1
|
Riggio C, Nocentini S, Catalayud MP, Goya GF, Cuschieri A, Raffa V, del Río JA. Generation of magnetized olfactory ensheathing cells for regenerative studies in the central and peripheral nervous tissue. Int J Mol Sci 2013; 14:10852-68. [PMID: 23708092 PMCID: PMC3709706 DOI: 10.3390/ijms140610852] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/08/2013] [Accepted: 05/13/2013] [Indexed: 02/07/2023] Open
Abstract
As olfactory receptor axons grow from the peripheral to the central nervous system (CNS) aided by olfactory ensheathing cells (OECs), the transplantation of OECs has been suggested as a plausible therapy for spinal cord lesions. The problem with this hypothesis is that OECs do not represent a single homogeneous entity, but, instead, a functionally heterogeneous population that exhibits a variety of responses, including adhesion and repulsion during cell-matrix interactions. Some studies report that the migratory properties of OECs are compromised by inhibitory molecules and potentiated by chemical gradients. In this paper, we report a system based on modified OECs carrying magnetic nanoparticles as a proof of concept experiment enabling specific studies aimed at exploring the potential of OECs in the treatment of spinal cord injuries. Our studies have confirmed that magnetized OECs (i) survive well without exhibiting stress-associated cellular responses; (ii) in vitro, their migration can be modulated by magnetic fields; and (iii) their transplantation in organotypic slices of spinal cord and peripheral nerve showed positive integration in the model. Altogether, these findings indicate the therapeutic potential of magnetized OECs for CNS injuries.
Collapse
Affiliation(s)
- Cristina Riggio
- Institute of Life Science, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, Pisa 56127, Italy; E-Mails: (A.C.); (V.R.)
| | - Sara Nocentini
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, Baldiri Reixac 15-21, Barcelona 08028, Spain; E-Mails: (S.N.); (J.A.R.)
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Diagonal 643, Barcelona 08028, Spain
- Networked Biomedical Research Center for Neurodegenerative Diseases (CIBERNED), Barcelona 08028, Spain
| | - Maria Pilar Catalayud
- Nanoscience Institute of Aragón, University of Zaragoza, Mariano Esquillor, Zaragoza 50018, Spain; E-Mails: (M.P.C.); (G.F.G.)
| | - Gerardo Fabian Goya
- Nanoscience Institute of Aragón, University of Zaragoza, Mariano Esquillor, Zaragoza 50018, Spain; E-Mails: (M.P.C.); (G.F.G.)
| | - Alfred Cuschieri
- Institute of Life Science, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, Pisa 56127, Italy; E-Mails: (A.C.); (V.R.)
| | - Vittoria Raffa
- Institute of Life Science, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, Pisa 56127, Italy; E-Mails: (A.C.); (V.R.)
- Department of Biology, University of Pisa, Via Luca Ghini 5, Pisa 56126, Italy
| | - José Antonio del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, Baldiri Reixac 15-21, Barcelona 08028, Spain; E-Mails: (S.N.); (J.A.R.)
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Diagonal 643, Barcelona 08028, Spain
- Networked Biomedical Research Center for Neurodegenerative Diseases (CIBERNED), Barcelona 08028, Spain
| |
Collapse
|
2
|
Nocentini S, Reginensi D, Garcia S, Carulla P, Moreno-Flores MT, Wandosell F, Trepat X, Bribian A, del Río JA. Myelin-associated proteins block the migration of olfactory ensheathing cells: an in vitro study using single-cell tracking and traction force microscopy. Cell Mol Life Sci 2012; 69:1689-703. [PMID: 22205212 PMCID: PMC11114797 DOI: 10.1007/s00018-011-0893-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 11/03/2011] [Accepted: 11/21/2011] [Indexed: 12/16/2022]
Abstract
Newly generated olfactory receptor axons grow from the peripheral to the central nervous system aided by olfactory ensheathing cells (OECs). Thus, OEC transplantation has emerged as a promising therapy for spinal cord injuries and for other neural diseases. However, these cells do not present a uniform population, but instead a functionally heterogeneous population that exhibits a variety of responses including adhesion, repulsion, and crossover during cell-cell and cell-matrix interactions. Some studies report that the migratory properties of OECs are compromised by inhibitory molecules and potentiated by chemical gradients. Here, we demonstrated that rodent OECs express all the components of the Nogo receptor complex and that their migration is blocked by myelin. Next, we used cell tracking and traction force microscopy to analyze OEC migration and its mechanical properties over myelin. Our data relate the decrease of traction force of OEC with lower migratory capacity over myelin, which correlates with changes in the F-actin cytoskeleton and focal adhesion distribution. Lastly, OEC traction force and migratory capacity is enhanced after cell incubation with the Nogo receptor inhibitor NEP1-40.
