1
|
Guest RM, Aberizk K, Addington J, Bearden CE, Cadenhead KS, Cannon TD, Cornblatt BA, Keshavan MS, Mathalon DH, Perkins DO, Stone WS, Woods SW, Walker EF. Cultural variables influence performance on the MATRICS Consensus Cognitive Battery among people at clinical high risk for psychosis. Schizophr Res 2025; 280:60-68. [PMID: 40250131 DOI: 10.1016/j.schres.2025.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/23/2025] [Accepted: 04/13/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND & HYPOTHESIS Prior studies suggest that cognitive batteries normed in the U.S. may not be suitable for populations that differ in English proficiency and/or cultural background. Here, we investigated how cultural variables (i.e., length of residence, native English speaker) influence cognitive performance within a U.S. and Canadian sample of people at clinical high risk for psychosis (CHR-P) and healthy control (HC) participants. STUDY DESIGN The sample consisted of 925 adolescents and adults (664 CHR-P, 261 HC) from the second cohort of the North American Prodromal Longitudinal Study, including 73 (7.9 %) foreign-born participants and 94 (10.2 %) who reported a language other than English as their first language. Multigroup structural equation modeling was used to estimate effects of cultural variables on MATRICS Consensus Cognitive Battery (MCCB) subtests, separately in each diagnostic group. STUDY RESULTS A structural model that generated unique estimates for all parameters in group models was selected. For CHR-P, longer length of residence in U.S./Canada related to better performance on Animal Naming (β = 0.09, p = .01), whereas being a native English speaker related to better performance on Letter-Number Span (β = 0.14, p = .001) and Hopkins Verbal Learning Test - Revised (β = 0.10, p = .03). In contrast, no such relationships were observed among HCs. CONCLUSIONS Findings extend our understanding of how cultural variables may influence presentation of psychosis-risk syndromes and suggest that being a non-native English speaker or having recently immigrated may hinder performance on certain verbal neuropsychological measures.
Collapse
Affiliation(s)
- Ryan M Guest
- Department of Psychology, Emory University, Atlanta, GA, USA.
| | - Katrina Aberizk
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Jean Addington
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Carrie E Bearden
- Departments of Psychiatry and Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California, USA
| | - Kristin S Cadenhead
- Department of Psychiatry, University of California San Diego, San Diego, California, USA
| | - Tyrone D Cannon
- Department of Psychiatry, Yale University, New Haven, CT, USA; Department of Psychology, Yale University, New Haven, CT, USA
| | - Barbara A Cornblatt
- Department of Psychiatry, Zucker Hillside Hospital, Glen Oaks, New York, USA
| | - Matcheri S Keshavan
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Daniel H Mathalon
- Department of Psychiatry, University of California San Francisco, San Francisco, California, USA; San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina, USA
| | - William S Stone
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Scott W Woods
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Elaine F Walker
- Department of Psychology, Emory University, Atlanta, GA, USA
| |
Collapse
|
2
|
Ye S, Guan X, Xiu M, Wu F, Huang Y. Early efficacy of rTMS intervention at week 2 predicts subsequent responses at week 24 in schizophrenia in a randomized controlled trial. Neurotherapeutics 2024; 21:e00392. [PMID: 38944636 PMCID: PMC11579878 DOI: 10.1016/j.neurot.2024.e00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique for modulating cortical activities and improving neural plasticity. Several studies investigated the effects of rTMS, etc., but the results are inconsistent. This study was designed to examine whether rTMS applied on the left dorsolateral prefrontal cortex (l-DLPFC) showed an effect on improving cognitive deficits in SZ and whether the early efficacy could predict efficacy at subsequent follow-ups. Cognitive ability was assessed using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) scale at baseline, weeks 2, 6, and 24. We found a significant interaction between time (weeks 0, 2, 6, and 24) and intervention on immediate memory and RBANS total scores (p = 0.02 and p = 0.04), indicating that both 10-Hz and 20-Hz rTMS stimulations had a delayed beneficial effect on immediate memory in SZ. Moreover, we found that 20-Hz rTMS stimulation, but not 10-Hz rTMS improved immediate memory at week 6 compared to the sham group (p = 0.029). More importantly, improvements in immediate memory at week 2 were positively correlated with improvements at week 24 (β = 0.461, t = 3.322, p = 0.002). Our study suggests that active rTMS was beneficial for cognitive deficits in patients with SZ. Furthermore, efficacy at week 2 could predict the subsequent efficacy at 24-week follow-up.
Collapse
Affiliation(s)
- Suzhen Ye
- Department of Rehabilitation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoni Guan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Meihong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Yuanyuan Huang
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Bogie BJ, Noël C, Gu F, Nadeau S, Shvetz C, Khan H, Rivard MC, Bouchard S, Lepage M, Guimond S. Using virtual reality to improve verbal episodic memory in schizophrenia: A proof-of-concept trial. Schizophr Res Cogn 2024; 36:100305. [PMID: 38486790 PMCID: PMC10937232 DOI: 10.1016/j.scog.2024.100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024]
Abstract
Background Schizophrenia is associated with impairments in verbal episodic memory. Strategy for Semantic Association Memory (SESAME) training represents a promising cognitive remediation program to improve verbal episodic memory. Virtual reality (VR) may be a novel tool to increase the ecological validity and transfer of learned skills of traditional cognitive remediation programs. The present proof-of-concept study aimed to assess the feasibility, acceptability, and preliminary efficacy of a VR-based cognitive remediation module inspired by SESAME principles to improve the use of verbal episodic memory strategies in schizophrenia. Methods Thirty individuals with schizophrenia/schizoaffective disorder completed this study. Participants were randomized to either a VR-based verbal episodic memory training condition inspired by SESAME principles (intervention group) or an active control condition (control group). In the training condition, a coach taught semantic encoding strategies (active rehearsal and semantic clustering) to help participants remember restaurant orders in VR. In the active control condition, participants completed visuospatial puzzles in VR. Attrition rate, participant experience ratings, and cybersickness questionnaires were used to assess feasibility and acceptability. Trial 1 of the Hopkins Verbal Learning Test - Revised was administered pre- and post-intervention to assess preliminary efficacy. Results Feasibility was demonstrated by a low attrition rate (5.88 %), and acceptability was demonstrated by limited cybersickness and high levels of enjoyment. Although the increase in the number of semantic clusters used following the module did not reach conventional levels of statistical significance in the intervention group, it demonstrated a notable trend with a medium effect size (t = 1.48, p = 0.15, d = 0.54), in contrast to the control group where it remained stable (t = 0.36, p = 0.72, d = 0.13). These findings were similar for the semantic clustering ratio in the intervention (t = 1.61, p = 0.12, d = 0.59) and control (t = 0.36, p = 0.72, d = 0.13) groups. There was no significant change in the number of recalled words in either group following VR immersion. Discussion This VR intervention was feasible, acceptable, and may be useful for improving the use of semantic encoding strategies. These findings support the use of more ecological approaches for the treatment of cognitive impairments in schizophrenia, such as VR-based cognitive remediation.
Collapse
Affiliation(s)
- Bryce J.M. Bogie
- MD/PhD Program, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- The Royal's Institute of Mental Health Research, Royal Ottawa Mental Health Centre, Ottawa, ON, Canada
| | - Chelsea Noël
- Department of Psychology, Lakehead University, Thunder Bay, ON, Canada
| | - Feng Gu
- The Royal's Institute of Mental Health Research, Royal Ottawa Mental Health Centre, Ottawa, ON, Canada
| | - Sébastien Nadeau
- Department of Psychoeducation and Psychology, Université du Québec en Outaouais, Gatineau, QC, Canada
| | - Cecelia Shvetz
- The Royal's Institute of Mental Health Research, Royal Ottawa Mental Health Centre, Ottawa, ON, Canada
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Hassan Khan
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Marie-Christine Rivard
- Department of Psychoeducation and Psychology, Université du Québec en Outaouais, Gatineau, QC, Canada
| | - Stéphane Bouchard
- Department of Psychoeducation and Psychology, Université du Québec en Outaouais, Gatineau, QC, Canada
- Centre de recherche, Centre Intégré de Santé et de Services Sociaux de l'Outaouais, Gatineau, QC, Canada
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Martin Lepage
- Douglas Research Centre, Montréal, QC, Canada
- Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Synthia Guimond
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- The Royal's Institute of Mental Health Research, Royal Ottawa Mental Health Centre, Ottawa, ON, Canada
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
- Department of Psychoeducation and Psychology, Université du Québec en Outaouais, Gatineau, QC, Canada
- Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
4
|
Bogie BJM, Noël C, Alftieh A, MacDonald J, Lei YT, Mongeon J, Mayaud C, Dans P, Guimond S. Verbal memory impairments in mood disorders and psychotic disorders: A systematic review of comparative studies. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110891. [PMID: 37931773 DOI: 10.1016/j.pnpbp.2023.110891] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Mood and psychotic disorders are both associated with verbal memory impairments. Verbal memory represents an important treatment target for both disorders. However, whether the neurocognitive and neurophysiological profiles of verbal memory impairments differ between specific disorders within these two diagnostic categories and healthy controls remains unclear. The current systematic review synthesized findings from comparative studies which used behavioural and neuroimaging tasks to investigate verbal memory impairments between: (1) mood disorder, psychotic disorder, and healthy control groups; and (2) mood disorder without psychotic features, mood disorder with psychotic features, and healthy control groups. METHODS The search strategy combined terms related to three main concepts: 'mood disorders', 'psychotic disorders', and 'verbal memory'. Searches were executed in Embase, MEDLINE, PsycInfo, and PubMed databases. A total of 38 articles met the full eligibility criteria and were included in the final narrative synthesis. Findings were stratified by memory domain (overall composite score, verbal working memory, immediate recall, delayed recall, and recognition memory) and by illness phase (acute and non-acute). RESULTS Mood and psychotic disorders displayed consistent verbal memory impairments compared to healthy controls during the acute and non-acute phases. Few significant differences were identified in the literature between mood and psychotic disorders, and between mood disorders with and without psychotic features. Individuals with schizophrenia were found to have decreased immediate and delayed verbal recall performance compared to bipolar disorder groups during the acute phase. Major depressive disorder groups with psychotic features were also found to have decreased delayed verbal recall performance compared to those without psychosis during the acute phase. No consistent differences were identified between mood and psychotic disorders during the non-acute phase. Finally, preliminary evidence suggests there may be functional abnormalities in important frontal and temporal brain regions related to verbal memory difficulties in both mood and psychotic disorders. DISCUSSION The current findings have potential implications for the diagnosis and treatment of cognitive impairments in mood and psychotic disorders. Verbal recall memory may serve as a sensitive tool in the risk stratification of cognitive impairments for certain mood and psychotic disorders. Moreover, since no widespread differences between clinical groups were identified, the evidence supports providing targeted interventions for verbal memory, such as pharmacological and non-pharmacological interventions, through a trans-diagnostic approach in mood and psychotic disorders.
Collapse
Affiliation(s)
- Bryce J M Bogie
- MD/PhD Program, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; The Royal's Institute of Mental Health Research, Royal Ottawa Mental Health Centre, Ottawa, ON, Canada
| | - Chelsea Noël
- Department of Psychology, Lakehead University, Thunder Bay, ON, Canada
| | - Ahmad Alftieh
- The Royal's Institute of Mental Health Research, Royal Ottawa Mental Health Centre, Ottawa, ON, Canada
| | - Julia MacDonald
- The Royal's Institute of Mental Health Research, Royal Ottawa Mental Health Centre, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Ya Ting Lei
- Department of Psychoeducation and Psychology, Université du Québec en Outaouais, Gatineau, QC, Canada
| | - Jamie Mongeon
- The Royal's Institute of Mental Health Research, Royal Ottawa Mental Health Centre, Ottawa, ON, Canada
| | - Claire Mayaud
- Department of Psychology, University of Bordeaux, France
| | - Patrick Dans
- Temerty Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Synthia Guimond
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; The Royal's Institute of Mental Health Research, Royal Ottawa Mental Health Centre, Ottawa, ON, Canada; Department of Psychoeducation and Psychology, Université du Québec en Outaouais, Gatineau, QC, Canada; Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
5
|
Gao T, Wang X, Cen H, Li X, Zhai Z, Lu C, Dong Y, Zhang S, Zhuo K, Xiang Q, Wang Y, Liu D. Cross-modal associative memory impairment in schizophrenia. Neuropsychologia 2023; 191:108721. [PMID: 37918479 DOI: 10.1016/j.neuropsychologia.2023.108721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Impaired associative memory function in patients with schizophrenia has received considerable attention. However, previous studies have primarily concentrated on unisensory materials, which limits our understanding of the broader implications of this impairment. In this study, we sought to expand on this knowledge by examining two types of associative memory domains in individuals with schizophrenia, leveraging both visual (Vis) and auditory (Aud) materials. A total of 32 patients with schizophrenia and 29 healthy controls were recruited to participate in the study. Each participant participated in an experiment composed of three paradigms in which different abstract materials (Aud-Aud, Aud-Vis, and Vis-Vis) were presented. Subsequently, the discriminability scores of the two groups were calculated and compared in different modal tasks. Results from the study indicated that individuals with schizophrenia demonstrated varying degrees of associative memory dysfunction in both the same and cross-modalities, with the latter having a significantly lower score than healthy controls (t = 4.120, p < 0.001). Additionally, the cross-modal associative memory function was significantly and negatively correlated with the severity of negative symptoms among individuals diagnosed with schizophrenia (r = -0.362, p = 0.042). This study provides evidence of abnormalities in the processing and memorization of information that integrates multiple sensory modalities in individuals with schizophrenia. This is of great significance for further understanding the cognitive symptoms and pathological mechanisms of schizophrenia, potentially guiding the development of relevant interventions and treatment methods.
