic helix confers the ability to generate a high-curvature phase. Two-dimensional (2D) (31)P spectra indicate that this high-curvature phase is associated with the DHPC bicelle edges, suggestive of the structure of budding viruses from the host cell. (31)P- and (13)C-detected (1)H relaxation times of the lipids indicate that the majority of M2(21-61) is bound to the high-curvature phase. Using OMAS experiments, we resolved the (31)P signals of lipids with identical headgroups based on their distinct chemical shift anisotropies. On the basis of this resolution, 2D (1)H-(31)P correlation spectra show that the amide protons in M2(21-61) correlate with the DMPC but not DHPC (31)P signal of the bicelle, indicating that a small percentage of M2(21-61) partitions into the planar region of the bicelles. These results show that the amphipathic helix induces high membrane curvature and localizes the protein to this phase, in good agreement with the membrane scission function of the protein. These bicelle-based relaxation and OMAS solid-state NMR techniques are generally applicable to curvature-inducing membrane proteins such as those involved in membrane trafficking, membrane fusion, and cell division.
Collapse
Affiliation(s)
- Tuo Wang
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Yamamoto K, Pearcy P, Lee DK, Yu C, Im SC, Waskell L, Ramamoorthy A. Temperature-resistant bicelles for structural studies by solid-state NMR spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:1496-1504. [PMID: 25565453 DOI: 10.1021/la5043876] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Three-dimensional structure determination of membrane proteins is important to fully understand their biological functions. However, obtaining a high-resolution structure has been a major challenge mainly due to the difficulties in retaining the native folding and function of membrane proteins outside of the cellular membrane environment. These challenges are acute if the protein contains a large soluble domain, as it needs bulk water unlike the transmembrane domains of an integral membrane protein. For structural studies on such proteins either by nuclear magnetic resonance (NMR) spectroscopy or X-ray crystallography, bicelles have been demonstrated to be superior to conventional micelles, yet their temperature restrictions attributed to their thermal instabilities are a major disadvantage. Here, we report an approach to overcome this drawback through searching for an optimum combination of bicellar compositions. We demonstrate that bicelles composed of 1,2-didecanoyl-sn-glycero-3-phosphocholine (DDPC) and 1,2-diheptanoyl-sn-glycero-3-phosphocholin (DHepPC), without utilizing additional stabilizing chemicals, are quite stable and are resistant to temperature variations. These temperature-resistant bicelles have a robust bicellar phase and magnetic alignment over a broad range of temperatures, between -15 and 80 °C, retain the native structure of a membrane protein, and increase the sensitivity of solid-state NMR experiments performed at low temperatures. Advantages of two-dimensional separated-local field (SLF) solid-state NMR experiments at a low temperature are demonstrated on magnetically aligned bicelles containing an electron carrier membrane protein, cytochrome b5. Morphological information on different DDPC-based bicellar compositions, varying q ratio/size, and hydration levels obtained from (31)P NMR experiments in this study is also beneficial for a variety of biophysical and spectroscopic techniques, including solution NMR and magic-angle-spinning (MAS) NMR for a wide range of temperatures.
Collapse
Affiliation(s)
- Kazutoshi Yamamoto
- Department of Chemistry and Biophysics, University of Michigan , 930 N. University Ave., Ann Arbor, Michigan 48109-1055, United States
| | | | | | | | | | | | | |
Collapse
|
7
|
Pelligra CI, Majewski PW, Osuji CO. Large area vertical alignment of ZnO nanowires in semiconducting polymer thin films directed by magnetic fields. NANOSCALE 2013; 5:10511-7. [PMID: 24057068 DOI: 10.1039/c3nr03119e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We demonstrate the use of magnetic fields for the directed assembly of ZnO nanowires in semiconducting polymer films suitable for ordered bulk heterojunction photovoltaics. Using rotational field annealing, Co-doped ZnO nanowires with negative paramagnetic anisotropy were successfully aligned out-of-plane with respect to the substrate and polymer film.