Collapse
Affiliation(s)
- Sara Nocentini
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, University of Barcelona, Barcelona, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Diego Reginensi
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, University of Barcelona, Barcelona, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Simón Garcia
- Integrative Cell and Tissue Dynamics, Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, University of Barcelona, Barcelona, Spain
| | - Patricia Carulla
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, University of Barcelona, Barcelona, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - María Teresa Moreno-Flores
- Centro de Biología Molecular “Severo Ochoa”, Nicolás Cabrera, 1, Universidad Autónoma de Madrid (CBM-UAM), Madrid, Spain
| | - Francisco Wandosell
- Centro de Biología Molecular “Severo Ochoa”, Nicolás Cabrera, 1, Universidad Autónoma de Madrid (CBM-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), CBM-UAM, Madrid, Spain
| | - Xavier Trepat
- Integrative Cell and Tissue Dynamics, Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, University of Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Ana Bribian
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, University of Barcelona, Barcelona, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - José A. del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, University of Barcelona, Barcelona, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| |
Collapse
|
3
|
Interaction of olfactory ensheathing cells with other cell types in vitro and after transplantation: Glial scars and inflammation. Exp Neurol 2011; 229:46-53. [DOI: 10.1016/j.expneurol.2010.08.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 07/19/2010] [Accepted: 08/07/2010] [Indexed: 12/18/2022]
|
4
|
Martín-López E, Alonso FR, Nieto-Díaz M, Nieto-Sampedro M. Chitosan, gelatin and poly(L-lysine) polyelectrolyte-based scaffolds and films for neural tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2010; 23:207-32. [PMID: 21192838 DOI: 10.1163/092050610x546426] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Biomaterial implants are a promising strategy to replace neural tissue that is lost after traumatic nerve damage. Chitosan (Ch) is a suitable material for nerve implantation when it is used at a minimum amount of 2% (w/v). The goal of this study was to determine the best mixture of 2% Ch with gelatin (G) and poly(L-lysine) (PLL) for use in neural tissue engineering. Using different physicochemical approaches we showed that all mixtures formed polyelectrolyte complexes with distinct electrostatic interactions between their compounds. This gave rise to different gel morphologies, among which Ch + G exhibited a significantly smaller pore size, unlike Ch + G + PLL. However, thermal resistance to degradation and the wettability of the Ch-based films were not affected. Additionally, these differences affected glial cells growth in long-term (14 days) cultures performed on Ch-based films. Astrocytes and olfactory ensheathing cells proliferated on G and Ch + G films which induced both flattened and spindle cell morphologies. Meanwhile, cortical and hippocampal neurons were similarly viable in all studied films and significantly lower than those observed in controls. Lastly, neurites from dorsal root ganglia extended the most on Ch + G films. These results show that a Ch + G mixture is a promising candidate for use in neural tissue engineering.