Collapse
Affiliation(s)
- Tianhao Gao
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, 200040, China; Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Xiaoliang Wang
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Haixin Cen
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Xuan Li
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Zhaolin Zhai
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, 200040, China; Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Chang Lu
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, 200040, China; Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Yuke Dong
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, 200040, China; Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Suzhen Zhang
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, 200040, China; Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Kaiming Zhuo
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Qiong Xiang
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Yan Wang
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China.
| | - Dengtang Liu
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, 200040, China; Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China; Institute of Mental Health, Fudan University, Shanghai, 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
6
|
Ghaneirad E, Borgolte A, Sinke C, Čuš A, Bleich S, Szycik GR. The effect of multisensory semantic congruency on unisensory object recognition in schizophrenia. Front Psychiatry 2023; 14:1246879. [PMID: 38025441 PMCID: PMC10646423 DOI: 10.3389/fpsyt.2023.1246879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Multisensory, as opposed to unisensory processing of stimuli, has been found to enhance the performance (e.g., reaction time, accuracy, and discrimination) of healthy individuals across various tasks. However, this enhancement is not as pronounced in patients with schizophrenia (SZ), indicating impaired multisensory integration (MSI) in these individuals. To the best of our knowledge, no study has yet investigated the impact of MSI deficits in the context of working memory, a domain highly reliant on multisensory processing and substantially impaired in schizophrenia. To address this research gap, we employed two adopted versions of the continuous object recognition task to investigate the effect of single-trail multisensory encoding on subsequent object recognition in 21 schizophrenia patients and 21 healthy controls (HC). Participants were tasked with discriminating between initial and repeated presentations. For the initial presentations, half of the stimuli were audiovisual pairings, while the other half were presented unimodal. The task-relevant stimuli were then presented a second time in a unisensory manner (either auditory stimuli in the auditory task or visual stimuli in the visual task). To explore the impact of semantic context on multisensory encoding, half of the audiovisual pairings were selected to be semantically congruent, while the remaining pairs were not semantically related to each other. Consistent with prior studies, our findings demonstrated that the impact of single-trial multisensory presentation during encoding remains discernible during subsequent object recognition. This influence could be distinguished based on the semantic congruity between the auditory and visual stimuli presented during the encoding. This effect was more robust in the auditory task. In the auditory task, when congruent multisensory pairings were encoded, both participant groups demonstrated a multisensory facilitation effect. This effect resulted in improved accuracy and RT performance. Regarding incongruent audiovisual encoding, as expected, HC did not demonstrate an evident multisensory facilitation effect on memory performance. In contrast, SZs exhibited an atypically accelerated reaction time during the subsequent auditory object recognition. Based on the predictive coding model we propose that this observed deviations indicate a reduced semantic modulatory effect and anomalous predictive errors signaling, particularly in the context of conflicting cross-modal sensory inputs in SZ.
Collapse
Affiliation(s)
- Erfan Ghaneirad
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Anna Borgolte
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Christopher Sinke
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Division of Clinical Psychology and Sexual Medicine, Hannover Medical School, Hannover, Germany
| | - Anja Čuš
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Stefan Bleich
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine, Hanover, Germany
| | - Gregor R. Szycik
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| |
Collapse
|
7
|
Le GH, Gillissie ES, Rhee TG, Cao B, Alnefeesi Y, Guo Z, Di Vincenzo JD, Jawad MY, March AM, Ramachandra R, Lui LMW, McIntyre RS. Efficacy, safety, and tolerability of ulotaront (SEP-363856, a trace amine-associated receptor 1 agonist) for the treatment of schizophrenia and other mental disorders with similar pathophysiology: a systematic review of preclinical and clinical trials. Expert Opin Investig Drugs 2023:1-15. [PMID: 37096491 DOI: 10.1080/13543784.2023.2206559] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
INTRODUCTION Schizophrenia is a mental illness that can disrupt emotions, perceptions, cognition, and reduce quality of life. The classical approach to treat schizophrenia uses typical and atypical antipsychotics; however, limitations include low efficacy in mitigating negative symptoms and cognitive dysfunctions, and a range of adverse effects. Evidence has accumulated on trace amine-associated receptor 1 (TAAR1) as a novel therapeutic target for treating schizophrenia. This systematic review investigates the available evidence on a TAAR1 agonist, ulotaront, as a treatment for schizophrenia. METHODS A systematic search was conducted on PubMed/MEDLINE, and Ovid databases for English-published articles from inception to December 18, 2022. Literature focusing on the association between ulotaront and schizophrenia were evaluated based on an inclusion/exclusion criterion. Selected studies were assessed for risk of bias, using Cochrane Collaboration tool, and summarized in a table to generate discussion topics. RESULTS Three clinical, two comparative, and five preclinical studies examining ulotaront's pharmacology, tolerability and safety, and/or efficacy were identified. Results indicate that ulotaront has a differing adverse effects profile from other antipsychotics, may mitigate metabolic-related adverse effects commonly associated with antipsychotics, and may be effective for treating positive and negative symptoms. CONCLUSIONS Findings from available literature present ulotaront as a potential and promising alternative treatment method for schizophrenia. Despite this, our results were limited due to lack of clinical trials on ulotaront's long-term efficacy and mechanisms of action. Future research should focus on these limitations to elucidate ulotaront's efficacy and safety for the treatment of schizophrenia and other mental disorders with similar pathophysiology.
Collapse
Affiliation(s)
- Gia Han Le
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Emily S Gillissie
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
| | - Taeho Greg Rhee
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA
- VA New England Mental Illness, Research, Education and Clinical Center (MIRECC), VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Public Health Sciences, School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Bing Cao
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing, 400715, P. R. China
| | - Yazen Alnefeesi
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Ziji Guo
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Joshua D Di Vincenzo
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Muhammad Youshay Jawad
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
| | - Andrew M March
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
| | - Ranuk Ramachandra
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Leanna M W Lui
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| |
Collapse
|
8
|
Hui CLM, See SHW, Chiu TC, Pintos AS, Kroyer JM, Suen YN, Lee EHM, Chan SKW, Chang WC, Elvevåg B, Chen EYH. What Drives Animal Fluency Performance in Cantonese-Speaking Chinese Patients with Adult-Onset Psychosis? Brain Sci 2023; 13:brainsci13030372. [PMID: 36979182 PMCID: PMC10046392 DOI: 10.3390/brainsci13030372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Among the numerous studies investigating semantic factors associated with functioning in psychotic patients, most have been conducted on western populations. By contrast, the current cross-sectional study involved native Cantonese-speaking Chinese participants. Using the category fluency task, we compared performance between patients and healthy participants and examined clinical and sociodemographic correlates. First-episode psychosis patients (n = 356) and gender- and age-matched healthy participants (n = 35) were asked to generate as many ‘animals’ as they could in a minute. As expected, patients generated fewer correct responses (an average of 15.5 vs. 22.9 words), generated fewer clusters (an average of 3.7 vs. 5.4 thematically grouped nouns), switched less between clusters (on average 8.0 vs. 11.9 switches) and, interestingly, produced a larger percentage of Chinese zodiac animals than healthy participants (an average of 37.7 vs. 24.2). However, these significant group differences in the clusters and switches disappeared when the overall word production was controlled for. Within patients, education was the strongest predictor of category fluency performance (namely the number of correct responses, clusters, and switches). The findings suggest that an overall slowness in patients may account for the group differences in category fluency performance rather than any specific abnormality per se.
Collapse
Affiliation(s)
- Christy Lai-Ming Hui
- Department of Psychiatry, School of Clinical Medicine, University of Hong Kong, Hong Kong, China
- Correspondence: ; Tel.: +852-2255-3064; Fax: +852-2855-1345
| | - Sally Hiu-Wah See
- Department of Psychiatry, School of Clinical Medicine, University of Hong Kong, Hong Kong, China
| | - Tsz-Ching Chiu
- Department of Psychiatry, School of Clinical Medicine, University of Hong Kong, Hong Kong, China
| | - Andrea Stephanie Pintos
- Department of Psychiatry, School of Clinical Medicine, University of Hong Kong, Hong Kong, China
| | - Johanna M. Kroyer
- Department of Psychiatry, School of Clinical Medicine, University of Hong Kong, Hong Kong, China
| | - Yi-Nam Suen
- Department of Psychiatry, School of Clinical Medicine, University of Hong Kong, Hong Kong, China
| | - Edwin Ho-Ming Lee
- Department of Psychiatry, School of Clinical Medicine, University of Hong Kong, Hong Kong, China
| | - Sherry Kit-Wa Chan
- Department of Psychiatry, School of Clinical Medicine, University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, University of Hong Kong, Hong Kong, China
| | - Wing-Chung Chang
- Department of Psychiatry, School of Clinical Medicine, University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, University of Hong Kong, Hong Kong, China
| | - Brita Elvevåg
- Department of Clinical Medicine, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway
| | - Eric Yu-Hai Chen
- Department of Psychiatry, School of Clinical Medicine, University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Roes MM, Chinchani AM, Woodward TS. Reduced Functional Connectivity in Brain Networks Underlying Paired Associates Memory Encoding in Schizophrenia. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:61-70. [PMID: 34303847 DOI: 10.1016/j.bpsc.2021.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/14/2021] [Accepted: 07/11/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Deficits in relational episodic memory encoding are characteristic of schizophrenia (SZ), but whole-brain multivariate analyses of these deficits have been lacking. Open science has provided task-based functional magnetic resonance imaging (fMRI) data investigating paired associate encoding in SZ, but it has not yet been mobilized to address this gap in the literature. Therefore, in this study, we use previously unpublished task fMRI data to conduct the first network-level investigation of impaired relational episodic encoding in SZ. METHODS Using fMRI data acquired from 40 healthy control participants and 40 age- and sex-matched persons with SZ, we examined the networks involved in successful versus unsuccessful encoding of verbal paired associates using an associative semantic strategy. RESULTS Constrained principal component analysis for fMRI revealed 3 distinct functional networks recruited during encoding: a responding network, a linguistic processing/attention network, and the default mode network. Relative to the healthy control group, the SZ group exhibited aberrant activity in all 3 networks during successful encoding; namely, hypoactivation in the linguistic processing/attention network, lower peak activation in the responding network, and weaker suppression in the default mode network. Independent of group effects, a pattern of stronger anticorrelating linguistic processing/attention-default mode network activity during successful encoding significantly predicted subsequent retrieval of paired associates. CONCLUSIONS Together with previous observations of language network hypoactivation during controlled semantic processes, these results suggest that abnormalities in networks representing language and meaning may contribute to difficulties employing deep semantic strategies during relational episodic encoding in SZ.
Collapse
Affiliation(s)
- Meighen M Roes
- Department of Psychology, Vancouver, British Columbia, Canada; BC Mental Health and Substance Use Research Institute, Provincial Health Services Authority, Vancouver, British Columbia, Canada
| | - Abhijit M Chinchani
- Department of Psychology, Vancouver, British Columbia, Canada; Department of Bioinformatics, Vancouver, British Columbia, Canada
| | - Todd S Woodward
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada; BC Mental Health and Substance Use Research Institute, Provincial Health Services Authority, Vancouver, British Columbia, Canada.
| |
Collapse
|
10
|
Carpendale EJ, Cullen AE, Dickson H, Laurens KR. Dissociable impairments of verbal learning differentiate childhood risk profiles for schizophrenia. Schizophr Res Cogn 2022; 28:100239. [PMID: 35242608 PMCID: PMC8861403 DOI: 10.1016/j.scog.2022.100239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/18/2022] Open
Abstract
Poor verbal learning and memory function is well-documented among individuals with schizophrenia and those at clinical high-risk for psychosis. This study aimed to identify these impairments among children aged 9–12 years with different schizophrenia risk profiles (family history or antecedents of schizophrenia, each of higher[H] or lower[L] risk load) relative to typically developing peers. These three groups were recruited via community-screening, and differentiated for analysis into: typically developing children (TD = 45); children who had 1 first- or ≥2 second-degree affected relatives (FHxH = 16) or one second-degree relative (FHxL = 15); and children presenting multiple replicated antecedents of schizophrenia whose clinical symptoms persisted at 2- and/or 4-year follow-up (ASzH = 16) or remitted during follow-up (ASzL = 16). Verbal learning/memory measures assessed at baseline (age 9–12 years) included: (i) total recall; (ii) trial 1 recall; (iii) learning score; (iv) intrusions; (v) total words lost; and (vi) serial position patterns. Analyses of variance indicated that FHxH and ASzH youth demonstrated impaired total recall compared to TD and ASzL children and lost significantly more words between trials than TD and FHxL children. Learning score was impaired among both FHxH and FHxL relative to TD and ASzL children. Thus, among putatively at-risk children, total words recalled and lost distinguished those with higher risk load (by family history or persistent antecedent symptomology), whereas learning score indexed familial vulnerability. Follow-up of the sample is needed to determine the capacity of verbal learning deficits to predict later illness and provide a potential avenue for early remediation to improve clinical or functional outcomes.
