1
|
Kwak DH, Park JH, Choi ES, Park SH, Lee SY, Lee S. Ganglioside GD1a enhances osteogenesis by activating ERK1/2 in mesenchymal stem cells of Lmna mutant mice. Aging (Albany NY) 2022; 14:9445-9457. [PMID: 36375476 PMCID: PMC9792213 DOI: 10.18632/aging.204378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022]
Abstract
Mutations in Lmna usually cause a series of human disorders, such as premature aging syndrome (progeria) involving the skeletal system. Gangliosides are known to be involved in cell surface differentiation and proliferation of stem cells. However, the role of gangliosides in Lmna dysfunctional mesenchymal stem cells (MSCs) is unclear. Therefore, Ganglioside's role in osteogenesis of Lmna dysfunctional MSCs analyzed. As a result of the analysis, it was confirmed that the expression of ganglioside GD1a was significantly reduced in MSCs derived from LmnaDhe/+ mice and in MSCs subjected to Lamin A/C knockdown using siRNA. Osteogenesis-related bone morphogenetic protein-2 and Osteocalcin protein, and gene expression were significantly decreased due to Lmna dysfunction. A result of treating MSCs with Lmna dysfunction with ganglioside GD1a (3 μg/ml), significantly increased bone differentiation in ganglioside GD1a treatment to Lmna-mutated MSCs. In addition, the level of pERK1/2, related to bone differentiation mechanisms was significantly increased. Ganglioside GD1a was treated to Congenital progeria LmnaDhe/+ mice. As a result, femur bone volume in ganglioside GD1a-treated LmnaDhe/+ mice was more significantly increased than in the LmnaDhe/+ mice. Therefore, it was confirmed that the ganglioside GD1a plays an important role in enhancing osteogenic differentiation in MSC was a dysfunction of Lmna.
Collapse
Affiliation(s)
- Dong Hoon Kwak
- Department of Pharmacology, School of Medicine, Wonkwang University, Iksan, Jeollabuk-do 54538, Republic of Korea
- Brain Research Institute, Wonkwang University, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Ji Hye Park
- Department of Pharmacology, School of Medicine, Wonkwang University, Iksan, Jeollabuk-do 54538, Republic of Korea
- Brain Research Institute, Wonkwang University, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Eul Sig Choi
- Department of Pharmacology, School of Medicine, Wonkwang University, Iksan, Jeollabuk-do 54538, Republic of Korea
- Brain Research Institute, Wonkwang University, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Seong Hyun Park
- Department of Pharmacology, School of Medicine, Wonkwang University, Iksan, Jeollabuk-do 54538, Republic of Korea
- Brain Research Institute, Wonkwang University, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Seo-Yeon Lee
- Department of Pharmacology, School of Medicine, Wonkwang University, Iksan, Jeollabuk-do 54538, Republic of Korea
- Brain Research Institute, Wonkwang University, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Seoul Lee
- Department of Pharmacology, School of Medicine, Wonkwang University, Iksan, Jeollabuk-do 54538, Republic of Korea
- Brain Research Institute, Wonkwang University, Iksan, Jeollabuk-do 54538, Republic of Korea
| |
Collapse
|
2
|
Horwacik I. The Extracellular Matrix and Neuroblastoma Cell Communication-A Complex Interplay and Its Therapeutic Implications. Cells 2022; 11:cells11193172. [PMID: 36231134 PMCID: PMC9564247 DOI: 10.3390/cells11193172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Neuroblastoma (NB) is a pediatric neuroendocrine neoplasm. It arises from the sympatho-adrenal lineage of neural-crest-derived multipotent progenitor cells that fail to differentiate. NB is the most common extracranial tumor in children, and it manifests undisputed heterogeneity. Unsatisfactory outcomes of high-risk (HR) NB patients call for more research to further inter-relate treatment and molecular features of the disease. In this regard, it is well established that in the tumor microenvironment (TME), malignant cells are engaged in complex and dynamic interactions with the extracellular matrix (ECM) and stromal cells. The ECM can be a source of both pro- and anti-tumorigenic factors to regulate tumor cell fate, such as survival, proliferation, and resistance to therapy. Moreover, the ECM composition, organization, and resulting signaling networks are vastly remodeled during tumor progression and metastasis. This review mainly focuses on the molecular mechanisms and effects of interactions of selected ECM components with their receptors on neuroblastoma cells. Additionally, it describes roles of enzymes modifying and degrading ECM in NB. Finally, the article gives examples on how the knowledge is exploited for prognosis and to yield new treatment options for NB patients.