Collapse
Affiliation(s)
- Eduardo Martín-López
- Department of Functional and Systems Neurobiology, Cajal Institute (CSIC), Avenida Doctor Arce 37, Madrid 28002, Spain
| | | | | | | |
Collapse
|
5
|
Novikova LN, Lobov S, Wiberg M, Novikov LN. Efficacy of olfactory ensheathing cells to support regeneration after spinal cord injury is influenced by method of culture preparation. Exp Neurol 2010; 229:132-42. [PMID: 20932826 DOI: 10.1016/j.expneurol.2010.09.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 09/22/2010] [Accepted: 09/23/2010] [Indexed: 12/27/2022]
Abstract
Olfactory ensheathing cells (OEC) have been shown to stimulate regeneration, myelination and functional recovery in different spinal cord injury models. However, recent reports from several laboratories have challenged this treatment strategy. The discrepancy in results could be attributed to many factors including variations in culture protocols. The present study investigates whether the differences in culture preparation could influence neuroprotective and growth-promoting effects of OEC after transplantation into the injured spinal cord. Primary OEC cultures were purified using method of differential cell adhesion (a-OEC) or separated with immunomagnetic beads (b-OEC). After cervical C4 hemisection in adult rats, short-term (3 weeks) or long-term (7 weeks) cultured OEC were transplanted into the lateral funiculus at 1mm rostral and caudal to the transection site. At 3-8 weeks after transplantation, labeled OEC were mainly found in the injection sites and in the trauma zone. Short-term cultured a-OEC supported regrowth of rubrospinal, raphaespinal and CGRP-positive fibers, and attenuated retrograde degeneration in the red nucleus. Short-term cultured b-OEC failed to promote axonal regrowth but increased the density of rubrospinal axons within the dorsolateral funiculus and provided significant neuroprotection for axotomized rubrospinal neurons. In addition, short-term cultured OEC attenuated sprouting of rubrospinal terminals. In contrast, long-term cultured OEC neither enhanced axonal growth nor prevented retrograde cell death. The results suggest that the age of OEC in culture and the method of cell purification could affect the efficacy of OEC to support neuronal survival and regeneration after spinal cord injury. This article is part of a Special Issue entitled: Understanding olfactory ensheathing glia and their prospect for nervous system repair.
Collapse
Affiliation(s)
- Liudmila N Novikova
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
| | | | | | | |
Collapse
|
6
|
Martín-López E, Nieto-Díaz M, Nieto-Sampedro M. Differential Adhesiveness and Neurite-promoting Activity for Neural Cells of Chitosan, Gelatin, and Poly-l-Lysine Films. J Biomater Appl 2010; 26:791-809. [DOI: 10.1177/0885328210379928] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chitosan (Ch) and some of its derivatives have been proposed as good biomaterials for tissue engineering, to construct scaffolds promoting tissue regeneration. In this work we made composite films from Ch and mixtures of Ch with gelatin (G) and poly-l-lysine (PLL), and evaluated the growth on these films of PC12 and C6 lines as well as neurons and glial cells derived from cerebral tissue and dorsal root ganglia (DRG). C6 glioma cells proliferated on Ch, G, and Ch + G films, although metabolic activity was decreased by the presence of the G in the mixtures. NGF-differentiated PC12 cells, adhered preferentially on Ch and films containing PLL. Unlike NGF-treated PC12 cells, cortical and hippocampal neurons showed good adhesion to Ch and Ch + G films, where they extended neurites. Astrocytes adhered on Ch, Ch + G, and Ch + PLL mixtures, although viability decreased during the culture time. Olfactory ensheathing cells (OEC) adhered and proliferated to confluency on the wells covered with Ch + G films. Neurites from DRGs exhibited high extension on these films. These results demonstrate that Ch + G films have excellent adhesive properties for both neurons and regeneration-promoting glia (OEC). These films also promoted neurite extension from DRG, making them good candidates for tissue engineering of nerve repair.
Collapse
Affiliation(s)
- Eduardo Martín-López
- Department of Functional and Systems Neurobiology, Cajal Institute, CSIC Madrid, Spain
| | - Manuel Nieto-Díaz
- Experimental Neurology Unit, Hospital Nacional de Parapléjicos, SESCAM Toledo, Spain
| | - Manuel Nieto-Sampedro
- Department of Functional and Systems Neurobiology, Cajal Institute, CSIC Madrid, Spain
- Experimental Neurology Unit, Hospital Nacional de Parapléjicos, SESCAM Toledo, Spain
| |
Collapse
|
7
|
Hale DM, Ray S, Leung JY, Holloway AF, Chung RS, West AK, Chuah MI. Olfactory ensheathing cells moderate nuclear factor kappaB translocation in astrocytes. Mol Cell Neurosci 2010; 46:213-21. [PMID: 20840869 DOI: 10.1016/j.mcn.2010.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 08/10/2010] [Accepted: 09/03/2010] [Indexed: 01/05/2023] Open
Abstract
Nuclear factor kappaB (NFκB) is a key transcriptional regulator of inflammatory genes. We investigated the modulatory effects of olfactory ensheathing cells (OECs), microglia and meningeal fibroblasts on translocation of NFκB to astrocyte nuclei. The percentage of activated astrocytes in co-cultures with OECs was significantly less than for co-cultures with microglia (p<0.001) and fibroblasts (p<0.05). Phorbol myristate acetate (PMA) and calcium ionophore stimulation of p65 NFκB translocation to nuclei provided an in vitro model of astrocyte inflammatory activation. Soluble factors released by OECs significantly moderated the astrocytic NFκB translocation induced by either PMA/calcium ionophore or microglia-derived factors (p<0.001). Insulin-like growth factor-1 may contribute to these effects, since it is expressed by OECs and also significantly moderated the astrocytic NFκB translocation (p<0.05), albeit insufficiently to fully account for the OEC-induced moderation (p<0.01). Olfactory ensheathing cells significantly moderated the increased transcription of the pro-inflammatory cytokine, granulocyte macrophage-colony stimulating factor in the activated astrocytes (p<0.01). These results suggest that transplanted OECs could improve neural repair after CNS injury by moderating astrocyte activation.