Collapse
Affiliation(s)
- Emma J. Carpendale
- Queensland University of Technology (QUT), School of Psychology and Counselling, Brisbane, Queensland, Australia
| | - Alexis E. Cullen
- King's College London, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, London, United Kingdom
| | - Hannah Dickson
- King's College London, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, London, United Kingdom
| | - Kristin R. Laurens
- Queensland University of Technology (QUT), School of Psychology and Counselling, Brisbane, Queensland, Australia
- King's College London, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, London, United Kingdom
- University of New South Wales, School of Psychiatry, Sydney, New South Wales, Australia
- Corresponding author at: School of Psychology and Counselling, O Block, B Wing, Level 5, Queensland University of Technology, Victoria Park Road, Kelvin Grove, QLD 4059, Australia.
| |
Collapse
|
11
|
Leong CWY, Leow JWS, Grunstein RR, Naismith SL, Teh JZ, D'Rozario AL, Saini B. A systematic scoping review of the effects of central nervous system active drugs on sleep spindles and sleep-dependent memory consolidation. Sleep Med Rev 2022; 62:101605. [PMID: 35313262 DOI: 10.1016/j.smrv.2022.101605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/15/2022] [Accepted: 01/26/2022] [Indexed: 11/26/2022]
Abstract
Sleep spindles are key electroencephalogram (EEG) oscillatory events that occur during non-rapid eye movement (NREM) sleep. Deficits in sleep spindles are present in populations with sleep and neurological disorders, and in severe mental illness. Pharmacological manipulation of these waveforms is of growing interest with therapeutic potential in targeting spindle deficits relating to memory impairment. This review integrates studies that provide insight into the feasibility of manipulating sleep spindles by using psychoactive drug classes, with consequent effects on sleep-dependent memory. Most studies showed that benzodiazepines and Z-drugs consistently enhanced sleep spindle activity unlike other psychoactive drug classes reviewed. However, how these spindle enhancements translate into improved sleep-dependent memory remains to be fully elucidated. From the few studies that examined both spindles and memory, preliminary evidence suggests that zolpidem may have some therapeutic potential to enhance declarative memory through boosting sleep spindle activity. There is a greater need to standardise methodological approaches for identifying and quantifying spindle activity as well as more exploratory studies to elucidate the role of spindle enhancement for other types of memory.
Collapse
Affiliation(s)
- Celeste W Y Leong
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Josiah W S Leow
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Ronald R Grunstein
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia; Royal Prince Alfred Hospital, and Sydney Health Partners, NSW; Sydney Medical School, The University of Sydney, NSW, Australia
| | - Sharon L Naismith
- School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Jun Z Teh
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia; School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Angela L D'Rozario
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia; Sydney Medical School, The University of Sydney, NSW, Australia; School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, The University of Sydney, NSW, Australia.
| | - Bandana Saini
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
12
|
Michelini G, Palumbo IM, DeYoung CG, Latzman RD, Kotov R. Linking RDoC and HiTOP: A new interface for advancing psychiatric nosology and neuroscience. Clin Psychol Rev 2021; 86:102025. [PMID: 33798996 PMCID: PMC8165014 DOI: 10.1016/j.cpr.2021.102025] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
The Research Domain Criteria (RDoC) and the Hierarchical Taxonomy of Psychopathology (HiTOP) represent major dimensional frameworks proposing two alternative approaches to accelerate progress in the way psychopathology is studied, classified, and treated. RDoC is a research framework rooted in neuroscience aiming to further the understanding of transdiagnostic biobehavioral systems underlying psychopathology and ultimately inform future classifications. HiTOP is a dimensional classification system, derived from the observed covariation among symptoms of psychopathology and maladaptive traits, which seeks to provide more informative research and treatment targets (i.e., dimensional constructs and clinical assessments) than traditional diagnostic categories. This article argues that the complementary strengths of RDoC and HiTOP can be leveraged in order to achieve their respective goals. RDoC's biobehavioral framework may help elucidate the underpinnings of the clinical dimensions included in HiTOP, whereas HiTOP may provide psychometrically robust clinical targets for RDoC-informed research. We present a comprehensive mapping between dimensions included in RDoC (constructs and subconstructs) and HiTOP (spectra and subfactors) based on narrative review of the empirical literature. The resulting RDoC-HiTOP interface sheds light on the biobehavioral correlates of clinical dimensions and provides a broad set of dimensional clinical targets for etiological and neuroscientific research. We conclude with future directions and practical recommendations for using this interface to advance clinical neuroscience and psychiatric nosology. Ultimately, we envision that this RDoC-HiTOP interface has the potential to inform the development of a unified, dimensional, and biobehaviorally-grounded psychiatric nosology.
Collapse
Affiliation(s)
- Giorgia Michelini
- Semel Institute for Neuroscience & Human Behavior, Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA 90024, United States of America.
| | - Isabella M Palumbo
- Department of Psychology, Georgia State University, Atlanta, GA 30303, United States of America
| | - Colin G DeYoung
- Department of Psychology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Robert D Latzman
- Department of Psychology, Georgia State University, Atlanta, GA 30303, United States of America
| | - Roman Kotov
- Department of Psychiatry & Behavioral Health, Stony Brook University, Stony Brook, NY 11790, United States of America
| |
Collapse
|
13
|
Ang MJ, Lee S, Kim JC, Kim SH, Moon C. Behavioral Tasks Evaluating Schizophrenia-like Symptoms in Animal Models: A Recent Update. Curr Neuropharmacol 2021; 19:641-664. [PMID: 32798374 PMCID: PMC8573744 DOI: 10.2174/1570159x18666200814175114] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Schizophrenia is a serious mental illness that affects more than 21 million people worldwide. Both genetics and the environment play a role in its etiology and pathogenesis. Symptoms of schizophrenia are mainly categorized into positive, negative, and cognitive. One major approach to identify and understand these diverse symptoms in humans has been to study behavioral phenotypes in a range of animal models of schizophrenia. OBJECTIVE We aimed to provide a comprehensive review of the behavioral tasks commonly used for measuring schizophrenia-like behaviors in rodents together with an update of the recent study findings. METHODS Articles describing phenotypes of schizophrenia-like behaviors in various animal models were collected through a literature search in Google Scholar, PubMed, Web of Science, and Scopus, with a focus on advances over the last 10 years. RESULTS Numerous studies have used a range of animal models and behavioral paradigms of schizophrenia to develop antipsychotic drugs for improved therapeutics. In establishing animal models of schizophrenia, the candidate models were evaluated for schizophrenia-like behaviors using several behavioral tasks for positive, negative, and cognitive symptoms designed to verify human symptoms of schizophrenia. Such validated animal models were provided as rapid preclinical avenues for drug testing and mechanistic studies. CONCLUSION Based on the most recent advances in the field, it is apparent that a myriad of behavior tests are needed to confirm and evaluate the congruency of animal models with the numerous behaviors and clinical signs exhibited by patients with schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | - Changjong Moon
- Address correspondence to this author at the Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea, Tel: +82-62-530-2838; E-mail:
| |
Collapse
|
14
|
Gurler D, White DM, Kraguljac NV, Ver Hoef L, Martin C, Tennant B, Lahti AC. Neural Signatures of Memory Encoding in Schizophrenia Are Modulated by Antipsychotic Treatment. Neuropsychobiology 2021; 80:12-24. [PMID: 32316023 PMCID: PMC7874518 DOI: 10.1159/000506402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/07/2020] [Indexed: 12/17/2022]
Abstract
There is no pharmacological treatment to remediate cognitive impairment in schizophrenia (SZ). It is imperative to characterize underlying pathologies of memory processing in order to effectively develop new treatments. In this longitudinal study, we combined functional magnetic resonance imaging during a memory encoding task with proton MR spectroscopy to measure hippocampal glutamate + glutamine (Glx). Seventeen SZ were scanned while unmedicated and after 6 weeks of treatment with risperidone and compared to a group of matched healthy controls (HC) scanned 6 weeks apart. Unmedicated patients showed reduced blood oxygen level dependent (BOLD) response in several regions, including the hippocampus, and greater BOLD response in regions of the default mode network (DMN) during correct memory encoding. Post hoc contrasts from significant group by time interactions indicated reduced hippocampal BOLD response at baseline with subsequent increase following treatment. Hippocampal Glx was not different between groups at baseline, but at week 6, hippocampal Glx was significantly lower in SZ compared to HC. Finally, in unmedicated SZ, higher hippocampal Glx predicted less deactivation of the BOLD response in regions of the DMN. Using 2 brain imaging modalities allowed us to concurrently investigate different mechanisms involved in memory encoding dysfunction in SZ. Hippocampal pathology during memory encoding stems from decreased hippocampal recruitment and faulty deactivation of the DMN, and hippocampal recruitment during encoding can be modulated by antipsychotic treatment. High Glx in unmedicated patients predicted less deactivation of the DMN; these results suggest a mechanism by which faulty DMN deactivation, a hallmark of pathological findings in SZ, is achieved.
Collapse
Affiliation(s)
- Demet Gurler
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - David Matthew White
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - Nina Vanessa Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | | | - Clinton Martin
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - Blake Tennant
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - Adrienne Carol Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA,
| |
Collapse
|
15
|
Donati FL, D’Agostino A, Ferrarelli F. Neurocognitive and neurophysiological endophenotypes in schizophrenia: An overview. Biomark Neuropsychiatry 2020. [DOI: 10.1016/j.bionps.2020.100017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
16
|
Li W, Zhou FC, Zhang L, Ng CH, Ungvari GS, Li J, Xiang YT. Comparison of cognitive dysfunction between schizophrenia and bipolar disorder patients: A meta-analysis of comparative studies. J Affect Disord 2020; 274:652-661. [PMID: 32663999 DOI: 10.1016/j.jad.2020.04.051] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/19/2020] [Accepted: 04/27/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Cognitive dysfunction is common in both schizophrenia and bipolar disorder. This is a meta-analysis of studies that compared cognitive dysfunction between schizophrenia and bipolar disorder. METHODS Both international and Chinese databases were systematically searched. Studies that compared cognitive function between schizophrenia and bipolar disorder with the MATRICS Consensus Cognitive Battery (MCCB) were analyzed using the random-effects model. RESULTS Twelve studies with 9,518 participants (4,411 schizophrenia and 5,107 bipolar patients) were included in the analyses. Schizophrenia patients performed significantly worse than bipolar patients on the MCCB total scores with a large effect size (SMD=-0.80, 95%CI: -1.21 to -0.39), as well as on all the 7 subscale scores; attention (SMD=-2.56, 95%CI: -3.55 to -1.57) and social cognition (SMD=-0.86, 95%CI: -1.13 to -0.58) with large effect sizes; and speed of processing (SMD=-0.75, 95%CI: -1.00 to -0.49), working memory (SMD=-0.68, 95%CI: -0.91 to -0.45), verbal learning (SMD=-0.78, 95%CI: -0.95 to -0.61), visual learning (SMD=-0.65, 95%CI: -0.83 to -0.48), and reasoning and problem solving (SMD=-0.61, 95%CI: -0.93 to -0.29) with medium effect sizes. CONCLUSION Compared to bipolar patients, patients with schizophrenia had more severe cognitive dysfunction in this meta-analysis, particularly in attention and social cognition. Timely assessment and treatment of cognitive dysfunction should be part of standard management protocols in both schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Wen Li
- Unit of Psychiatry, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao SAR, China; Center for Cognition and Brain Sciences, University of Macau, Macao SAR, China
| | - Fu-Chun Zhou
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Ling Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Chee H Ng
- Department of Psychiatry, The Melbourne Clinic and St Vincent's Hospital, University of Melbourne, Richmond, Victoria, Australia
| | - Gabor S Ungvari
- Division of Psychiatry, School of Medicine, University of Western Australia, Perth, Australia; University of Notre Dame Australia, Fremantle, Australia
| | - Jun Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, China
| | - Yu-Tao Xiang
- Unit of Psychiatry, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao SAR, China; Center for Cognition and Brain Sciences, University of Macau, Macao SAR, China.
| |
Collapse
|
17
|
Makowski C, Lewis JD, Khundrakpam B, Tardif CL, Palaniyappan L, Joober R, Malla A, Shah JL, Bodnar M, Chakravarty MM, Evans AC, Lepage M. Altered hippocampal centrality and dynamic anatomical covariance of intracortical microstructure in first episode psychosis. Hippocampus 2020; 30:1058-1072. [PMID: 32485018 DOI: 10.1002/hipo.23215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/23/2022]
Abstract
Hippocampal circuitry has been posited to be fundamental to positive symptoms in psychosis, but its contributions to other factors important for outcome remains unclear. We hypothesized that longitudinal changes in the hippocampal circuit and concomitant changes of intracortical microstructure are altered in first episode psychosis (FEP) patients and that such changes are associated with negative symptoms and verbal memory. Longitudinal brain scans (2-4 visits over 3-15 months) were acquired for 27 FEP and 29 age- and sex-matched healthy controls. Quantitative T1 maps, sensitive to myelin content, were used to sample the microstructure of the hippocampal subfields and output circuitry (fimbria, alveus, fornix, mammillary bodies), and intracortical regions. Dynamic anatomical covariance in pair-wise regional trajectories were assessed for each subject, and graph theory was used to calculate a participation coefficient metric that quantifies the similarity/divergence between hippocampal and intracortical microstructure. The mean participation coefficient of the hippocampus was significantly reduced in FEP patients compared with controls, reflecting differences in output hippocampal regions. Importantly, lower participation coefficient of the hippocampal circuit was associated with worse negative symptoms, a relationship that was mediated by changes in verbal memory. This study provides evidence for reduced hippocampal centrality in FEP and concomitant changes in intracortical anatomy. Myelin-rich output regions of the hippocampus may be an important biological trigger in early psychosis, with cascading effects on broader cortical networks and resultant clinical profiles.