Collapse
Affiliation(s)
- Candice I Pelligra
- Yale University, Department of Chemical and Environmental Engineering, 9 Hillhouse Avenue, New Haven, CT 0651.
| | | | | |
Collapse
|
8
|
Willis SA, Dennis GR, Zheng G, Price WS. Preparation and physical properties of a macroscopically aligned lyotropic hexagonal phase templated hydrogel. REACT FUNCT POLYM 2013. [DOI: 10.1016/j.reactfunctpolym.2013.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Dürr UH, Soong R, Ramamoorthy A. When detergent meets bilayer: birth and coming of age of lipid bicelles. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 69:1-22. [PMID: 23465641 PMCID: PMC3741677 DOI: 10.1016/j.pnmrs.2013.01.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/30/2012] [Indexed: 05/12/2023]
|
10
|
Dürr UN, Gildenberg M, Ramamoorthy A. The magic of bicelles lights up membrane protein structure. Chem Rev 2012; 112:6054-74. [PMID: 22920148 PMCID: PMC3497859 DOI: 10.1021/cr300061w] [Citation(s) in RCA: 274] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Indexed: 12/12/2022]
Affiliation(s)
| | - Melissa Gildenberg
- Biophysics
and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055,
United States
| | - Ayyalusamy Ramamoorthy
- Biophysics
and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055,
United States
| |
Collapse
|
11
|
Ward JM, Skrynnikov NR. Very large residual dipolar couplings from deuterated ubiquitin. JOURNAL OF BIOMOLECULAR NMR 2012; 54:53-67. [PMID: 22828737 DOI: 10.1007/s10858-012-9651-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 06/25/2012] [Indexed: 06/01/2023]
Abstract
Main-chain (1)H(N)-(15)N residual dipolar couplings (RDCs) ranging from approximately -200 to 200 Hz have been measured for ubiquitin under strong alignment conditions in Pf1 phage. This represents a ten-fold increase in the degree of alignment over the typical weakly aligned samples. The measurements are made possible by extensive proton-dilution of the sample, achieved by deuteration of the protein with partial back-substitution of labile protons from 25 % H(2)O / 75 % D(2)O buffer. The spectral quality is further improved by application of deuterium decoupling. Since standard experiments using fixed-delay INEPT elements cannot accommodate a broad range of couplings, the measurements were conducted using J-resolved and J-modulated versions of the HSQC and TROSY sequences. Due to unusually large variations in dipolar couplings, the trosy (sharp) and anti-trosy (broad) signals are often found to be interchanged in the TROSY spectra. To distinguish between the two, we have relied on their respective (15)N linewidths. This strategy ultimately allowed us to determine the signs of RDCs. The fitting of the measured RDC values to the crystallographic coordinates of ubiquitin yields the quality factor Q = 0.16, which confirms the perturbation-free character of the Pf1 alignment. Our results demonstrate that RDC data can be successfully acquired not only in dilute liquid crystals, but also in more concentrated ones. As a general rule, the increase in liquid crystal concentration improves the stability of alignment media and makes them more tolerant to variations in sample conditions. The technical ability to measure RDCs under moderately strong alignment conditions may open the door for development of alternative alignment media, including new types of media that mimic biologically relevant systems.
Collapse
Affiliation(s)
- Joshua M Ward
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, USA
| | | |
Collapse
|
12
|
Espinosa CA, Thureau P, Shapiro RA, Litvak IM, Martin RW. Modulation of cross polarization in motionally averaged solids by Variable Angle Spinning NMR. Chem Phys Lett 2011; 508:314-319. [PMID: 21743604 DOI: 10.1016/j.cplett.2011.04.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In systems where the dipolar couplings are partially averaged by molecular motion, cross-polarization is modulated by sample spinning. The cross-polariation efficiency in Variable Angle Spinning (VAS) and Switched Angle Spinning (SAS) experiments on mobile samples is therefore strongly dependent on the spinning angle. We describe simulations and experimental measurements of these effects over a range of spinning angles from 0° to 90°.
Collapse
|
13
|
Majewski PW, Osuji CO. Controlled alignment of lamellar lyotropic mesophases by rotation in a magnetic field. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:8737-8742. [PMID: 20184355 DOI: 10.1021/la100285j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We demonstrate a versatile approach to align lamellar lyotropic mesophases with the use of magnetic fields. It is based on continuous rotation of the sample on an axis perpendicular to the magnetic field direction during a single cooling ramp across the order-disorder transition of the system. The process yields materials with near-perfect, nondegenerate alignment of lamellar stacks along the axis of rotation. We use a model tetraethylene glycol dodecyl ether-water system to investigate the influence of magnetic field strength, cooling rate and the speed of sample rotation on the degree of alignment as quantitatively determined by small-angle X-ray scattering. This approach offers broad utility for the alignment of other soft mesophases relevant in several emerging applications.