Collapse
Affiliation(s)
- David M Hale
- Menzies Research Institute, University of Tasmania, Hobart, Tasmania 7001, Australia
| | | | | | | | | | | | | |
Collapse
|
8
|
Doncel-Pérez E, Caballero-Chacón S, Nieto-Sampedro M. Neurosphere cell differentiation to aldynoglia promoted by olfactory ensheathing cell conditioned medium. Glia 2009; 57:1393-409. [DOI: 10.1002/glia.20858] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Carrillo-Ruiz JD, Andrade P, Silva F, Vargas G, Maciel-Navarro MM, Jiménez-Botello LC. Olfactory bulb implantation and methylprednisolone administration in the treatment of spinal cord injury in rats. Neurosci Lett 2009; 462:39-44. [DOI: 10.1016/j.neulet.2009.06.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/12/2009] [Accepted: 06/22/2009] [Indexed: 12/11/2022]
|
10
|
Xue T, Wei L, Zheng RH, Qiao L, Qiu JH, Chen FQ, Lu LJ, Zha DJ, Han Y, Chen J. Effect of cryopreservation on proliferative features of neural progenitor cells derived from olfactory bulb of embryonic rat. Int J Pediatr Otorhinolaryngol 2009; 73:969-973. [PMID: 19395058 DOI: 10.1016/j.ijporl.2009.03.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 03/18/2009] [Accepted: 03/20/2009] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Stem cell research offers unique opportunities for developing new medical therapies for devastating diseases and a new way to explore fundamental questions of biology. The use of olfactory bulb neural progenitor cells for transplantation requires efficient recovery methods and cryopreservation procedures. The purpose of this study was to determine cryopreservation techniques for neural progenitor cells derived from olfactory bulb (OB NPCs) of embryonic rat. METHODS Initially, we compared the survival rates of cryopreserved OB NPCs using three cryoprotectants: dimethyl sulfoxide (DMSO), ethylene glycol (EG) and glycerol with or without 10% FBS. Cells were held at liquid nitrogen (-186 degrees C) for 7 days ("short-term storage") or 6 months ("long-term storage"). We assessed OB NPCs recovery efficiency after freezing and thawing by viability testing, colony-forming ability and immunocytochemistry under different conditions. RESULTS The survival rate of cryopreserved-thawed OB NPCs was estimated by counting colony numbers under a stereomicroscope. No significant difference in survival rate was observed between cryoprotectants. CONCLUSIONS These observations indicate that cryopreservation of OB NPCs is possible for up to 6 months in optimal conditions without losing proliferation activity.