Collapse
Affiliation(s)
- Carolina Makowski
- Department of Psychiatry, Douglas Mental Health University Institute, Verdun, Quebec, Canada.,McGill Centre for Integrative Neuroscience, McGill University, Montreal, Quebec, Canada.,Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - John D Lewis
- McGill Centre for Integrative Neuroscience, McGill University, Montreal, Quebec, Canada
| | | | - Christine L Tardif
- Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Lena Palaniyappan
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Ridha Joober
- Department of Psychiatry, Douglas Mental Health University Institute, Verdun, Quebec, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Ashok Malla
- Department of Psychiatry, Douglas Mental Health University Institute, Verdun, Quebec, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Jai L Shah
- Department of Psychiatry, Douglas Mental Health University Institute, Verdun, Quebec, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Michael Bodnar
- Royal Ottawa Mental Health Centre, University of Ottawa, Ottawa, Ontario, Canada
| | - M Mallar Chakravarty
- Department of Psychiatry, Douglas Mental Health University Institute, Verdun, Quebec, Canada.,Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Alan C Evans
- McGill Centre for Integrative Neuroscience, McGill University, Montreal, Quebec, Canada.,Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Martin Lepage
- Department of Psychiatry, Douglas Mental Health University Institute, Verdun, Quebec, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Yahaya R, Zahary MN, Othman Z, Ismail R, Nik Him NAS, Abd Aziz A, Dahlan R, Jusoh AF. Tualang honey supplementation as cognitive enhancer in patients with schizophrenia. Heliyon 2020; 6:e03948. [PMID: 32426546 PMCID: PMC7226648 DOI: 10.1016/j.heliyon.2020.e03948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/12/2020] [Accepted: 05/05/2020] [Indexed: 01/31/2023] Open
Abstract
Introduction Schizophrenia is a chronic mental illness with clusters of symptoms, including cognitive impairment. This study aimed to explore the effect of Tualang Honey (TH) on cognitive domains, especially as it pertained to the verbal memory of schizophrenia patients. Method This was a cross-sectional study involved 80 individuals, diagnosed with schizophrenia. The Malay Version Auditory Verbal Learning Test (MVAVLT) was used. Data were analysed using SPSS 20.0 software. Intention to treat analysis was applied. Result A comparison of the total learning score at eight weeks between the two groups based on time effect and time-treatment interaction favoured TH group. Conclusion This study concludes that by supplementing schizophrenia patients with 8-week of TH did improve total learning performance across domains in the immediate memory among patients with schizophrenia.
Collapse
Affiliation(s)
- Rosliza Yahaya
- Faculty of Medicine, Medical Campus, Universiti Sultan Zainal Abidin, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Terengganu, Malaysia
| | - Mohd Nizam Zahary
- Faculty of Health Sciences, Gong Badak Campus, Universiti Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia
| | - Zahiruddin Othman
- School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Rusli Ismail
- Faculty of Medicine, Medical Campus, Universiti Sultan Zainal Abidin, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Terengganu, Malaysia
| | - Nik Ahmad Shaiffudin Nik Him
- Faculty of Medicine, Medical Campus, Universiti Sultan Zainal Abidin, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Terengganu, Malaysia
| | - Aniza Abd Aziz
- Faculty of Medicine, Medical Campus, Universiti Sultan Zainal Abidin, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Terengganu, Malaysia
| | - Rahima Dahlan
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Azizul Fadzli Jusoh
- Faculty of Medicine, Medical Campus, Universiti Sultan Zainal Abidin, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Terengganu, Malaysia
- Corresponding author.
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW We review the ways in which stem cells are used in psychiatric disease research, including the related advances in gene editing and directed cell differentiation. RECENT FINDINGS The recent development of induced pluripotent stem cell (iPSC) technologies has created new possibilities for the study of psychiatric disease. iPSCs can be derived from patients or controls and differentiated to an array of neuronal and non-neuronal cell types. Their genomes can be edited as desired, and they can be assessed for a variety of phenotypes. This makes them especially interesting for studying genetic variation, which is particularly useful today now that our knowledge on the genetics of psychiatric disease is quickly expanding. The recent advances in cell engineering have led to powerful new methods for studying psychiatric illness including schizophrenia, bipolar disorder, and autism. There is a wide array of possible applications as illustrated by the many examples from the literature, most of which are cited here.
Collapse
Affiliation(s)
- Debamitra Das
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kyra Feuer
- Predoctoral Training Program in Human Genetics, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marah Wahbeh
- Predoctoral Training Program in Human Genetics, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dimitrios Avramopoulos
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
20
|
Avram M, Brandl F, Cabello J, Leucht C, Scherr M, Mustafa M, Leucht S, Ziegler S, Sorg C. Reduced striatal dopamine synthesis capacity in patients with schizophrenia during remission of positive symptoms. Brain 2020; 142:1813-1826. [PMID: 31135051 DOI: 10.1093/brain/awz093] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 02/07/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023] Open
Abstract
While there is consistent evidence for increased presynaptic dopamine synthesis capacity in the striatum of patients with schizophrenia during psychosis, it is unclear whether this also holds for patients during psychotic remission. This study investigates whether striatal dopamine synthesis capacity is altered in patients with schizophrenia during symptomatic remission of positive symptoms, and whether potential alterations relate to symptoms other than positive, such as cognitive difficulties. Twenty-three patients with schizophrenia in symptomatic remission of positive symptoms according to Andreasen, and 24 healthy controls underwent 18F-DOPA-PET and behavioural-cognitive assessment. Imaging data were analysed with voxel-wise Patlak modelling with cerebellum as reference region, resulting in the influx constant kicer reflecting dopamine synthesis capacity. For the whole striatum and its subdivisions (i.e. limbic, associative, and sensorimotor), averaged regional kicer values were calculated, compared across groups, and correlated with behavioural-cognitive scores, including a mediation analysis. Patients had negative symptoms (Positive and Negative Syndrome Scale-negative 14.13 ± 5.91) and cognitive difficulties, i.e. they performed worse than controls in Trail-Making-Test-B (TMT-B; P = 0.01). Furthermore, kicer was reduced in patients for whole striatum (P = 0.004) and associative (P = 0.002) and sensorimotor subdivisions (P = 0.007). In patients, whole striatum kicer was negatively correlated with TMT-B (rho = -0.42, P = 0.04; i.e. the lower striatal kicer, the worse the cognitive performance). Mediation analysis showed that striatal kicer mediated the group difference in TMT-B. Results demonstrate that patients with schizophrenia in symptomatic remission of positive symptoms have decreased striatal dopamine synthesis capacity, which mediates the disorder's impact on cognitive difficulties. Data suggest that striatal dopamine dysfunction contributes to cognitive difficulties in schizophrenia.
Collapse
Affiliation(s)
- Mihai Avram
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Felix Brandl
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jorge Cabello
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Claudia Leucht
- Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Martin Scherr
- Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Mona Mustafa
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefan Leucht
- Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Psychosis Studies, King's College London, UK
| | - Sibylle Ziegler
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Christian Sorg
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
21
|
Holmlund TB, Chandler C, Foltz PW, Cohen AS, Cheng J, Bernstein JC, Rosenfeld EP, Elvevåg B. Applying speech technologies to assess verbal memory in patients with serious mental illness. NPJ Digit Med 2020; 3:33. [PMID: 32195368 PMCID: PMC7066153 DOI: 10.1038/s41746-020-0241-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/13/2020] [Indexed: 12/21/2022] Open
Abstract
Verbal memory deficits are some of the most profound neurocognitive deficits associated with schizophrenia and serious mental illness in general. As yet, their measurement in clinical settings is limited to traditional tests that allow for limited administrations and require substantial resources to deploy and score. Therefore, we developed a digital ambulatory verbal memory test with automated scoring, and repeated self-administration via smart devices. One hundred and four adults participated, comprising 25 patients with serious mental illness and 79 healthy volunteers. The study design was successful with high quality speech recordings produced to 92% of prompts (Patients: 86%, Healthy: 96%). The story recalls were both transcribed and scored by humans, and scores generated using natural language processing on transcriptions were comparable to human ratings (R = 0.83, within the range of human-to-human correlations of R = 0.73-0.89). A fully automated approach that scored transcripts generated by automatic speech recognition produced comparable and accurate scores (R = 0.82), with very high correlation to scores derived from human transcripts (R = 0.99). This study demonstrates the viability of leveraging speech technologies to facilitate the frequent assessment of verbal memory for clinical monitoring purposes in psychiatry.
Collapse
Affiliation(s)
| | | | - Peter W. Foltz
- University of Colorado Boulder, Boulder, CO USA
- Pearson PLC, London, England
| | | | - Jian Cheng
- Analytic Measures Inc, Palo Alto, CA USA
| | | | | | - Brita Elvevåg
- UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian Centre for eHealth Research, Tromsø, Norway
| |
Collapse
|
22
|
Kim S, Kim YW, Shim M, Jin MJ, Im CH, Lee SH. Altered Cortical Functional Networks in Patients With Schizophrenia and Bipolar Disorder: A Resting-State Electroencephalographic Study. Front Psychiatry 2020; 11:661. [PMID: 32774308 PMCID: PMC7388793 DOI: 10.3389/fpsyt.2020.00661] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/25/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Pathologies of schizophrenia and bipolar disorder have been poorly understood. Brain network analysis could help understand brain mechanisms of schizophrenia and bipolar disorder. This study investigates the source-level brain cortical networks using resting-state electroencephalography (EEG) in patients with schizophrenia and bipolar disorder. METHODS Resting-state EEG was measured in 38 patients with schizophrenia, 34 patients with bipolar disorder type I, and 30 healthy controls. Graph theory based source-level weighted functional networks were evaluated: strength, clustering coefficient (CC), path length (PL), and efficiency in six frequency bands. RESULTS At the global level, patients with schizophrenia or bipolar disorder showed higher strength, CC, and efficiency, and lower PL in the theta band, compared to healthy controls. At the nodal level, patients with schizophrenia or bipolar disorder showed higher CCs, mostly in the frontal lobe for the theta band. Particularly, patients with schizophrenia showed higher nodal CCs in the left inferior frontal cortex and the left ascending ramus of the lateral sulcus compared to patients with bipolar disorder. In addition, the nodal-level theta band CC of the superior frontal gyrus and sulcus (cognition-related region) correlated with positive symptoms and social and occupational functioning scale (SOFAS) scores in the schizophrenia group, while that of the middle frontal gyrus (emotion-related region) correlated with SOFAS scores in the bipolar disorder group. CONCLUSIONS Altered cortical networks were revealed and these alterations were significantly correlated with core pathological symptoms of schizophrenia and bipolar disorder. These source-level cortical network indices could be promising biomarkers to evaluate patients with schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Sungkean Kim
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Yong-Wook Kim
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, South Korea.,Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | - Miseon Shim
- Institute of Industrial Technology, Korea University, Sejong, South Korea
| | - Min Jin Jin
- Department of Psychiatry, Wonkwang University Hospital, Iksan, South Korea
| | - Chang-Hwan Im
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | - Seung-Hwan Lee
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, South Korea.,Department of Psychiatry, Inje University Ilsan Paik Hospital, Ilsan, South Korea
| |
Collapse
|
23
|
Tang X, Lyu G, Chen M, Huang W, Lin Y. Amygdalar and Hippocampal Morphometry Abnormalities in First-Episode Schizophrenia Using Deformation-Based Shape Analysis. Front Psychiatry 2020; 11:677. [PMID: 32765318 PMCID: PMC7379331 DOI: 10.3389/fpsyt.2020.00677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/29/2020] [Indexed: 11/14/2022] Open
Abstract
In this study, we investigated and quantified the amygdalar and hippocampal morphometry abnormalities exerted by first-episode schizophrenia using a total of 92 patients and 106 healthy control participants. Magnetic resonance imaging (MRI) based automated segmentation was conducted to obtain the amygdalar and hippocampal segmentations. Disease-versus-control volume differences of the bilateral amygdalas and hippocampi were quantified. In addition, deformation-based statistical shape analysis was employed to quantify the region-specific shape abnormalities of each structure of interest. To better identify the key relevant areas in the pathology of first-episode schizophrenia, each structure was divided into four subregions; CA1, CA2, CA3 combined with dentate gyrus for the hippocampus in each hemisphere and basolateral, basomedial, centromedial, and lateral nucleus for the amygdala in each hemisphere. We observed significant global volume reduction and localized shape atrophy in each of the four structures of interest. The amygdalar shape abnormalities mainly occurred at the basolateral and centromedial subregions, whereas the hippocampal shape abnormalities mainly concentrated on the CA1 and CA2 subregions. For the same structure, the one on the right hemisphere was affected more by the disease pathology than that on the left hemisphere. To conclude, we have successfully quantified the global and local morphometric abnormalities of the bilateral amygdalas and hippocampi using a sophisticated statistical analysis pipeline and high-field subregion segmentations, with MRI data of a considerable sample size. This study is one of the very first of such kind in first-episode schizophrenia analyses.
Collapse
Affiliation(s)
- Xiaoying Tang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Guiwen Lyu
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Minhua Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China.,Department of Electrical and Electronic Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China
| | - Weikai Huang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yin Lin
- Department of Psychology, Shenzhen Children's Hospital, Shenzhen, China
| |
Collapse
|
24
|
Kelly S, Guimond S, Lyall A, Stone WS, Shenton ME, Keshavan M, Seidman LJ. Neural correlates of cognitive deficits across developmental phases of schizophrenia. Neurobiol Dis 2019; 131:104353. [PMID: 30582983 DOI: 10.1016/j.nbd.2018.12.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 11/21/2018] [Accepted: 12/20/2018] [Indexed: 12/28/2022] Open
Abstract
Schizophrenia is associated with cognitive deficits across all stages of the illness (i.e., high risk, first episode, early and chronic phases). Identifying the underlying neurobiological mechanisms of these deficits is an important area of scientific inquiry. Here, we selectively review evidence regarding the pattern of deficits across the developmental trajectory of schizophrenia using the five cognitive domains identified by the Research Domain Criteria (RDoC) initiative. We also report associated findings from neuroimaging studies. We suggest that most cognitive domains are affected across the developmental trajectory, with corresponding brain structural and/or functional differences. The idea of a common mechanism driving these deficits is discussed, along with implications for cognitive treatment in schizophrenia.