Collapse
Affiliation(s)
- Irena Horwacik
- Laboratory of Molecular Genetics and Virology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
3
|
GM1 Ganglioside Promotes Osteogenic Differentiation of Human Tendon Stem Cells. Stem Cells Int 2018; 2018:4706943. [PMID: 30210549 PMCID: PMC6126069 DOI: 10.1155/2018/4706943] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/26/2018] [Indexed: 12/17/2022] Open
Abstract
Gangliosides, the sialic acid-conjugated glycosphingolipids present in the lipid rafts, have been recognized as important regulators of cell proliferation, migration, and apoptosis. Due to their peculiar localization in the cell membrane, they modulate the activity of several key cell receptors, and increasing evidence supports their involvement also in stem cell differentiation. In this context, herein we report the role played by the ganglioside GM1 in the osteogenic differentiation of human tendon stem cells (hTSCs). In particular, we found an increase of GM1 levels during osteogenesis that is instrumental for driving the process. In fact, supplementation of the ganglioside in the medium significantly increased the osteogenic differentiation capability of hTSCs. Mechanistically, we found that GM1 supplementation caused a reduction in the phosphorylation of the platelet-derived growth factor receptor-β (PDGFR-β), which is a known inhibitor of osteogenic commitment. These results were further corroborated by the observation that GM1 supplementation was able to revert the inhibitory effects on osteogenesis when the process was inhibited with exogenous PDGF.
Collapse
|
4
|
Sundaram S, Žáček P, Bukowski MR, Mehus AA, Yan L, Picklo MJ. Lipidomic Impacts of an Obesogenic Diet Upon Lewis Lung Carcinoma in Mice. Front Oncol 2018; 8:134. [PMID: 29868466 PMCID: PMC5958182 DOI: 10.3389/fonc.2018.00134] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/13/2018] [Indexed: 12/25/2022] Open
Abstract
Metabolic reprogramming of lipid metabolism is a hallmark of cancer. Consumption of a high-fat obesogenic diet enhances spontaneous metastasis using a Lewis lung carcinoma (LLC) model. In order to gain further insights into the mechanisms by which dietary fats impact cancer progression, we conducted a lipidomic analysis of primary tumors originated from LLC from mice fed with a standard AIN93G diet or a soybean oil-based high-fat diet (HFD). Hierarchical clustering heatmap analysis of phosphatidylcholine (PC) lipids and phosphatidylethanolamine (PE) lipids demonstrated an increase in polyunsaturated fatty acids (PUFA)-containing phospholipids and a decrease in monounsaturated fatty acids (MUFA)-containing lipids in tumors from mice fed the HFD. The quantities of 51 PC and 24 PE lipids differed in primary tumors of LLC from mice fed the control diet and the HFD. Analysis of triacylglycerol (TAG) lipids identified differences in 32 TAG (by brutto structure) between the two groups; TAG analysis by neutral loss identified 46 PUFA-containing TAG species that were higher in mice fed with the HFD than in the controls. Intake of the HFD did not alter the expression of the de novo lipogenesis enzymes (fatty acid synthase, acetyl-CoA carboxylase-1, and stearoyl-CoA desaturase-1). Our results demonstrate that the dietary fatty acid composition of the HFD is reflected in the higher order lipidomic composition of primary tumors. Subsequent studies are needed to investigate how these lipidomic changes may be used for targeted dietary intervention to reduce tumor growth and malignant progression.