Collapse
Affiliation(s)
- Tao Xue
- Department of Otolaryngology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Guest JD, Herrera L, Margitich I, Oliveria M, Marcillo A, Casas CE. Xenografts of expanded primate olfactory ensheathing glia support transient behavioral recovery that is independent of serotonergic or corticospinal axonal regeneration in nude rats following spinal cord transection. Exp Neurol 2008; 212:261-74. [PMID: 18511045 DOI: 10.1016/j.expneurol.2008.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 02/20/2008] [Accepted: 03/03/2008] [Indexed: 12/17/2022]
Abstract
Transplantation of olfactory ensheathing glial cells (OEG) may improve the outcome from spinal cord injury. Proof-of-principle studies in primates are desirable and the feasibility and efficacy of using in vitro expanded OEG should be tested. An intermediate step between the validation of rodent studies and human clinical trials is to study expanded primate OEG (POEG) xenografts in immunotolerant rodents. In this study the time course to generate purified POEG was evaluated as well as their survival, effect on damaged axons of the corticospinal and serotonergic systems, tissue sparing, and chronic locomotor recovery following transplantation. Fifty-seven nude rats underwent T9/10 spinal cord transection. Thirty-eight rats received POEG, 19 controls were injected with cell medium, and 10 received lentivirally-GFP-transfected POEG. Histological evaluation was conducted at 6 weeks, 8 weeks, 14 weeks and 23-24 weeks. Of these 57 rats, 18 were studied with 5-HT immunostaining, 16 with BDA anterograde CST labeling, and six were used for transmission electron microscopy. In grafted animals, behavioral recovery, sprouting and limited regeneration of 5-HT fibers, and increased numbers of proximal collateral processes but not regeneration of CST fibers was observed. Grafted animals had less cavitation in the spinal cord stumps than controls. Behavioral recovery peaked at three months and then declined. Five POEG-transplanted animals that had shown behavioral recovery underwent retransection and behavioral scores did not change significantly, suggesting that long tract axonal regeneration did not account for the locomotor improvement. At the ultrastructural level presumptive POEG were found to have direct contacts with astrocytes forming the glia limitans, distinct from those formed by Schwann cells. At 6 weeks GFP expression was detected in cells within the lesion site and within nerve roots but did not match the pattern of Hoechst nuclear labeling. At 3.5 months only GFP-positive debris in macrophages could be detected. Transplanted POEG support behavioral recovery via mechanisms that appear to be independent of long tract regeneration.
Collapse
Affiliation(s)
- J D Guest
- Department of Neurological Surgery, University of Miami, Miami, FL 33136, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Sekiya T, Kojima K, Matsumoto M, Holley MC, Ito J. Rebuilding lost hearing using cell transplantation. Neurosurgery 2007; 60:417-33; discussion 433. [PMID: 17327786 DOI: 10.1227/01.neu.0000249189.46033.42] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The peripheral auditory nervous system (cochlea and auditory nerve) has a complex anatomy, and it has traditionally been thought that once the sensorineural structures are damaged, restoration of hearing is impossible. In the past decade, however, the potential to restore lost hearing has been intensively investigated using molecular and cell biological techniques, and we can now part with such a pessimistic view. In this review, we examine an important field in hearing restoration research: cell transplantation. METHODS Most efforts in this field have been directed to the replacement of hair cells by transplantation to the cochlea. Here, we focus on transplantation to the auditory nerve, from the side of the cerebellopontine angle rather than the cochlea. RESULTS Delivery of cells to the cochlea is potentially damaging, and nerve cells transplanted distally to the Schwann-glial transitional zone (cochlear side) may become inhibited when they reach the transitional zone. The auditory nerve is probably the most suitable route for cell transplantation. CONCLUSION The auditory nerve occupies an important position not only in neurosurgery but also in various diseases in other disciplines, and several lines of recent evidence indicate that it is a key target for hearing restoration. It is familiar to most neurosurgeons, and the recent advances in the molecular and cell biology of inner-ear development are of direct importance to neurorestorative medicine. In this article, we review the anatomy, development, and molecular biology of the auditory nerve and cochlea, with emphasis on the advances in cell transplantation.