Collapse
Affiliation(s)
- Sinead Kelly
- Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Synthia Guimond
- Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Amanda Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - William S Stone
- Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; VA Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - Matcheri Keshavan
- Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Larry J Seidman
- Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Sarkar A, Mei A, Paquola ACM, Stern S, Bardy C, Klug JR, Kim S, Neshat N, Kim HJ, Ku M, Shokhirev MN, Adamowicz DH, Marchetto MC, Jappelli R, Erwin JA, Padmanabhan K, Shtrahman M, Jin X, Gage FH. Efficient Generation of CA3 Neurons from Human Pluripotent Stem Cells Enables Modeling of Hippocampal Connectivity In Vitro. Cell Stem Cell 2019; 22:684-697.e9. [PMID: 29727680 DOI: 10.1016/j.stem.2018.04.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 12/04/2017] [Accepted: 04/12/2018] [Indexed: 12/27/2022]
Abstract
Despite widespread interest in using human induced pluripotent stem cells (hiPSCs) in neurological disease modeling, a suitable model system to study human neuronal connectivity is lacking. Here, we report a comprehensive and efficient differentiation paradigm for hiPSCs that generate multiple CA3 pyramidal neuron subtypes as detected by single-cell RNA sequencing (RNA-seq). This differentiation paradigm exhibits characteristics of neuronal network maturation, and rabies virus tracing revealed synaptic connections between stem cell-derived dentate gyrus (DG) and CA3 neurons in vitro recapitulating the neuronal connectivity within the hippocampus. Because hippocampal dysfunction has been implicated in schizophrenia, we applied DG and CA3 differentiation paradigms to schizophrenia-patient-derived hiPSCs. We detected reduced activity in DG-CA3 co-culture and deficits in spontaneous and evoked activity in CA3 neurons from schizophrenia-patient-derived hiPSCs. Our approach offers critical insights into the network activity aspects of schizophrenia and may serve as a promising tool for modeling diseases with hippocampal vulnerability. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Anindita Sarkar
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Arianna Mei
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Apua C M Paquola
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; The Lieber Institute for Brain Development, Johns Hopkins School of Medicine, 855 N Wolfe Street, Baltimore, MD 21205, USA
| | - Shani Stern
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Cedric Bardy
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Laboratory for Human Neurophysiology and Genetics, SAHMRI and College of Medicine and Public Health, Flinders University, Adelaide SA 5000, Australia
| | - Jason R Klug
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Stacy Kim
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Neda Neshat
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hyung Joon Kim
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Psychiatry, Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198-5965, USA
| | - Manching Ku
- Next Generation Sequencing Core, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core Facility, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - David H Adamowicz
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Neurosciences, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Maria C Marchetto
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Roberto Jappelli
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jennifer A Erwin
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; The Lieber Institute for Brain Development, Johns Hopkins School of Medicine, 855 N Wolfe Street, Baltimore, MD 21205, USA
| | - Krishnan Padmanabhan
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 603, Rochester, NY 14642, USA
| | - Matthew Shtrahman
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Neurosciences, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Xin Jin
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Fred H Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
26
|
Popov MM, Pluzhnikov IV, Kaleda VG. [Procognitive effects of transcranial magnetic stimulation in the light of neurocognitive deficit in schizophrenia]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:120-126. [PMID: 31089106 DOI: 10.17116/jnevro2019119031120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a relatively new method of non-invasive therapy of mental and neurological diseases that has great potential of therapeutic and diagnostic application. In schizophrenia, TMS may exert a positive effect on cognitive deficit. However this issue remains open. The authors analyze recent studies focused on the dynamics of neurocognitive deficit in TMS therapy and consider clinical effects of TMS in schizophrenia. The analysis has shown that TMS is successfully implemented in treatment of auditory positive symptoms and studies on its effect on negative symptoms of schizophrenia are perspective. Procognitive effect was found in working memory domain, and partially in perception domain within the perception of faces and facial expressions. The data on regulative functions, attention, speech, and nondeclarative memory remains controversial. It has been concluded that further research is needed to clarify the place of TMS in schizophrenia therapy.
Collapse
Affiliation(s)
- M M Popov
- Mental Health Research Center, Moscow, Russia
| | | | - V G Kaleda
- Mental Health Research Center, Moscow, Russia
| |
Collapse
|
27
|
Modeling neuropsychiatric disorders using human induced pluripotent stem cells. Protein Cell 2019; 11:45-59. [PMID: 31134525 PMCID: PMC6949328 DOI: 10.1007/s13238-019-0638-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/03/2019] [Indexed: 01/20/2023] Open
Abstract
Neuropsychiatric disorders are complex disorders characterized by heterogeneous genetic variations, variable symptoms, and widespread changes in anatomical pathology. In the context of neuropsychiatric disorders, limited access to relevant tissue types presents challenges for understanding disease etiology and developing effective treatments. Induced pluripotent stem cells (iPSCs) reprogrammed from patient somatic cells offer an opportunity to recapitulate disease development in relevant cell types, and they provide novel approaches for understanding disease mechanisms and for development of effective treatments. Here we review recent progress and challenges in differentiation paradigms for generating disease-relevant cells and recent studies of neuropsychiatric disorders using human pluripotent stem cell (hPSC) models where cellular phenotypes linked to disease have been reported. The use of iPSC-based disease models holds great promise for understanding disease mechanisms and supporting discovery of effective treatments.
Collapse
|
28
|
Watt A, Skillicorn D. Negative schizotypy is associated with impaired episodic but not semantic coding in a conditional learning task. JOURNAL OF COGNITIVE PSYCHOLOGY 2019. [DOI: 10.1080/20445911.2019.1629446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Andrew Watt
- Department of Applied Psychology, Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Deiniol Skillicorn
- Department of Applied Psychology, Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| |
Collapse
|
29
|
Kruk-Slomka M, Banaszkiewicz I, Slomka T, Biala G. Effects of Fatty Acid Amide Hydrolase Inhibitors Acute Administration on the Positive and Cognitive Symptoms of Schizophrenia in Mice. Mol Neurobiol 2019; 56:7251-7266. [PMID: 31004320 PMCID: PMC6815283 DOI: 10.1007/s12035-019-1596-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/02/2019] [Indexed: 12/31/2022]
Abstract
The connection between the endocannabinoid system (ECS) and schizophrenia is supported by a large body of research. The ECS is composed of two types cannabinoid (CB: CB1 and CB2) receptors and their endogenous ligands, endocannabinoids. The best-known endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are intracellularly degraded by fatty acid hydrolase (FAAH) and monoacylglycerol lipase (MAGL), respectively. Thus, the function of ECS might be modulated in a direct way, through CB receptor ligands or indirectly by FAAH and MAGL inhibitors. We evaluated that the direct influence of ECS, using FAAH (URB 597) and MAGL (JZL 184) inhibitors, on the schizophrenia-like effects in mice. The behavioral schizophrenia-like symptoms were obtained in animals by using N-methyl D-aspartate (NMDA) receptor antagonists, MK-801. An acute administration of MK-801 (0.3 and 0.6 mg/kg) induced psychotic symptoms in rodents, manifested as the increase in locomotor activity, measured in actimeters, as well as the memory impairment, assessed in the passive avoidance (PA) task. We revealed that an acute administration of URB 597, at the dose of 0.3 mg/kg, attenuated MK-801 (0.6 mg/kg)-induced memory impairment. In turn, an acute administration of URB 597 at a higher dose (1 mg/kg) potentiated MK-801 (0.3 mg/kg)-induced memory impairment. Similarly, an acute administration of JZL 184 (20 and 40 mg/kg) intensified an amnestic effect of MK-801 (0.3 mg/kg). Moreover, an acute injection of JZL 184 (1 mg/kg) potentiated hyperlocomotion is provoked by MK-801 (0.3 and 0.6 mg/kg) administration. The present findings clearly indicate that ECS, through an indirect manner, modulates a variety of schizophrenia-like responses in mice.
Collapse
Affiliation(s)
- Marta Kruk-Slomka
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a Street, 20-093, Lublin, Poland.
| | - Izabela Banaszkiewicz
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a Street, 20-093, Lublin, Poland
| | - Tomasz Slomka
- Department of Mathematics and Medical Biostatistics, Medical University of Lublin, Jaczewskiego 4 Street, 20-954, Lublin, Poland
| | - Grazyna Biala
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a Street, 20-093, Lublin, Poland
| |
Collapse
|
30
|
Kim S, Jang SK, Kim DW, Shim M, Kim YW, Im CH, Lee SH. Cortical volume and 40-Hz auditory-steady-state responses in patients with schizophrenia and healthy controls. NEUROIMAGE-CLINICAL 2019; 22:101732. [PMID: 30851675 PMCID: PMC6407311 DOI: 10.1016/j.nicl.2019.101732] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 01/05/2019] [Accepted: 02/20/2019] [Indexed: 11/25/2022]
Abstract
Background Abnormalities in the 40-Hz auditory steady-state response (ASSR) of the gamma range have been reported in schizophrenia (SZ) and are regarded as important pathophysiological features. Many of the previous studies reported diminished gamma oscillations in SZ, although some studies reported increased spontaneous gamma oscillations. Furthermore, brain morphological correlates of the gamma band ASSR deficits have rarely examined. We investigated different measures of the 40-Hz ASSR and their association with brain volumes and psychological measures of SZ. Methods The 40-Hz ASSR was measured for 80 dB click sounds (1 ms, 500-ms trains at 40-Hz, with 3050 to 3500 inter-train interval) using electroencephalography with 64 electrodes in 33 patients with SZ (male: 16, female: 17 (age range: 21–60)) and 30 healthy controls (HCs) (male: 13, female: 17 (age range: 23–64)). Four gamma oscillation measures (evoked power, spontaneous oscillations (baseline and total power), and inter-trial phase coherence (ITC)) were assessed. The source activities of the ASSR were also analyzed. Brain volumes were assessed using high-resolution magnetic resonance imaging and voxel-based morphometry and superior temporal gyrus (STG) volume measures were obtained. Results Patients with SZ had larger total and evoked powers and higher ITC than HCs. Both groups showed significantly different association between mean evoked power and right STG volume. In HCs but not SZ, mean evoked power showed significant positive correlation with right STG volume. In addition, the two groups showed significantly different association between verbal fluency and mean evoked power. High evoked power was significantly correlated with poor verbal fluency in SZ. Conclusions The current study found increased gamma oscillation in SZ and suggests significant involvement of the STG in gamma oscillations. SZ had larger total and evoked powers and higher ITC than HCs. Evoked power positively correlated with right STG volume in HCs. High evoked power correlated with poor verbal fluency in SZ.
Collapse
Affiliation(s)
- Sungkean Kim
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea; Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Seon-Kyeong Jang
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea
| | - Do-Won Kim
- Department of Biomedical Engineering, Chonnam National University, Yeosu, Republic of Korea
| | - Miseon Shim
- Department of Psychiatry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Yong-Wook Kim
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea; Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Chang-Hwan Im
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Seung-Hwan Lee
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea; Department of Psychiatry, Inje University, Ilsan-Paik Hospital, Goyang, Republic of Korea.
| |
Collapse
|
31
|
Relationship between Alzheimer's disease-associated SNPs within the CLU gene, local DNA methylation and episodic verbal memory in healthy and schizophrenia subjects. Psychiatry Res 2019; 272:380-386. [PMID: 30599442 DOI: 10.1016/j.psychres.2018.12.134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 10/16/2018] [Accepted: 12/24/2018] [Indexed: 11/24/2022]
Abstract
Genetic variation may impact on local DNA methylation patterns. Therefore, information about allele-specific DNA methylation (ASM) within disease-related loci has been proposed to be useful for the interpretation of GWAS results. To explore mechanisms that may underlie associations between Alzheimer's disease (AD) and schizophrenia risk CLU gene and verbal memory, one of the most affected cognitive domains in both conditions, we studied DNA methylation in a region between AD-associated SNPs rs9331888 and rs9331896 in 72 healthy individuals and 73 schizophrenia patients. Using single-molecule real-time bisulfite sequencing we assessed the haplotype-dependent ASM in this region. We then investigated whether its methylation could influence episodic verbal memory measured with the Rey Auditory Verbal Learning Test in these two cohorts. The region showed a complex methylation pattern, which was similar in healthy and schizophrenia individuals and unrelated to haplotypes. The pattern predicted memory scores in controls. The results suggest that epigenetic modifications within the CLU locus may play a role in memory variation, independent of ASM.
Collapse
|
32
|
Oker A, Del Goleto S, Vignes A, Passerieux C, Roux P, Gouet EB. Schizophrenia patients are impaired in recognition task but more for intentionality than physical causality. Conscious Cogn 2018; 67:98-107. [PMID: 30557768 DOI: 10.1016/j.concog.2018.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 10/24/2018] [Accepted: 11/25/2018] [Indexed: 11/16/2022]
Abstract
It is now largely accepted that patients with schizophrenia have a deficit to attribute mental states to others, such as intentions, needs and motivations but also to perform memory tasks. According to one hypothesis, these impairments may be due to an early visual attention deficit during the encounter of social stimuli. Another hypothesis posits a robust correlation between intention attribution and autobiographical memory that results in impaired recollection of past events making it difficult to infer others' intentions. In sum, the link between intention attribution and encoding process is yet to be explored in patients with schizophrenia. The objective of the present study is to contribute to this debate by investigating whether schizophrenic patients' recollection can be boosted by an attentional cueing on relevant information and to determine the influence of two different situational contexts: attribution of intentions or physical causality scripts. By using a supraliminal attentional cue, we made relevant areas of our material more salient across two conditions: attribution of intentions (AI) and physical causality with human characters (PCCH). The results confirmed expected deficit of explicit memory in schizophrenia patients while attentional cueing on relevant areas for intentions attribution or physical causality had no effect on recollection in any group. However, it seems that the recollection performances are highly influenced by the nature of intentions attribution. Also, it is the first time that the material used for the assessment of theory of mind performances has been tested with a recognition test.
