1
|
Cai T, Sharif Y, Zhuang Y, Yang Q, Chen X, Chen K, Chen Y, Gao M, Dang H, Pan Y, Raza A, Zhang C, Chen H, Zhuang W. In-silico identification and characterization of O-methyltransferase gene family in peanut ( Arachis hypogaea L.) reveals their putative roles in development and stress tolerance. FRONTIERS IN PLANT SCIENCE 2023; 14:1145624. [PMID: 37063183 PMCID: PMC10102615 DOI: 10.3389/fpls.2023.1145624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Cultivated peanut (Arachis hypogaea) is a leading protein and oil-providing crop and food source in many countries. At the same time, it is affected by a number of biotic and abiotic stresses. O-methyltransferases (OMTs) play important roles in secondary metabolism, biotic and abiotic stress tolerance. However, the OMT genes have not been comprehensively analyzed in peanut. In this study, we performed a genome-wide investigation of A. hypogaea OMT genes (AhOMTs). Gene structure, motifs distribution, phylogenetic history, genome collinearity and duplication of AhOMTs were studied in detail. Promoter cis-elements, protein-protein interactions, and micro-RNAs targeting AhOMTs were also predicted. We also comprehensively studied their expression in different tissues and under different stresses. We identified 116 OMT genes in the genome of cultivated peanut. Phylogenetically, AhOMTs were divided into three groups. Tandem and segmental duplication events played a role in the evolution of AhOMTs, and purifying selection pressure drove the duplication process. AhOMT promoters were enriched in several key cis-elements involved in growth and development, hormones, light, and defense-related activities. Micro-RNAs from 12 different families targeted 35 AhOMTs. GO enrichment analysis indicated that AhOMTs are highly enriched in transferase and catalytic activities, cellular metabolic and biosynthesis processes. Transcriptome datasets revealed that AhOMTs possessed varying expression levels in different tissues and under hormones, water, and temperature stress. Expression profiling based on qRT-PCR results also supported the transcriptome results. This study provides the theoretical basis for further work on the biological roles of AhOMT genes for developmental and stress responses.
Collapse
Affiliation(s)
- Tiecheng Cai
- Center of Legume Plant Genetics and System Biology, College of Agronomy, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Yasir Sharif
- Center of Legume Plant Genetics and System Biology, College of Agronomy, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Yuhui Zhuang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qiang Yang
- Center of Legume Plant Genetics and System Biology, College of Agronomy, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Xiangyu Chen
- Center of Legume Plant Genetics and System Biology, College of Agronomy, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
- Crops Research Institute, Fujian Academy of Agricultural Science, Fuzhou, Fujian, China
| | - Kun Chen
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuting Chen
- Center of Legume Plant Genetics and System Biology, College of Agronomy, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Meijia Gao
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hao Dang
- Center of Legume Plant Genetics and System Biology, College of Agronomy, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Yijing Pan
- Center of Legume Plant Genetics and System Biology, College of Agronomy, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Ali Raza
- Center of Legume Plant Genetics and System Biology, College of Agronomy, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Chong Zhang
- Center of Legume Plant Genetics and System Biology, College of Agronomy, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Hua Chen
- Center of Legume Plant Genetics and System Biology, College of Agronomy, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Weijian Zhuang
- Center of Legume Plant Genetics and System Biology, College of Agronomy, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| |
Collapse
|
2
|
Sharma P, Mishra S, Burman N, Chatterjee M, Singh S, Pradhan AK, Khurana P, Khurana JP. Characterization of Cry2 genes (CRY2a and CRY2b) of B. napus and comparative analysis of BnCRY1 and BnCRY2a in regulating seedling photomorphogenesis. PLANT MOLECULAR BIOLOGY 2022; 110:161-186. [PMID: 35831732 DOI: 10.1007/s11103-022-01293-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Cryptochrome 2 (CRY2) perceives blue/UV-A light and regulates photomorphogenesis in plants. However, besides Arabidopsis, CRY2 has been functionally characterized only in native species of japonica rice and tomato. In the present study, the BnCRY2a, generating a relatively longer cDNA and harboring an intron in its 5'UTR, has been characterized in detail. Western blot analysis revealed that BnCRY2a is light labile and degraded rapidly by 26S proteasome when seedlings are irradiated with blue light. For functional analysis, BnCRY2a was over-expressed in Brassica juncea, a related species more amenable to transformation. The BnCRY2a over-expression (BnCRY2aOE) transgenics developed short hypocotyl and expanded cotyledons, accumulated more anthocyanin in light-grown seedlings, and displayed early flowering on maturity. Early flowering in BnCRY2aOE transgenics was coupled with the up-regulation of many flowering-related genes such as FT. The present study also highlights the differential light sensitivity of cry1 and cry2 in controlling hypocotyl elongation growth in Brassica. BnCRY2aOE seedlings developed much shorter hypocotyl under the low-intensity of blue light, while BnCRY1OE seedling hypocotyls were shorter under the high-intensity blue light, compared to untransformed seedlings.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Plant Molecular Biology & Interdisciplinary Centre for Plant Genomics, University of Delhi South Campus, New Delhi, 110021, India
- Proteus Genomics, 218 Summit Parkway, Birmingham, AL, 35209, USA
| | - Sushma Mishra
- Department of Plant Molecular Biology & Interdisciplinary Centre for Plant Genomics, University of Delhi South Campus, New Delhi, 110021, India
| | - Naini Burman
- Department of Plant Molecular Biology & Interdisciplinary Centre for Plant Genomics, University of Delhi South Campus, New Delhi, 110021, India
| | - Mithu Chatterjee
- Department of Plant Molecular Biology & Interdisciplinary Centre for Plant Genomics, University of Delhi South Campus, New Delhi, 110021, India
- AeroFarms, Newark, NJ, 07105, USA
| | - Shipra Singh
- Department of Plant Molecular Biology & Interdisciplinary Centre for Plant Genomics, University of Delhi South Campus, New Delhi, 110021, India
| | - Akshay K Pradhan
- Department of Genetics, University of Delhi South Campus, New Delhi, 110021, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology & Interdisciplinary Centre for Plant Genomics, University of Delhi South Campus, New Delhi, 110021, India.