Collapse
Affiliation(s)
- Tetsuji Sekiya
- Department of Otolaryngology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
13
|
Zurn AD, Bandtlow CE. Regeneration failure in the CNs: cellular and molecular mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 557:54-76. [PMID: 16955704 DOI: 10.1007/0-387-30128-3_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anne D Zurn
- Department of Experimental Surgery, Lausanne University Hospital, Faculty of Biology and Medicine, Switzerland
| | | |
Collapse
|
14
|
Doncel-Pérez E, Darder M, Martín-López E, Vázquez L, Nieto-Sampedro M, Ruiz-Hitzky E. Gelation under dynamic conditions: a strategy for in vitro cell ordering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2006; 17:795-802. [PMID: 16932860 DOI: 10.1007/s10856-006-9837-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Accepted: 10/21/2005] [Indexed: 05/11/2023]
Abstract
Ordered gelation under spin-coating conditions, as reported here, is a suitable method to order cells in biogels. Cell ordering is of great importance for functional repair of central nervous system (CNS) injuries, because therapies must include strategies to bridge chystic gaps and facilitate axon growth towards its target. Organized biocompatible and biodegradable substrates may be used for this purpose, to supply trophic support and provide directional cues for neuronal process outgrowth. Atomic force microscopy (AFM) and low temperature scanning electron microscopy (LTSEM), confirmed that fibrils in kappa-carrageenan/chitosan and fibrin hydrogels prepared under spin-coating conditions, were longitudinally arranged. The cell model was conveniently tested using rat C6 glioma cells. C6 cells were distributed regularly in fibrin gels formed under centrifugal force. The ability of ordered fibrin scaffolds to promote uniform distribution of transplanted cells, was confirmed by fluorescence microscopy.
Collapse
Affiliation(s)
- Ernesto Doncel-Pérez
- Unidad de Neurología Experimental, CSIC, SESCAM, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071, Toledo, Spain.
| | | | | | | | | | | |
Collapse
|
15
|
Desouches C, Alluin O, Mutaftschiev N, Dousset E, Magalon G, Boucraut J, Feron F, Decherchi P. La réparation nerveuse périphérique : 30 siècles de recherche. Rev Neurol (Paris) 2005; 161:1045-59. [PMID: 16288170 DOI: 10.1016/s0035-3787(05)85172-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Nerve injury compromises sensory and motor functions. Techniques of peripheral nerve repair are based on our knowledge regarding regeneration. Microsurgical techniques introduced in the late 1950s and widely developed for the past 20 years have improved repairs. However, functional recovery following a peripheral mixed nerve injury is still incomplete. STATE OF ART Good motor and sensory function after nerve injury depends on the reinnervation of the motor end plates and sensory receptors. Nerve regeneration does not begin if the cell body has not survived the initial injury or if it is unable to initiate regeneration. The regenerated axons must reach and reinnervate the appropriate target end-organs in a timely fashion. Recovery of motor function requires a critical number of motor axons reinnervating the muscle fibers. Sensory recovery is possible if the delay in reinnervation is short. Many additional factors influence the success of nerve repair or reconstruction. The timing of the repair, the level of injury, the extent of the zone of injury, the technical skill of the surgeon, and the method of repair and reconstruction contribute to the functional outcome after nerve injury. CONCLUSION This review presents the recent advances in understanding of neural regeneration and their application to the management of primary repairs and nerve gaps.
Collapse
Affiliation(s)
- C Desouches
- Service de Chirurgie de la Main, Chirurgie Plastique et Réparatrice des Membres, Assistance Publique, Hôpitaux de Marseille, Hôpital de la Conception, Marseille
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Xiao M, Klueber KM, Lu C, Guo Z, Marshall CT, Wang H, Roisen FJ. Human adult olfactory neural progenitors rescue axotomized rodent rubrospinal neurons and promote functional recovery. Exp Neurol 2005; 194:12-30. [PMID: 15899240 DOI: 10.1016/j.expneurol.2005.01.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 12/15/2004] [Accepted: 01/11/2005] [Indexed: 01/15/2023]
Abstract
Previously, our lab reported the isolation of patient-specific neurosphere-forming progenitor lines from human adult olfactory epithelium from cadavers as well as patients undergoing nasal sinus surgery. RT-PCR and ELISA demonstrated that the neurosphere-forming cells (NSFCs) produced BDNF. Since rubrospinal tract (RST) neurons have been shown to respond to exogenous BNDF, it was hypothesized that if the NSFCs remained viable following engraftment into traumatized spinal cord, they would rescue axotomized RS neurons from retrograde cell atrophy and promote functional recovery. One week after a partial cervical hemisection, GFP-labeled NSFCs suspended in Matrigel matrix or Matrigel matrix alone was injected into the lesion site. GFP-labeled cells survived up to 12 weeks in the lesion cavity or migrated within the ipsilateral white matter; the apparent number and mean somal area of fluorogold (FG)-labeled axotomized RST neurons were greater in the NSFC-engrafted rats than in lesion controls. Twelve weeks after engraftment, retrograde tracing with FG revealed that some RST neurons regenerated axons 4-5 segments caudal to the engraftment site; anterograde tracing with biotinylated dextran amine confirmed regeneration of RST axons through the transplants within the white matter for 3-6 segments caudal to the grafts. A few RST axons terminated in gray matter close to motoneurons. Matrix alone did not elicit regeneration. Behavioral analysis revealed that NSFC-engrafted rats displayed better performance during spontaneous vertical exploration and horizontal rope walking than lesion Matrigel only controls 11 weeks post transplantation. These results emphasize the unique potential of human olfactory neuroepithelial-derived progenitors as an autologous source of stem cells for spinal cord repair.