Collapse
Affiliation(s)
- Sneha Sundaram
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND, United States
| | - Petr Žáček
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND, United States
| | - Michael R Bukowski
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND, United States
| | - Aaron A Mehus
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND, United States
| | - Lin Yan
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND, United States
| | - Matthew J Picklo
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND, United States.,Department of Chemistry, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
5
|
Jakoby J, Beuschlein F, Mentz S, Hantel C, Süss R. Liposomal doxorubicin for active targeting: surface modification of the nanocarrier evaluated in vitro and in vivo: challenges and prospects. Oncotarget 2016; 6:43698-711. [PMID: 26497207 PMCID: PMC4791260 DOI: 10.18632/oncotarget.6191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/06/2015] [Indexed: 11/29/2022] Open
Abstract
Due to the inability of classical chemotherapeutic agents to exclusively target tumor cells, these treatments are associated with severe toxicity profiles. Thus, long-circulating liposomes have been developed in the past to enhance accumulation in tumor tissue by passive targeting. Accordingly, commercially available liposomal formulations of sterically stabilized liposomal doxorubicin (Caelyx®, Doxil®, Lipodox®) are associated with improved off-target profiles. However, these preparations are still not capable to selectively bind to target cells. Thus, in an attempt to further optimize existing treatment schemes immunoliposomes have been established to enable active targeting of tumor tissues. Recently, we have provided evidence for therapeutic efficacy of anti-IGF1R-targeted, surface modified doxorubicin loaded liposomes. Our approach involved a technique, which allows specific post-modifications of the liposomal surface by primed antibody-anchor conjugates thereby facilitating personalized approaches of commercially available liposomal drugs. In the current study, post-modification of sterically stabilized liposomal Dox was thoroughly investigated including the influence of different modification techniques (PIT, SPIT, SPIT60), lipid composition (SPC/Chol, HSPC/Chol), and buffers (HBS, SH). As earlier in vivo experiments did not take into account the presence of non-integrated ab-anchor conjugates this was included in the present study. Our experiments provide evidence that post-modification of commercially available liposomal preparations for active targeting is possible. Moreover, lyophilisation represents an applicable method to obtain a storable precursor of surface modifying antibody-anchor conjugates. Thus, these findings open up new approaches in patient individualized targeting of chemotherapeutic therapies.
Collapse
Affiliation(s)
- Judith Jakoby
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, Albert Ludwig University Freiburg, Freiburg, Germany
| | - Felix Beuschlein
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Susanne Mentz
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Constanze Hantel
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Regine Süss
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, Albert Ludwig University Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Borriello L, Seeger RC, Asgharzadeh S, DeClerck YA. More than the genes, the tumor microenvironment in neuroblastoma. Cancer Lett 2015; 380:304-14. [PMID: 26597947 DOI: 10.1016/j.canlet.2015.11.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/06/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
Abstract
Neuroblastoma is the second most common solid tumor in children. Since the seminal discovery of the role of amplification of the MYCN oncogene in the pathogenesis of neuroblastoma in the 1980s, much focus has been on the contribution of genetic alterations in the progression of this cancer. However it is now clear that not only genetic events play a role but that the tumor microenvironment (TME) substantially contributes to the biology of neuroblastoma. In this article, we present a comprehensive review of the literature on the contribution of the TME to the ten hallmarks of cancer in neuroblastoma and discuss the mechanisms of communication between neuroblastoma cells and the TME that underlie the influence of the TME on neuroblastoma progression. We end our review by discussing how the knowledge acquired over the last two decades in this field is now leading to new clinical trials targeting the TME.