Collapse
Affiliation(s)
- Paweł W Majewski
- Department of Chemical Engineering, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
14
|
Yao L, Grishaev A, Cornilescu G, Bax A. Site-specific backbone amide (15)N chemical shift anisotropy tensors in a small protein from liquid crystal and cross-correlated relaxation measurements. J Am Chem Soc 2010; 132:4295-309. [PMID: 20199098 PMCID: PMC2847892 DOI: 10.1021/ja910186u] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Site-specific (15)N chemical shift anisotropy (CSA) tensors have been derived for the well-ordered backbone amide (15)N nuclei in the B3 domain of protein G (GB3) from residual chemical shift anisotropy (RCSA) measured in six different mutants that retain the native structure but align differently relative to the static magnetic field when dissolved in a liquid crystalline Pf1 suspension. This information is complemented by measurement of cross-correlated relaxation rates between the (15)N CSA tensor and either the (15)N-(1)H or (15)N-(13)C' dipolar interaction. In agreement with recent solid state NMR measurements, the (15)N CSA tensors exhibit only a moderate degree of variation from averaged values, but have larger magnitudes in alpha-helical (-173 +/- 7 ppm) than in beta-sheet (-162 +/- 6 ppm) residues, a finding also confirmed by quantum computations. The orientations of the least shielded tensor component cluster tightly around an in-peptide-plane vector that makes an angle of 19.6 +/- 2.5 degrees with the N-H bond, with the asymmetry of the (15)N CSA tensor being slightly smaller in alpha-helix (eta = 0.23 +/- 0.17) than in beta-sheet (eta = 0.31 +/- 0.11). The residue-specific (15)N CSA values are validated by improved agreement between computed and experimental (15)N R(1rho) relaxation rates measured for (15)N-{(2)H} sites in GB3, which are dominated by the CSA mechanism. Use of residue-specific (15)N CSA values also results in more uniform generalized order parameters, S(2), and predicts considerable residue-by-residue variations in the magnetic field strengths where TROSY line narrowing is most effective.
Collapse
Affiliation(s)
- Lishan Yao
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD 20892-0520
| | - Alexander Grishaev
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD 20892-0520
| | | | - Ad Bax
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD 20892-0520
| |
Collapse
|
15
|
Williamson PTF, Zandomeneghi G, Barrantes FJ, Watts A, Meier BH. Structural and dynamic studies of the γ-M4 trans-membrane domain of the nicotinic acetylcholine receptor. Mol Membr Biol 2009; 22:485-96. [PMID: 16373320 DOI: 10.1080/09687860500370653] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A structural characterization of a synthetic peptide corresponding to the fourth transmembrane domain (M4-TMD) of the gamma-subunit of the nicotinic acetylcholine receptor from Torpedo californica has been undertaken. Solid-state NMR and CD spectroscopy studies indicate that upon reconstitution into lipid vesicles or magnetically aligned lipid bilayers, the synthetic M4-TMD adopts a linear alpha-helical conformation with the helix aligned within 15 degrees of the membrane normal. Furthermore, analysis of the motional averaging of anisotropic interactions present in the solid-state NMR spectra of the reconstituted peptide, indicate that the dynamics of the peptide within the bilayer are highly sensitive to the phase adopted by the lipid bilayer, providing an insight into how the interaction of lipids with this domain may play a important role in the modulation of this receptor by its lipid environment.