Collapse
Affiliation(s)
- Ming Xiao
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY 40292, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Basic science advances in spinal cord injury and regeneration research have led to a variety of novel experimental therapeutics designed to promote functionally effective axonal regrowth and sprouting. Among these interventions are cell-based approaches involving transplantation of neural and non-neural tissue elements that have potential for restoring damaged neural pathways or reconstructing intraspinal synaptic circuitries by either regeneration or neuronal/glial replacement. Notably, some of these strategies (e.g., grafts of peripheral nerve tissue, olfactory ensheathing glia, activated macrophages, marrow stromal cells, myelin-forming oligodendrocyte precursors or stem cells, and fetal spinal cord tissue) have already been translated to the clinical arena, whereas others have imminent likelihood of bench-to-bedside application. Although this progress has generated considerable enthusiasm about treating what once was thought to be a totally incurable condition, there are many issues to be considered relative to treatment safety and efficacy. The following review reflects on different experimental applications of intraspinal transplantation with consideration of the underlying pathological, pathophysiological, functional, and neuroplastic responses to spinal trauma that such treatments may target along with related issues of procedural and biological safety. The discussion then moves to an overview of ongoing and completed clinical trials to date. The pros and cons of these endeavors are considered, as well as what has been learned from them. Attention is primarily directed at preclinical animal modeling and the importance of patterning clinical trials, as much as possible, according to laboratory experiences.
Collapse
Affiliation(s)
- Paul J Reier
- College of Medicine and McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, USA.
| |
Collapse
|
18
|
Cellular transplantation strategies for spinal cord injury and translational neurobiology. Neurotherapeutics 2004. [DOI: 10.1007/bf03206629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
19
|
Polentes J, Stamegna JC, Nieto-Sampedro M, Gauthier P. Phrenic rehabilitation and diaphragm recovery after cervical injury and transplantation of olfactory ensheathing cells. Neurobiol Dis 2004; 16:638-53. [PMID: 15262276 DOI: 10.1016/j.nbd.2004.04.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Revised: 04/06/2004] [Accepted: 04/12/2004] [Indexed: 11/29/2022] Open
Abstract
Functional respiratory recovery was evaluated by recording diaphragm and phrenic nerve activity several months after cervical cord hemisection followed by olfactory ensheathing cell (OEC) transplantation. The intact side was taken as a control in each rat. Sham-transplanted rats did not recover respiratory activity from the ipsilateral lesioned side. By contrast, ipsilateral phrenic and diaphragmatic activities recovered in transplanted rats amounted to 80.7% and 73% of their controls, respectively. After contralateral acute C1 section eliminating any contralateral influence from crossed compensatory pathways, the ipsilateral phrenic activity remained at 57.5% of the control, indicating that the phrenic recovery originated from the ipsilateral side. Supralesional stimulation in these rats elicited sublesional ipsilateral postsynaptic phrenic responses showing that transplantation helped ipsilateral fibers to again transmit nervous messages to the phrenic target, leading to substantial functional recovery. The origin of mechanisms involved in respiratory recovery (regeneration, resurrection, sprouting, sparing, demasking of latent pathways) is discussed.
Collapse
Affiliation(s)
- J Polentes
- Physiologie Neurovégétative, UMR CNRS 6153 INRA 1147, Faculté des Sciences et Techniques de Saint-Jérôme (Aix-Marseille III), 13397 Marseille 20, France
| | | | | | | |
Collapse
|