Collapse
Affiliation(s)
- Lucia Borriello
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA; The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Robert C Seeger
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA; The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Shahab Asgharzadeh
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA; The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Yves A DeClerck
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA; The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Department of Biochemistry and Molecular Biology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Zhang S, Luo Y, He LQ, Liu ZJ, Jiang AQ, Yang YH, Zhu HL. Synthesis, biological evaluation, and molecular docking studies of novel 1,3,4-oxadiazole derivatives possessing benzotriazole moiety as FAK inhibitors with anticancer activity. Bioorg Med Chem 2013; 21:3723-9. [DOI: 10.1016/j.bmc.2013.04.043] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/07/2013] [Accepted: 04/13/2013] [Indexed: 12/20/2022]
|
8
|
Targeted Delivery to Neuroblastoma of Novel siRNA-anti-GD2-liposomes Prepared by Dual Asymmetric Centrifugation and Sterol-Based Post-Insertion Method. Pharm Res 2011; 28:2261-72. [DOI: 10.1007/s11095-011-0457-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 04/20/2011] [Indexed: 01/11/2023]
|
9
|
Dyatlovitskaya EV, Kandyba AG. Sphingolipids in tumor metastases and angiogenesis. BIOCHEMISTRY (MOSCOW) 2006; 71:347-53. [PMID: 16615853 DOI: 10.1134/s0006297906040018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review article summarizes data on the involvement of sphingolipids (sphingosine-1-phosphate, sphingosine-1-phosphocholine, neutral glycosphingolipids, and gangliosides) in tumor metastases and angiogenesis.
Collapse
Affiliation(s)
- E V Dyatlovitskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia.
| | | |
Collapse
|
10
|
Cheng ZJ, Singh RD, Marks DL, Pagano RE. Membrane microdomains, caveolae, and caveolar endocytosis of sphingolipids. Mol Membr Biol 2006; 23:101-10. [PMID: 16611585 DOI: 10.1080/09687860500460041] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Caveolae are flask-shape membrane invaginations of the plasma membrane that have been implicated in endocytosis, transcytosis, and cell signaling. Recent years have witnessed the resurgence of studies on caveolae because they have been found to be involved in the uptake of some membrane components such as glycosphingolipids and integrins, as well as viruses, bacteria, and bacterial toxins. Accumulating evidence shows that endocytosis mediated by caveolae requires unique structural and signaling machinery (caveolin-1, src kinase), which indicates that caveolar endocytosis occurs through a mechanism which is distinct from other forms of lipid microdomain-associated, clathrin-independent endocytosis. Furthermore, a balance of glycosphingolipids, cholesterol, and caveolin-1 has been shown to be important in regulating caveolae endocytosis.
Collapse
Affiliation(s)
- Zhi-Jie Cheng
- Department of Biochemistry and Molecular Biology, Thoracic Diseases Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
11
|
Jabbar AA, Kazarian T, Hakobyan N, Valentino LA. Gangliosides promote platelet adhesion and facilitate neuroblastoma cell adhesion under dynamic conditions simulating blood flow. Pediatr Blood Cancer 2006; 46:292-9. [PMID: 16317740 DOI: 10.1002/pbc.20326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Aberrant gangliosides are produced and shed by some tumors into the extracellular milieu. Their concentration is related to disease progression in children with neuroblastoma and in experimental models. The mechanism for this tumor promoting effect is not known. PURPOSE Here, we investigated the effect of gangliosides on platelet and tumor cell adhesion under shear forces simulating venous and arterial flow. RESULTS High shear force increased platelet adhesion 2.5-fold compared to low force. Pre-incubation of platelets with gangliosides increased adhesion at low shear to a level comparable to high shear alone. The addition of gangliosides to platelets perfused at high shear did not further increase adhesion. LAN1 neuroblastoma cells are adherent to collagen in static assays. No effect of either shear or gangliosides was observed on cell adhesion under dynamic conditions. However, when perfused in the presence of platelets, an increase in binding of tumor cells was observed at both shear forces compared to cells alone. CONCLUSIONS These results demonstrate that shear and gangliosides increase dynamic platelet adhesion to collagen. In addition, platelets facilitate tumor cell binding. Therefore, by acting as a mediator of platelet activation, gangliosides may promote blood borne metastasis by increasing platelet binding to the vessel wall and in turn facilitate tumor cell arrest in circulation.
Collapse
Affiliation(s)
- Adnan A Jabbar
- Department of Pediatrics, Rush University Medical Center and Rush University, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|