Collapse
|
16
|
Xu J, Dürr UHN, Im SC, Gan Z, Waskell L, Ramamoorthy A. Bicelle-enabled structural studies on a membrane-associated cytochrome B5 by solid-state MAS NMR spectroscopy. Angew Chem Int Ed Engl 2008; 47:7864-7. [PMID: 18792050 DOI: 10.1002/anie.200801338] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiadi Xu
- Biophysics and Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109-1055, USA
| | | | | | | | | | | |
Collapse
|
17
|
Xu J, Dürr U, Im SC, Gan Z, Waskell L, Ramamoorthy A. Bicelle-Enabled Structural Studies on a Membrane-Associated Cytochrome b5by Solid-State MAS NMR Spectroscopy. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200801338] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Barbosa-Barros L, de la Maza A, López-Iglesias C, López O. Ceramide effects in the bicelle structure. Colloids Surf A Physicochem Eng Asp 2008. [DOI: 10.1016/j.colsurfa.2007.11.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Lancelot N, Elbayed K, Piotto M. Applications of variable-angle sample spinning experiments to the measurement of scaled residual dipolar couplings and 15N CSA in soluble proteins. JOURNAL OF BIOMOLECULAR NMR 2005; 33:153-61. [PMID: 16331420 DOI: 10.1007/s10858-005-3210-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Accepted: 09/02/2005] [Indexed: 05/05/2023]
Abstract
NMR spectra of ubiquitin in the presence of bicelles at a concentration of 32% w/v have been recorded at 700 MHz under sample spinning conditions at the magic angle (54.7 degrees ) and at an angle of 45.5 degrees . At the magic angle, the 1H-15N HSQC spectrum of ubiquitin in bicelles is virtually indistinguishable from the one recorded on the protein in solution. Spinning the sample at the magic angle creates an isotropic environment with no preferred bicelle orientations, thus allowing the determination of scalar coupling constants. For an angle of rotation of 45.5 degrees , the bicelles orient with their normal perpendicular to the spinning axis leading to the observation of strong residual dipolar couplings and chemical shift variations of the 15N resonances.
Collapse
|
20
|
Thiele CM. Scaling the Alignment of Small Organic Molecules in Substituted Polyglutamates by Variable‐Angle Sample Spinning. Angew Chem Int Ed Engl 2005; 44:2787-2790. [PMID: 15798988 DOI: 10.1002/anie.200461532] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Christina M Thiele
- Institut für Analytische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany, Fax: (+49) 341-97-36115
| |
Collapse
|
21
|
Thiele CM. Skalierung der Ausrichtung kleiner organischer Moleküle in substituierten Polyglutamaten durch Probenrotation bei unterschiedlichen Winkeln (VASS). Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200461532] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
McDermott AE. Structural and dynamic studies of proteins by solid-state NMR spectroscopy: rapid movement forward. Curr Opin Struct Biol 2005; 14:554-61. [PMID: 15465315 DOI: 10.1016/j.sbi.2004.09.007] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 08/24/2004] [Accepted: 09/03/2004] [Indexed: 10/26/2022]
Abstract
Starting only a few years ago, many solid-state NMR spectroscopy laboratories have become engaged in solving the complete structures of biological macromolecules using high-resolution methods based on magic angle spinning. These efforts typically involve structurally homogeneous samples, and utilize recently developed pulse sequences for the sequential correlation of resonances, the detection of tertiary contacts and the characterization of torsion angles. Thereby, systems have been studied that evaded other, more established, structure determination methods.
Collapse
Affiliation(s)
- Ann E McDermott
- Columbia University, Department of Chemistry, MC 3113, 3000 Broadway, New York, New York 10027, USA.
| |
Collapse
|
23
|
Nusair NA, Lorigan GA. Investigating the structural and dynamic properties of n-doxylstearic acid in magnetically-aligned phospholipid bilayers by X-band EPR spectroscopy. Chem Phys Lipids 2005; 133:151-64. [PMID: 15642584 DOI: 10.1016/j.chemphyslip.2004.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Revised: 09/28/2004] [Accepted: 09/28/2004] [Indexed: 11/20/2022]
Abstract
X-band electron paramagnetic resonance (EPR) spectroscopy has been employed to investigate the dynamic properties of magnetically-aligned phospholipid bilayers (bicelles) based on the molecular order parameters (S(mol)), the hyperfine splitting values and the line shapes of the EPR spectra. For the first time, a series of EPR spectra of n-doxylstearic acid spin-labels (n = 5, 7, 12, and 16) incorporated into Tm3+-doped parallel-aligned, Dy3+-doped perpendicular-aligned, and randomly dispersed 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dihexanoyl-sn-glycero-3-phosphocholine (DMPC/DHPC) bicelles with respect to the direction of the static magnetic field have been investigated as a function of cholesterol content and temperature variation to characterize the orientational aspects along the hydrocarbon acyl chains. Important general observations are that under conditions for which the bicelle is poised in the liquid crystalline phase, the degree of ordering decreases as the nitroxide moiety is transferred toward the end of the stearic acid acyl chains. The addition of cholesterol increases the phase transition temperature and alignment temperature of the DMPC/DHPC phospholipid bilayers and increases the chain order. However, increasing the temperature of the bicelle system decreases the chain order. This report reveals that the dynamic properties of DMPC/DHPC bicelles agree well with other biological and model membrane systems. The results indicate that magnetically-aligned phospholipid bilayers are an excellent model membrane system.