Collapse
Affiliation(s)
- Ali Oker
- Laboratoire C2S (Cognition, Santé, Société), EA 6291, Department ESPE, Université de Reims Champagne-Ardenne, Reims, France.
| | - Sarah Del Goleto
- Laboratoire de Psychopathologie et Neuropsychologie (EA 2027), Université Paris Lumières, Paris 8, St. Denis, France
| | - Alice Vignes
- Laboratoire HANDIReSP (EA4047), Université de Versailles Saint-Quentin-En-Yvelines, Versailles, France
| | - Christine Passerieux
- Laboratoire HANDIReSP (EA4047), Université de Versailles Saint-Quentin-En-Yvelines, Versailles, France; Service de Psychiatrie de l'Adulte et d'Addictologie, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Paul Roux
- Laboratoire HANDIReSP (EA4047), Université de Versailles Saint-Quentin-En-Yvelines, Versailles, France; Service de Psychiatrie de l'Adulte et d'Addictologie, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Eric-Brunet Gouet
- Laboratoire HANDIReSP (EA4047), Université de Versailles Saint-Quentin-En-Yvelines, Versailles, France; Service de Psychiatrie de l'Adulte et d'Addictologie, Centre Hospitalier de Versailles, Le Chesnay, France
| |
Collapse
|
33
|
Memic A, Streit F, Hasandedic L, Witt SH, Strohmaier J, Rietschel M, Oruc L. Neurocognitive Endophenotypes of Schizophrenia and Bipolar Disorder and Possible Associations with FKBP Variant rs3800373. Med Arch 2018; 72:352-356. [PMID: 30524168 PMCID: PMC6282916 DOI: 10.5455/medarh.2018.72.352-356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Introduction Schizophrenia(SCZ) and Bipolar disorder (BD) are frequently occurring and impairing disorders that affect around 1% of the population. Important endophenotypes in the genetic research of SCZ and BD are cognitive functions. Core symptoms for SCZ and BD are impairments in working memory, declarative memory and attention, all of which fulfill the criteria for an endophenotype. The FK506 Binding Protein 5 (FKBP5) gene codes for a co-chaperone of the glucocorticoid receptor and has been reported to be associated with cognition. Aim The aims of our research were to determine the degree of cognitive impairment in patients suffering from SCZ and BD and to explore the association of the FKBP5 variant rs3800373 genotype with the cognitive endophenotypes. Material and Methods Patients and healthy controls were recruited over a period of two years from the Psychiatric Clinic, Clinical Center University of Sarajevo. Genotyping and neuropsychological assessments were performed for 263 subjects (129 SCZ, 53 BD, and 81 healthy controls [HC]). Neuropsychological assessments were performed for all patients with the Trail Making Test-A&B (TMT-A&B) and Digit-span forward&backwards tasks. The single nucleotide polymorphism (SNP) rs3800373 in the FKBP5 gene was genotyped using Infinium PsychArray Bead Chips. Results and Conclusion SCZ and BD patients performed lower than HC in the TMT-A&B and in the Digit-span backwards task, while no differences were observed between SCZ and BD patients. While SCZ patients performed lower than HC in the Digit-span forwards task, there were no differences between BD and HC or between BD and SCZ. Rs 3800373 was not associated with performance in the TMT-A&B or Digit-span forwards&backwards tasks. SCZ and BD share largely overlapping neurocognitive characteristics. Rs3800373 was not associated with performance in the neuropsychological tests. However, given the limited sample size, the results do not exclude an association with the rs3800373 variant in a larger sample. Furthermore, as the analysis was limited to one SNP, the results cannot be generalized to other genetic variants in FKBP5.
Collapse
Affiliation(s)
- Amra Memic
- Psychiatric Clinic, Clinical Center University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Lejla Hasandedic
- Psychology Department, Faculty of Letters, Akdeniz University, Antalya, Turkey
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Jana Strohmaier
- Department of Genetic Epidemiology in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Lilijana Oruc
- Psychiatric Clinic, Clinical Center University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
34
|
Bhattacharyya S, Wilson R, Appiah-Kusi E, O’Neill A, Brammer M, Perez J, Murray R, Allen P, Bossong MG, McGuire P. Effect of Cannabidiol on Medial Temporal, Midbrain, and Striatal Dysfunction in People at Clinical High Risk of Psychosis: A Randomized Clinical Trial. JAMA Psychiatry 2018; 75:1107-1117. [PMID: 30167644 PMCID: PMC6248101 DOI: 10.1001/jamapsychiatry.2018.2309] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/26/2018] [Indexed: 12/21/2022]
Abstract
Importance Cannabidiol (CBD) has antipsychotic effects in humans, but how these are mediated in the brain remains unclear. Objective To investigate the neurocognitive mechanisms that underlie the therapeutic effects of CBD in psychosis. Design, Setting, and Participants In this parallel-group, double-blind, placebo-controlled randomized clinical trial conducted at the South London and Maudsley NHS Foundation Trust in London, United Kingdom, 33 antipsychotic medication-naive participants at clinical high risk (CHR) of psychosis and 19 healthy control participants were studied. Data were collected from July 2013 to October 2016 and analyzed from November 2016 to October 2017. Interventions A total of 16 participants at CHR of psychosis received a single oral dose of 600 mg of CBD, and 17 participants at CHR received a placebo. Control participants were not given any drug. All participants were then studied using functional magnetic resonance imaging (fMRI) while performing a verbal learning task. Main Outcomes and Measures Brain activation during verbal encoding and recall, indexed using the blood oxygen level-dependent hemodynamic response fMRI signal. Results Of the 16 participants in the CBD group, 6 (38%) were female, and the mean (SD) age was 22.43 (4.95) years; of 17 in the placebo group, 10 (59%) were female, and the mean (SD) age was 25.35 (5.24) years; and of 19 in the control group, 8 (42%) were female, and the mean (SD) age was 23.89 (4.14) years. Brain activation (indexed using the median sum of squares ratio of the blood oxygen level-dependent hemodynamic response effects model component to the residual sum of squares) was analyzed in 15 participants in the CBD group, 16 in the placebo group, and 19 in the control group. Participants receiving placebo had reduced activation relative to controls in the right caudate during encoding (placebo: median, -0.027; interquartile range [IQR], -0.041 to -0.016; control: median, 0.020; IQR, -0.022 to 0.056; P < .001) and in the parahippocampal gyrus and midbrain during recall (placebo: median, 0.002; IQR, -0.016 to 0.010; control: median, 0.035; IQR, 0.015 to 0.039; P < .001). Within these 3 regions, activation in the CBD group was greater than in the placebo group but lower than in the control group (parahippocampal gyrus/midbrain: CBD: median, -0.013; IQR, -0.027 to 0.002; placebo: median, -0.007; IQR, -0.019 to 0.008; control: median, 0.034; IQR, 0.005 to 0.059); the level of activation in the CBD group was thus intermediate to that in the other 2 groups. There were no significant group differences in task performance. Conclusions and Relevance Cannabidiol may partially normalize alterations in parahippocampal, striatal, and midbrain function associated with the CHR state. As these regions are critical to the pathophysiology of psychosis, the influence of CBD at these sites could underlie its therapeutic effects on psychotic symptoms. Trial Registration isrctn.org Identifier: ISRCTN46322781.
Collapse
Affiliation(s)
- Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Robin Wilson
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Elizabeth Appiah-Kusi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Aisling O’Neill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Michael Brammer
- Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Jesus Perez
- CAMEO Early Intervention Service, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Robin Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Paul Allen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Department of Psychology, University of Roehampton, London, United Kingdom
| | - Matthijs G. Bossong
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
35
|
Baran B, Correll D, Vuper TC, Morgan A, Durrant SJ, Manoach DS, Stickgold R. Spared and impaired sleep-dependent memory consolidation in schizophrenia. Schizophr Res 2018; 199:83-89. [PMID: 29706447 PMCID: PMC6151291 DOI: 10.1016/j.schres.2018.04.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/03/2018] [Accepted: 04/11/2018] [Indexed: 10/17/2022]
Abstract
OBJECTIVE Cognitive deficits in schizophrenia are the strongest predictor of disability and effective treatment is lacking. This reflects our limited mechanistic understanding and consequent lack of treatment targets. In schizophrenia, impaired sleep-dependent memory consolidation correlates with reduced sleep spindle activity, suggesting sleep spindles as a potentially treatable mechanism. In the present study we investigated whether sleep-dependent memory consolidation deficits in schizophrenia are selective. METHODS Schizophrenia patients and healthy individuals performed three tasks that have been shown to undergo sleep-dependent consolidation: the Word Pair Task (verbal declarative memory), the Visual Discrimination Task (visuoperceptual procedural memory), and the Tone Task (statistical learning). Memory consolidation was tested 24 h later, after a night of sleep. RESULTS Compared with controls, schizophrenia patients showed reduced overnight consolidation of word pair learning. In contrast, both groups showed similar significant overnight consolidation of visuoperceptual procedural memory. Neither group showed overnight consolidation of statistical learning. CONCLUSION The present findings extend the known deficits in sleep-dependent memory consolidation in schizophrenia to verbal declarative memory, a core, disabling cognitive deficit. In contrast, visuoperceptual procedural memory was spared. These findings support the hypothesis that sleep-dependent memory consolidation deficits in schizophrenia are selective, possibly limited to tasks that rely on spindles. These findings reinforce the importance of deficient sleep-dependent memory consolidation among the cognitive deficits of schizophrenia and suggest sleep physiology as a potentially treatable mechanism.
Collapse
Affiliation(s)
- Bengi Baran
- Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA.
| | - David Correll
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Tessa C. Vuper
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Alexandra Morgan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Simon J. Durrant
- School of Psychology, University of Lincoln, Lincoln, UK,School of Psychological Sciences, University of Manchester, Brunswick Street, Manchester, UK
| | - Dara S. Manoach
- Harvard Medical School, Boston, MA,Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Robert Stickgold
- Harvard Medical School, Boston, MA,Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
36
|
Expression of TCN1 in Blood is Negatively Associated with Verbal Declarative Memory Performance. Sci Rep 2018; 8:12654. [PMID: 30139959 PMCID: PMC6107676 DOI: 10.1038/s41598-018-30898-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/01/2018] [Indexed: 12/29/2022] Open
Abstract
Memory is indispensable for normal cognitive functioning, and the ability to store and retrieve information is central to mental health and disease. The molecular mechanisms underlying complex memory functions are largely unknown, but multiple genome-wide association studies suggest that gene regulation may play a role in memory dysfunction. We performed a global gene expression analysis using a large and balanced case-control sample (n = 754) consisting of healthy controls and schizophrenia and bipolar disorder patients. Our aim was to discover genes that are differentially expressed in relation to memory performance. Gene expression in blood was measured using Illumina HumanHT-12 v4 Expression BeadChip and memory performance was assessed with the updated California Verbal Learning Test (CVLT-II). We found that elevated expression of the vitamin B12-related gene TCN1 (haptocorrin) was significantly associated with poorer memory performance after correcting for multiple testing (β = −1.50, p = 3.75e-08). This finding was validated by quantitative real-time PCR and followed up with additional analyses adjusting for confounding variables. We also attempted to replicate the finding in an independent case-control sample (n = 578). The relationship between TCN1 expression and memory impairment was comparable to that of important determinants of memory function such as age and sex, suggesting that TCN1 could be a clinically relevant marker of memory performance. Thus, we identify TCN1 as a novel genetic finding associated with poor memory function. This finding may have important implications for the diagnosis and treatment of vitamin B12-related conditions.
Collapse
|
37
|
Gagnon G, Kumar S, Maltais JR, Voineskos AN, Mulsant BH, Rajji TK. Superior memory performance in healthy individuals with subclinical psychotic symptoms but without genetic load for schizophrenia. SCHIZOPHRENIA RESEARCH-COGNITION 2018; 13:7-11. [PMID: 30105212 PMCID: PMC6085406 DOI: 10.1016/j.scog.2018.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 10/28/2022]
Affiliation(s)
- G Gagnon
- Department of Psychology, McGill University, Montreal, Canada.,McGill University Research Centre for Studies in Aging, McGill University, Montreal, Canada
| | - S Kumar
- Geriatric and Adult Neurodevelopmental Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| | - J-R Maltais
- Department of Psychiatry, University of Sherbrooke, Sherbrooke, Canada
| | - A N Voineskos
- Geriatric and Adult Neurodevelopmental Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| | - B H Mulsant
- Geriatric and Adult Neurodevelopmental Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| | - T K Rajji
- Geriatric and Adult Neurodevelopmental Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|
38
|
Zhang P, Li Y, Fan F, Li CSR, Luo X, Yang F, Yao Y, Tan Y. Resting-state Brain Activity Changes Associated with Tardive Dyskinesia in Patients with Schizophrenia: Fractional Amplitude of Low-frequency Fluctuation Decreased in the Occipital Lobe. Neuroscience 2018; 385:237-245. [PMID: 29909076 DOI: 10.1016/j.neuroscience.2018.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 01/25/2023]
Abstract
We explored resting-state brain activity and its potential links to clinical parameters in schizophrenic patients with tardive dyskinesia (TD) using fractional amplitude of low-frequency fluctuations (fALFF). Resting-state functional magnetic resonance imaging data were acquired from 32 schizophrenic patients with TD (TD group), 31 without TD (NTD group), and 32 healthy controls (HC group). Clinical parameters including psychopathological symptoms, severity of TD, and cognitive function were assessed using the Positive and Negative Syndrome Scale, Abnormal Involuntary Movement Scale (AIMS), and Repeatable Battery for the Assessment of Neuropsychological Status, respectively. Pearson correlation analyses were performed to determine the relationship between the regions with altered fALFF values and clinical parameters in TD patients. The TD group showed decreased fALFF in the left middle occipital gyrus (MOG) and the right calcarine sulcus (CAL) compared to the HC group, and decreased fALFF in the left cuneus compared to the NTD group. In the TD group, fALFF values in the left MOG and the right CAL were correlated separately with the delayed memory score (r = 0.44, p = 0.027; r = 0.43, p = 0.028, respectively). The AIMS total score was negatively correlated to the visuospatial/constructional score (r = -0.53, p = 0.005). Our findings suggested that resting-state brain activity changes were associated with TD in schizophrenic patients. There was an association between the decreased brain activity in the occipital lobe and the delayed memory cognition impairment in this population.