Collapse
Affiliation(s)
- Nisreen A Nusair
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | | |
Collapse
|
24
|
Bechinger B, Aisenbrey C, Bertani P. The alignment, structure and dynamics of membrane-associated polypeptides by solid-state NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1666:190-204. [PMID: 15519315 DOI: 10.1016/j.bbamem.2004.08.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 08/06/2004] [Indexed: 10/26/2022]
Abstract
Solid-state NMR spectroscopy is being developed at a fast pace for the structural investigation of immobilized and non-crystalline biomolecules. These include proteins and peptides associated with phospholipid bilayers. In contrast to solution NMR spectroscopy, where complete or almost complete averaging leads to isotropic values, the anisotropic character of nuclear interactions is apparent in solid-state NMR spectra. In static samples the orientation dependence of chemical shift, dipolar or quadrupolar interactions, therefore, provides angular constraints when the polypeptides have been reconstituted into oriented membranes. Furthermore, solid-state NMR spectroscopy of aligned samples offers distinct advantages in allowing access to dynamic processes such as topological equilibria or rotational diffusion in membrane environments. Alternatively, magic angle sample spinning (MAS) results in highly resolved NMR spectra, provided that the sample is sufficiently homogenous. MAS spinning solid-state NMR spectra allow to measure distances and dihedral angles with high accuracy. The technique has recently been developed to selectively establish through-space and through-bond correlations between nuclei, similar to the approaches well-established in solution-NMR spectroscopy.
Collapse
Affiliation(s)
- Burkhard Bechinger
- Faculté de chimie, Institut le Bel, 4, rue Blaise Pascal, 67000 Strasbourg, France.
| | | | | |
Collapse
|
25
|
Triba MN, Warschawski DE, Devaux PF. Reinvestigation by phosphorus NMR of lipid distribution in bicelles. Biophys J 2004; 88:1887-901. [PMID: 15626702 PMCID: PMC1305242 DOI: 10.1529/biophysj.104.055061] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mixtures of dimyristoyl-phosphatidylcholine (DMPC) and dihexanoyl-phosphatidylcholine (DHPC) in water form disks also called bicelles and different bilayer organizations when the mol ratio of the two lipids and the temperature are varied. The spontaneous alignment in a magnetic field of these bilayers above the transition temperature T(m) of DMPC is an attractive property that was successfully used to investigate protein structure by NMR. In this article, we have attempted to give an overview of all structural transformations of DMPC/DHPC mixtures that can be inferred from broad band (31)P-NMR spectroscopy between 5 and 60 degrees C. We show that above a critical temperature, T(v), perforated vesicles progressively replace alignable structures. The holes in these vesicles disappear above a new temperature threshold, T(h). The driving force for these temperature-dependent transformations that has been overlooked in previous studies is the increase of DHPC miscibility in the bilayer domain above T(m). Accordingly, we propose a new model (the "mixed bicelle" model) that emphasizes the consequence of the mixing. This investigation shows that the various structures of DMPC in the presence of increasing mol ratios of the short-chain DHPC is reminiscent of the observation put forward by several laboratories investigating solubilization and reconstitution of biological membranes.
Collapse
Affiliation(s)
- Mohamed N Triba
- Unité Mixte de Recherche No. 7099, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | | | | |
Collapse
|
26
|
Park GH, Martin RW, Sakellariou D, Pines A, Shahkhatuni AG, Shahkhatuni AA, Panosyan HA. Variable angle spinning (VAS) NMR study of solvent effects in liquid crystalline solutions of 13C–iodomethane. Chem Phys Lett 2004. [DOI: 10.1016/j.cplett.2004.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Zandomeneghi G, Meier BH. Adiabatic-passage cross polarization in N-15 NMR spectroscopy of peptides weakly associated to phospholipids: determination of large RDC. JOURNAL OF BIOMOLECULAR NMR 2004; 30:303-309. [PMID: 15754056 DOI: 10.1007/s10858-004-3097-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Accepted: 08/03/2004] [Indexed: 05/24/2023]
Abstract
Structural information can be extracted from one-bond residual dipolar couplings (RDC) measured in NMR spectra of systems in field-ordered media. RDC can be on the order of J-couplings if the anisotropy of alignment is approximately 10(-2), 10-fold stronger than that typically used for structural studies of water-soluble proteins. In such systems the performance of (1)H--> (15)N polarization transfer methods of the INEPT type is not satisfactory. In this study we show the effectiveness of adiabatic-passage cross-polarization (APCP) in transferring the (1)H--> (15)N polarization in the bicelle-associated peptide Leucine Enkephalin (Lenk). APCP is efficient both in static samples and in samples spun at the magic angle (MAS) or any other angle of the spinning axis to the magnetic field (variable-angle spinning, VAS). The anisotropic spectrum of an aligned static sample and the isotropic spectrum of the sample under MAS provide a set of possible values for the (1)H-(15)N RDC of phospholipid-associated Lenk. The unambiguous determination of the (1)H-(15)N RDC was accomplished by means of VAS experiments.
Collapse
|
28
|
Kishore AI, Prestegard JH. Molecular orientation and conformation of phosphatidylinositides in membrane mimetics using variable angle sample spinning (VASS) NMR. Biophys J 2004; 85:3848-57. [PMID: 14645074 PMCID: PMC1303686 DOI: 10.1016/s0006-3495(03)74799-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
For many biological molecules, determining their geometry as they exist in a membrane environment is a crucial step in understanding their function. Variable angle sample spinning (VASS) NMR provides a new route to obtaining geometry information on membrane-associating molecules; it has been used here to scale and separate anisotropic contributions to phosphorus chemical shifts in NMR spectra of phosphatidylinositol phosphates. The procedure allows spectral assignment via correlation with isotropic chemical shifts and determination of a family of probable headgroup orientations via interpretation of anisotropic shift contributions. The molecules studied include phosphtidylinositol-4-phosphate (PI(4)P) and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). A membrane-like environment is provided by a dispersion of alkyl-poly(ethylene) glycols and n-alcohols that forms a field-orienting liquid crystal with a director that can be manipulated by varying the sample spinning axis. The experiments presented indicate that the variable angle sample spinning method will provide a direct approach for assignment and extraction of structural information from membrane-associating biomolecules labeled with a wider variety of NMR active isotopes.
Collapse
Affiliation(s)
- Anita I Kishore
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
29
|
Affiliation(s)
- B M Fung
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019-3051, USA.
| |
Collapse
|
30
|
Nusair NA, Tiburu EK, Dave PC, Lorigan GA. Investigating fatty acids inserted into magnetically aligned phospholipid bilayers using EPR and solid-state NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2004; 168:228-237. [PMID: 15140432 DOI: 10.1016/j.jmr.2004.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 03/05/2004] [Indexed: 05/24/2023]
Abstract
This is the first time (2)H solid-state NMR spectroscopy and spin-labeled EPR spectroscopy have been utilized to probe the structural orientation and dynamics of a stearic acid incorporated into magnetically aligned phospholipid bilayers or bicelles. The data gleaned from the two different techniques provide a more complete description of the bilayer membrane system. Both methods provided similar qualitative information on the phospholipid bilayer, high order, and low motion for the hydrocarbon segment close to the carboxyl groups of the stearic acid and less order and more rapid motion at the end towards the terminal methyl groups. However, the segmental order parameters differed markedly due to the different orientations that the nitroxide and C-D bond axes transform with the various stearic acid acyl chain conformations, and because of the difference in dynamic sensitivity between NMR and EPR over the timescales examined. 5-, 7-, 12-, and 16-doxylstearic acids spin-labels were used in the EPR experiments and stearic acid-d(35) was used in the solid-state NMR experiments. The influence of the addition of cholesterol and the variation of temperature on the fatty acid hydrocarbon chain ordering in the DMPC/DHPC phospholipid bilayers was also studied. Cholesterol increased the degree of ordering of the hydrocarbon chains. Conversely, as the temperature of the magnetically aligned phospholipid bilayers increased, the order parameters decreased due to the higher random motion of the acyl chain of the stearic acid. The results indicate that magnetically aligned phospholipid bilayers are an excellent model membrane system and can be used for both NMR and EPR studies.
Collapse
Affiliation(s)
- Nisreen A Nusair
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | | | | | | |
Collapse
|