Collapse
Affiliation(s)
- Ping Zhang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital 100096 Beijing, PR China
| | - Yanli Li
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital 100096 Beijing, PR China
| | - Fengmei Fan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital 100096 Beijing, PR China
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, 201942 New Haven, CT, USA
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, 201942 New Haven, CT, USA
| | - Fude Yang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital 100096 Beijing, PR China
| | - Yin Yao
- Uniton Statistical Genomics, National Institute of Mental Health, NIH, Bethesda 20892, USA
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital 100096 Beijing, PR China.
| |
Collapse
|
39
|
Longenecker JM, Venables NC, Kang SS, McGuire KA, Sponheim SR. Brain Responses at Encoding Predict Limited Verbal Memory Retrieval by Persons with Schizophrenia. Arch Clin Neuropsychol 2018; 33:477-490. [PMID: 28961775 DOI: 10.1093/arclin/acx082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/26/2017] [Indexed: 11/15/2022] Open
Abstract
Objective Special attention has been given to verbal memory deficits in schizophrenia because they are apparent in healthy biological relatives of affected individuals, indicating a link to genetic risk for the disorder. Despite a growing consensus that encoding abnormalities contribute to poor verbal memory in the disorder, few studies have directly examined how neural responses during encoding contribute to later memory performance. Method We evaluated event-related potentials (ERPs) during encoding of verbal material by patients with schizophrenia, healthy first-degree biological relatives of patients, and healthy controls. The extent to which N1, N400, and anterior and parietal Late Positive Components (LPCs) explained encoding accuracy and later memory of material was investigated. Results Encoding accuracy was associated with asymmetry in anterior LPCs toward right frontal brain regions and was most evident in relatives. N1 was abnormal at encoding in schizophrenia and differentially accounted for later memory performance. In controls better recall of verbal material was predicted by a larger early occipital (N1) encoding response; however, in patients with schizophrenia smaller N1 encoding responses were related to better recall. Interestingly, better recognition of verbal material across groups was also predicted by smaller N1 amplitudes during encoding of word stimuli. Conclusion Separable patterns of electrophysiological response during encoding appear to differentially support recall and recognition of material from memory. Similar patterns of electrophysiological response across patient and relative groups suggest that those who carry genetic liability for schizophrenia share deviations in the neural activity related to encoding of material into episodic memory.
Collapse
Affiliation(s)
- Julia M Longenecker
- Department of Psychology, University of Minnesota, Minneapolis, MN 55454, USA
| | - Noah C Venables
- Department of Psychology, University of Minnesota, Minneapolis, MN 55454, USA
| | - Seung Suk Kang
- Minneapolis VA Health Care System, 1 Veterans Dr, Minneapolis, MN 55417, USA
| | - Kathryn A McGuire
- Minneapolis VA Health Care System, 1 Veterans Dr, Minneapolis, MN 55417, USA
| | - Scott R Sponheim
- Department of Psychology, University of Minnesota, Minneapolis, MN 55454, USA
- Minneapolis VA Health Care System, 1 Veterans Dr, Minneapolis, MN 55417, USA
| |
Collapse
|
40
|
Kinno R, Shiromaru A, Mori Y, Futamura A, Kuroda T, Yano S, Murakami H, Ono K. Differential Effects of the Factor Structure of the Wechsler Memory Scale-Revised on the Cortical Thickness and Complexity of Patients Aged Over 75 Years in a Memory Clinic Setting. Front Aging Neurosci 2017; 9:405. [PMID: 29270122 PMCID: PMC5725440 DOI: 10.3389/fnagi.2017.00405] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/24/2017] [Indexed: 11/26/2022] Open
Abstract
The Wechsler Memory Scale-Revised (WMS-R) is one of the internationally well-known batteries for memory assessment in a general memory clinic setting. Several factor structures of the WMS-R for patients aged under 74 have been proposed. However, little is known about the factor structure of the WMS-R for patients aged over 75 years and its neurological significance. Thus, we conducted exploratory factor analysis to determine the factor structure of the WMS-R for patients aged over 75 years in a memory clinic setting. Regional cerebral blood flow (rCBF) was calculated from single-photon emission computed tomography data. Cortical thickness and cortical fractal dimension, as the marker of cortical complexity, were calculated from high resolution magnetic resonance imaging data. We found that the four factors appeared to be the most appropriate solution to the model, including recognition memory, paired associate memory, visual-and-working memory, and attention as factors. Patients with mild cognitive impairments showed significantly higher factor scores for paired associate memory, visual-and-working memory, and attention than patients with Alzheimer's disease. Regarding the neuroimaging data, the factor scores for paired associate memory positively correlated with rCBF in the left pericallosal and hippocampal regions. Moreover, the factor score for paired associate memory showed most robust correlations with the cortical thickness in the limbic system, whereas the factor score for attention correlated with the cortical thickness in the bilateral precuneus. Furthermore, each factor score correlated with the cortical fractal dimension in the bilateral frontotemporal regions. Interestingly, the factor scores for the visual-and-working memory and attention selectively correlated with the cortical fractal dimension in the right posterior cingulate cortex and right precuneus cortex, respectively. These findings demonstrate that recognition memory, paired associate memory, visual-and-working memory, and attention can be crucial factors for interpreting the WMS-R results of elderly patients aged over 75 years in a memory clinic setting. Considering these findings, the results of WMS-R in elderly patients aged over 75 years in a memory clinic setting should be cautiously interpreted.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kenjiro Ono
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
41
|
Greenland-White SE, Ragland JD, Niendam TA, Ferrer E, Carter CS. Episodic memory functions in first episode psychosis and clinical high risk individuals. Schizophr Res 2017; 188:151-157. [PMID: 28143678 PMCID: PMC5533652 DOI: 10.1016/j.schres.2017.01.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/18/2017] [Accepted: 01/20/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Individuals with schizophrenia have disproportionate memory impairments when encoding relational versus item-specific information, and when using recollection versus familiarity during retrieval. It is unclear whether this pattern is unique to people with chronic schizophrenia, or if it occurs in individuals after a first episode of psychosis (FE), or when at clinical high-risk for psychosis (CHR). METHODS We administered the Relational and Item-Specific Memory task (RiSE) to 22 CHR, 101 FE, and 58 typically developing (TD) participants. We examined group differences in item and relational encoding, and familiarity-based and recollection-based retrieval using parametric analysis and structural equation modeling (SEM). Longitudinal data allowed us to examine relations between baseline RiSE performance and change in clinical symptoms at 1-year follow-up in the FE group. RESULTS Groups did not differ on familiarity. FE and CHR groups were equally impaired on overall recognition accuracy. Although recollection was impaired in both FE and CHR groups following relational encoding, only the FE group had impaired recollection following item encoding. SEM showed atypical relationships between familiarity and recollection, as well as familiarity and item recognition for both the FE and CHR groups. For FE individuals, better baseline recognition accuracy predicted less severe negative symptoms at 1-year follow-up. CONCLUSIONS Impaired relational and recollective memory may reflect neurodevelopmental abnormalities predating conversion to psychosis. These memory deficits appear related to negative symptom changes. In contrast, item specific recollection deficits appear to occur after the development of full psychosis. Familiarity appears to be a relatively preserved memory function across the psychosis spectrum.
Collapse
Affiliation(s)
| | - J. Daniel Ragland
- Corresponding Author. Center for Neuroscience, UC Davis Imaging Research Center, 4701 X Street Sacramento CA, 95817. Tel +1 916 734 5802; fax +1 916 734 8750.
| | | | | | | |
Collapse
|
42
|
Green AE, Fitzgerald PB, Johnston PJ, Nathan PJ, Kulkarni J, Croft RJ. Evidence for a differential contribution of early perceptual and late cognitive processes during encoding to episodic memory impairment in schizophrenia. World J Biol Psychiatry 2017; 18:369-381. [PMID: 27573041 DOI: 10.1080/15622975.2016.1208839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Schizophrenia is characterised by significant episodic memory impairment that is thought to be related to problems with encoding, however the neuro-functional mechanisms underlying these deficits are not well understood. The present study used a subsequent recognition memory paradigm and event-related potentials (ERPs) to investigate temporal aspects of episodic memory encoding deficits in schizophrenia. METHODS Electroencephalographic data was recorded in 24 patients and 19 healthy controls whilst participants categorised single words as pleasant/unpleasant. ERPs were generated to subsequently recognised versus unrecognised words on the basis of a forced-choice recognition memory task. Subsequent memory effects were examined with the late positive component (LPP). Group differences in N1, P2, N400 and LPP were examined for words correctly recognised. RESULTS Patients performed more poorly than controls on the recognition task. During encoding patients had significantly reduced N400 and LPP amplitudes than controls. LPP amplitude correlated with task performance however amplitudes did not differ between patients and controls as a function of subsequent memory. No significant differences in N1 or P2 amplitude or latency were observed. CONCLUSIONS The present results indicate that early sensory processes are intact and dysfunctional higher order cognitive processes during encoding are contributing to episodic memory impairments in schizophrenia.
Collapse
Affiliation(s)
- Amity E Green
- a Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and the Alfred Hospital , Australia
| | - Paul B Fitzgerald
- a Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and the Alfred Hospital , Australia
| | - Patrick J Johnston
- b Department of Psychology and York Neuroimaging Centre , University of York , UK.,c School of Psychology & Counselling, Queensland University of Technology , Australia
| | - Pradeep J Nathan
- d School of Psychology and Psychiatry, Monash University , Australia.,e Brain Mapping Unit, Department of Psychiatry , University of Cambridge , UK
| | - Jayashri Kulkarni
- a Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and the Alfred Hospital , Australia
| | - Rodney J Croft
- f Illawarra Health & Medical Research Institute, University of Wollongong , Australia.,g School of Psychology, University of Wollongong , Australia
| |
Collapse
|
43
|
Haring L, Mõttus R, Kajalaid K, Koch K, Uppin K, Maron E, Vasar E. The course of cognitive functioning after first-episode of psychosis: A six month follow-up study. Schizophr Res 2017; 182:31-41. [PMID: 27746055 DOI: 10.1016/j.schres.2016.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/30/2016] [Accepted: 10/10/2016] [Indexed: 12/22/2022]
Abstract
Our aim with the present study was to evaluate rank-order and mean-level cognitive functioning stability among first-episode psychosis (FEP) patients, measured using the Cambridge Neuropsychological Test Automated Battery (CANTAB), over a six month period. We also aimed to examine longitudinal measurement invariance and identify factors-such as age, gender, educational level, treatment and psychopathological change scores-potentially linked to cognitive change among patients. In addition, correlations between objectively measured and subjectively evaluated cognitive functioning were estimated. Neuropsychological assessments were administered to 85 patients after the initial stabilisation of their psychosis; 82 of the patients were retested. Subjectively perceived cognitive functioning was measured using a subscale derived from the Estonian version of the Subjective Well-Being Under Neuroleptic Scale (SWN-K-E). On average, executive functioning and processing speed improved significantly, while memory test scores decreased significantly, over time. Very high rank-order stability (r=0.80 to 0.94, p<0.001) was observed with all measured ability scores. Confirmatory factor analysis revealed the loadings of a single (broad ability) factor model were equal across both measurement occasions, but the lack of intercept invariance suggested that mean-level comparisons are more appropriately carried out at a subtest level. On average psychopathology scores and antipsychotics doses declined over time, with the latter also significantly correlating with better executive functioning. Gender was a significant moderator of some domains of cognitive performance, and decline tended to be somewhat more pronounced for women. The results also indicated the lack of any relationship between objective and subjective measurements of cognitive functioning.
Collapse
Affiliation(s)
- Liina Haring
- Psychiatry Clinic of Tartu University Hospital, Tartu, Estonia.
| | - René Mõttus
- Department of Psychology, University of Edinburgh, Edinburgh, UK; Department of Psychology, University of Tartu, Tartu, Estonia.
| | | | - Kadri Koch
- Psychiatry Clinic of Tartu University Hospital, Tartu, Estonia.
| | - Kärt Uppin
- Psychiatry Clinic of Tartu University Hospital, Tartu, Estonia.
| | - Eduard Maron
- Psychiatry Clinic of Tartu University Hospital, Tartu, Estonia; North Estonia Medical Centre, Department of Psychiatry, Tallinn, Estonia; Centre for Mental Health, Imperial College London, UK.
| | - Eero Vasar
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia; Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia.
| |
Collapse
|
44
|
Kalweit AN, Amanpour-Gharaei B, Colitti-Klausnitzer J, Manahan-Vaughan D. Changes in Neuronal Oscillations Accompany the Loss of Hippocampal LTP that Occurs in an Animal Model of Psychosis. Front Behav Neurosci 2017; 11:36. [PMID: 28337131 PMCID: PMC5340772 DOI: 10.3389/fnbeh.2017.00036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/21/2017] [Indexed: 12/17/2022] Open
Abstract
The first-episode of psychosis is followed by a transient time-window of ca. 60 days during which therapeutic interventions have a higher likelihood of being effective than interventions that are started with a greater latency. This suggests that, in the immediate time-period after first-episode psychosis, functional changes occur in the brain that render it increasingly resistant to intervention. The precise mechanistic nature of these changes is unclear, but at the cognitive level, sensory and hippocampus-based dysfunctions become increasingly manifest. In an animal model of first-episode psychosis that comprises acute treatment of rats with the irreversible N-methyl-D-aspartate receptor (NMDAR)-antagonist, MK801, acute but also chronic deficits in long-term potentiation (LTP) and spatial memory occur. Neuronal oscillations, especially in the form of information transfer through θ and γ frequency oscillations are an intrinsic component of normal information processing in the hippocampus. Changes in θ-γ coupling and power are known to accompany deficits in hippocampal plasticity. Here, we examined whether changes in δ, θ, α, β and γ oscillations, or θ-γ coupling accompany the chronic loss of LTP that is observed in the MK801-animal model of psychosis. One and 4 weeks after acute systemic treatment of adult rats with MK801, a potent loss of hippocampal in vivo LTP was evident compared to vehicle-treated controls. Overall, the typical pattern of θ-γ oscillations that are characteristic for the successful induction of LTP was altered. In particular, θ-power was lower and an uncoupling of θ-γ oscillations was evident in MK801-treated rats. The alterations in network oscillations that accompany LTP deficits in this animal model may comprise a mechanism through which disturbances in sensory information processing and hippocampal function occur in psychosis. These data suggest that the hippocampus is likely to comprise a very early locus of functional change after instigation of a first-episode psychosis-like state in rodents.
Collapse
Affiliation(s)
- Alexander N Kalweit
- Department of Neurophysiology, Medical Faculty, Ruhr University BochumBochum, Germany; International Graduate School of Neuroscience, Ruhr University BochumBochum, Germany
| | - Bezhad Amanpour-Gharaei
- Department of Neurophysiology, Medical Faculty, Ruhr University BochumBochum, Germany; International Graduate School of Neuroscience, Ruhr University BochumBochum, Germany
| | | | | |
Collapse
|
45
|
Korostil M, Remington G, McIntosh AR. Practice and Learning: Spatiotemporal Differences in Thalamo-Cortical-Cerebellar Networks Engagement across Learning Phases in Schizophrenia. Front Psychiatry 2017; 7:212. [PMID: 28167919 PMCID: PMC5256117 DOI: 10.3389/fpsyt.2016.00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/22/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Understanding how practice mediates the transition of brain-behavior networks between early and later stages of learning is constrained by the common approach to analysis of fMRI data. Prior imaging studies have mostly relied on a single scan, and parametric, task-related analyses. Our experiment incorporates a multisession fMRI lexicon-learning experiment with multivariate, whole-brain analysis to further knowledge of the distributed networks supporting practice-related learning in schizophrenia (SZ). METHODS Participants with SZ were compared with healthy control (HC) participants as they learned a novel lexicon during two fMRI scans over a several day period. All participants were trained to equal task proficiency prior to scanning. Behavioral-Partial Least Squares, a multivariate analytic approach, was used to analyze the imaging data. Permutation testing was used to determine statistical significance and bootstrap resampling to determine the reliability of the findings. RESULTS With practice, HC participants transitioned to a brain-accuracy network incorporating dorsostriatal regions in late-learning stages. The SZ participants did not transition to this pattern despite comparable behavioral results. Instead, successful learners with SZ were differentiated primarily on the basis of greater engagement of perceptual and perceptual-integration brain regions. CONCLUSION There is a different spatiotemporal unfolding of brain-learning relationships in SZ. In SZ, given the same amount of practice, the movement from networks suggestive of effortful learning toward subcortically driven procedural one differs from HC participants. Learning performance in SZ is driven by varying levels of engagement in perceptual regions, which suggests perception itself is impaired and may impact downstream, "higher level" cognition.
Collapse
Affiliation(s)
- Michele Korostil
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Rotman Research Institute of Baycrest Health Sciences, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - Gary Remington
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - Anthony Randal McIntosh
- Rotman Research Institute of Baycrest Health Sciences, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| |
Collapse
|
46
|
Seidman LJ, Shapiro DI, Stone WS, Woodberry KA, Ronzio A, Cornblatt BA, Addington J, Bearden CE, Cadenhead KS, Cannon TD, Mathalon DH, McGlashan TH, Perkins DO, Tsuang MT, Walker EF, Woods SW. Association of Neurocognition With Transition to Psychosis: Baseline Functioning in the Second Phase of the North American Prodrome Longitudinal Study. JAMA Psychiatry 2016; 73:1239-1248. [PMID: 27806157 PMCID: PMC5511703 DOI: 10.1001/jamapsychiatry.2016.2479] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
IMPORTANCE Neurocognition is a central characteristic of schizophrenia and other psychotic disorders. Identifying the pattern and severity of neurocognitive functioning during the "near-psychotic," clinical high-risk (CHR) state of psychosis is necessary to develop accurate risk factors for psychosis and more effective and potentially preventive treatments. OBJECTIVES To identify core neurocognitive dysfunctions associated with the CHR phase, measure the ability of neurocognitive tests to predict transition to psychosis, and determine if neurocognitive deficits are robust or explained by potential confounders. DESIGN, SETTING, AND PARTICIPANTS In this case-control study across 8 sites, baseline neurocognitive data were collected from January 2009 to April 2013 in the second phase of the North American Prodrome Longitudinal Study (NAPLS 2). The dates of analysis were August 2015 to August 2016. The setting was a consortium of 8 university-based, outpatient programs studying the psychosis prodrome in North America. Participants were 264 healthy controls (HCs) and 689 CHR individuals, aged 12 to 35 years. MAIN OUTCOMES AND MEASURES Neurocognitive associations with transition to psychosis and effects of medication on neurocognition. Nineteen neuropsychological tests and 4 factors derived from factor analysis were used: executive and visuospatial abilities, verbal abilities, attention and working memory abilities, and declarative memory abilities. RESULTS This study included 264 HCs (137 male and 127 female) and 689 CHR participants (398 male and 291 female). In the HCs, 145 (54.9%) were white and 119 (45.1%) were not, whereas 397 CHR participants (57.6%) were white and 291 (42.3%) were not. In the HCs, 45 (17%) were of Hispanic origin, whereas 127 CHR participants (18.4%) were of Hispanic origin. The CHR individuals were significantly impaired compared with HCs on attention and working memory abilities and declarative memory abilities. The CHR converters had large deficits in attention and working memory abilities and declarative memory abilities (Cohen d, approximately 0.80) compared with controls and performed significantly worse on these dimensions than nonconverters (Cohen d, 0.28 and 0.48, respectively). These results were not accounted for by general cognitive ability or medications. In Cox proportional hazards regression, time to conversion in those who transitioned to psychosis was significantly predicted by high verbal (premorbid) abilities (β = 0.40; hazard ratio [HR], 1.48; 95% CI, 1.08-2.04; P = .02), impaired declarative memory abilities (β = -0.87; HR, 0.42; 95% CI, 0.31-0.56; P < .001), age (β = -0.10; HR, 0.90; 95% CI, 0.84-0.97; P = .003), site, and a combined score of unusual thought content or delusional ideas and suspiciousness or persecutory ideas items (β = 0.44; HR, 1.56; 95% CI, 1.36-1.78; P < .001). CONCLUSIONS AND RELEVANCE Neurocognitive impairment, especially in attention and working memory abilities and declarative memory abilities, is a robust characteristic of CHR participants, especially those who later develop psychosis. Interventions targeting the enhancement of neurocognitive functioning are warranted in this population.
Collapse
Affiliation(s)
- Larry J. Seidman
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center, Boston MA,Department of Psychiatry, Harvard Medical School at Massachusetts General Hospital, Boston MA,Corresponding Author: Larry J. Seidman, Ph.D., Massachusetts Mental Health Center, Commonwealth Research Center, Room 542, 75 Fenwood Road, Boston, MA 02115; Tel: 617-754-1238 Fax: 617-754-1240,
| | - Daniel I. Shapiro
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center, Boston MA
| | - William S. Stone
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center, Boston MA
| | - Kristen A. Woodberry
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center, Boston MA
| | - Ashley Ronzio
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center, Boston MA
| | | | - Jean Addington
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Carrie E. Bearden
- Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles CA
| | | | - Tyrone D. Cannon
- Department of Psychology, Yale University, New Haven CT,Department of Psychiatry, Yale University, New Haven CT
| | - Daniel H. Mathalon
- Department of Psychiatry, UCSF, and SFVA Medical Center, San Francisco CA
| | | | - Diana O. Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill NC
| | | | - Elaine F. Walker
- Departments of Psychology and Psychiatry, Emory University, Atlanta GA
| | | |
Collapse
|
47
|
Kabir ZD, Lee AS, Rajadhyaksha AM. L-type Ca 2+ channels in mood, cognition and addiction: integrating human and rodent studies with a focus on behavioural endophenotypes. J Physiol 2016; 594:5823-5837. [PMID: 26913808 PMCID: PMC5063939 DOI: 10.1113/jp270673] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/28/2015] [Indexed: 01/07/2023] Open
Abstract
Brain Cav 1.2 and Cav 1.3 L-type Ca2+ channels play key physiological roles in various neuronal processes that contribute to brain function. Genetic studies have recently identified CACNA1C as a candidate risk gene for bipolar disorder (BD), schizophrenia (SCZ), major depressive disorder (MDD) and autism spectrum disorder (ASD), and CACNA1D for BD and ASD, suggesting a contribution of Cav 1.2 and Cav 1.3 Ca2+ signalling to the pathophysiology of neuropsychiatric disorders. Once considered sole clinical entities, it is now clear that BD, SCZ, MDD and ASD share common phenotypic features, most likely due to overlapping neurocircuitry and common molecular mechanisms. A major future challenge lies in translating the human genetic findings to pathological mechanisms that are translatable back to the patient. One approach for tackling such a daunting scientific endeavour for complex behaviour-based neuropsychiatric disorders is to examine intermediate biological phenotypes in the context of endophenotypes within distinct behavioural domains. This will better allow us to integrate findings from genes to behaviour across species, and improve the chances of translating preclinical findings to clinical practice.
Collapse
Affiliation(s)
- Z D Kabir
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
- Weill Cornell Autism Research Program, Weill Cornell Medical College, New York, NY, USA
| | - A S Lee
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
- Weill Cornell Autism Research Program, Weill Cornell Medical College, New York, NY, USA
| | - A M Rajadhyaksha
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA.
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA.
- Weill Cornell Autism Research Program, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
48
|
Ye J, Chen TF, Paul D, McCahon R, Shankar S, Rosen A, O'Reilly CL. Stigma and discrimination experienced by people living with severe and persistent mental illness in assertive community treatment settings. Int J Soc Psychiatry 2016; 62:532-41. [PMID: 27335339 DOI: 10.1177/0020764016651459] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
AIMS To describe the perceived experiences of stigma and discrimination among people living with severe and persistent mental illness in assertive community treatment (ACT teams) settings in New South Wales (NSW), Australia. METHODS The Discrimination and Stigma Scale (DISC) was used in this cross-sectional study with people living with severe and persistent mental illness. The DISC is a reliable and valid, quantitative and qualitative instrument used to explore and measure levels of negative, anticipated and positive discrimination. Relevant clinical history and socio-demographic information were also collected. RESULTS A total of 50 clients participated, with 40 (80%) reporting experienced negative discrimination in at least one life area. Negative discrimination was most commonly experienced in being avoided or shunned (n=25, 50%), by neighbours (n=24, 48%) and family (n=23, 46%). Anticipated discrimination was common, with half of participants (n=25, 50%) feeling the need to conceal their mental health diagnosis. CONCLUSION Discrimination was highly prevalent in everyday aspects of life. While healthcare professionals often tend to increase perceived stigma and discrimination, this was only experienced in interactions with general health professionals, while interactions with ACT team members decreased perceived stigma and increased positive discrimination. This indicates that healthcare professionals potentially have a significant role in reducing stigma and discrimination in mental health and that such an effect may be optimised in an ACT team setting.
Collapse
Affiliation(s)
- Jing Ye
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Timothy F Chen
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Diane Paul
- Lower North Shore Assertive Outreach Team, North Shore Ryde Mental Health Service, Northern Sydney Local Health District, St Leonards, NSW, Australia
| | - Rebecca McCahon
- Lower North Shore Assertive Outreach Team, North Shore Ryde Mental Health Service, Northern Sydney Local Health District, St Leonards, NSW, Australia
| | - Sumitra Shankar
- Lower North Shore Assertive Outreach Team, North Shore Ryde Mental Health Service, Northern Sydney Local Health District, St Leonards, NSW, Australia
| | - Alan Rosen
- Brain & Mind Centre, The University of Sydney, Sydney, NSW, Australia Illawarra Institute for Mental Health, University of Wollongong, Wollongong, NSW, Australia
| | - Claire L O'Reilly
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
49
|
The selective 5-HT 6 receptor antagonist SLV has putative cognitive- and social interaction enhancing properties in rodent models of cognitive impairment. Neurobiol Learn Mem 2016; 133:100-117. [DOI: 10.1016/j.nlm.2016.06.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/27/2016] [Accepted: 06/21/2016] [Indexed: 02/05/2023]
|
50
|
Green AE, Croft RJ, Maller JJ, Fitzgerald PB. White matter correlates of episodic memory encoding and retrieval in schizophrenia. Psychiatry Res Neuroimaging 2016; 254:188-198. [PMID: 27479923 DOI: 10.1016/j.pscychresns.2016.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 07/05/2016] [Indexed: 01/14/2023]
Abstract
Episodic memory (EM) impairments in schizophrenia (SZ) are predictive of functional outcome and are a potential endophenotype of the disorder. The current study investigated the neuroanatomical correlates of EM encoding and retrieval in SZ with structural magnetic resonance and diffusion tensor imaging (DTI) measures in 22 patients with SZ and 22 age- and gender-matched healthy controls. Tract-based Spatial Statistics (TBSS) was used to investigate microstructural alterations in white matter (WM), while FreeSurfer surface-based analysis was used to determine abnormalities in grey matter (GM) and WM volumetrics and cortical thickness. Compared to controls, patients demonstrated GM deficits in temporal and parietal regions and lower fractional anisotropy (FA) of WM in diffuse brain regions. Patients also demonstrated reduced functioning in both encoding and retention of auditory-verbal EM. Among patients but not controls, EM encoding correlated with WM volume in the orbitofrontal cortex and increased radial diffusivity in the fornix, whereas EM retrieval correlated with WM volume in posterior parietal cortex. These findings suggest a differential role for frontal and parietal WM in EM encoding and retrieval processes, while myelin integrity of the fornix may play a specific role in mediating EM encoding processes in SZ.
Collapse
Affiliation(s)
- Amity E Green
- Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and the Alfred Hospital, Australia.
| | - Rodney J Croft
- Illawarra Health & Medical Research Institute, University of Wollongong, Australia; School of Psychology, University of Wollongong, Australia
| | - Jerome J Maller
- Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and the Alfred Hospital, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and the Alfred Hospital, Australia
| |
Collapse
|