| | - Jitendra P Khurana
- Department of Plant Molecular Biology & Interdisciplinary Centre for Plant Genomics, University of Delhi South Campus, New Delhi, 110021, India
| |
Collapse
|
3
|
Genome-Wide Investigation of Major Enzyme-Encoding Genes in the Flavonoid Metabolic Pathway in Tartary Buckwheat (Fagopyrum tataricum). J Mol Evol 2021; 89:269-286. [PMID: 33760965 DOI: 10.1007/s00239-021-10004-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
Key enzymes play a vital role in plant growth and development. However, the evolutionary relationships between genes encoding key enzymes in the metabolic pathway of Tartary buckwheat flavonoids are poorly understood. Based on the published Tartary buckwheat genome sequence and related Tartary buckwheat transcriptome data, 48 key enzyme-encoding genes involved in flavonoid metabolism were screened from the Tartary buckwheat genome in this study; the chromosome localization, gene structure and promoter elements of these enzyme-encoding gene were also investigated. Gene structure analysis revealed relatively conserved 5' exon sequences among the 48 genes, indicating that the structural diversity of key enzyme-encoding genes is low in Tartary buckwheat. Through promoter analysis, these key enzyme-encoding genes were found to contain a large number of light-response elements and hormone-response elements. In addition, some genes could bind MYB transcription factors, participating in the regulation of flavonoid biosynthesis. The transcription level of the 48 key enzyme-encoding gene varied greatly among tissues. In this study, we identified 48 key enzyme-encoding genes involved in flavonoid metabolic pathways, and elucidated the structure, evolution and tissue-specific expression patterns of these genes. These results lay a foundation for further understanding the functional characteristics and evolutionary relationships of key enzyme-encoding genes involved in the flavonoid metabolic pathway in Tartary buckwheat.
Collapse
|
4
|
Lu N, Ma W, Han D, Liu Y, Wang Z, Wang N, Yang G, Qu G, Wang Q, Zhao K, Wang J. Genome-wide analysis of the Catalpa bungei caffeic acid O-methyltransferase (COMT) gene family: identification and expression profiles in normal, tension, and opposite wood. PeerJ 2019; 7:e6520. [PMID: 30886769 PMCID: PMC6421059 DOI: 10.7717/peerj.6520] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/22/2019] [Indexed: 01/12/2023] Open
Abstract
Caffeic acid O-methyltransferase (COMT) is an important protein that participates in lignin synthesis and is associated with the ratio of G-/S-type lignin in plants. COMTs are associated with the wood properties of forest trees; however, little known about the COMT family in Catalpa bungei, a valuable timber tree species in China . We performed a comprehensive analysis of COMT genes in the C. bungei genome by describing the gene structure and phylogenetic relationships of each family member using bioinformatics-based methods. A total of 23 putative COMT genes were identified using the conserved domain sequences and amino acid sequences of COMTs from Arabidopsis thaliana and Populus trichocarpa as probes. Phylogenetic analysis showed that 23 CbuCOMTs can be divided into three groups based on their structural characteristics; five conserved domains were found in the COMT family. Promoter analysis indicated that the CbuCOMT promoters included various cis-acting elements related to growth and development. Real-time quantitative polymerase chain reaction (PCR) analysis showed differential expression among CbuCOMTs. CbuCOMT2, 7, 8, 9, 10, 12, 13, 14, 21, and 23 were mainly expressed in xylem. Only CbuCOMT23 was significantly downregulated in tension wood and upregulated in opposite wood compared to normal wood. Our study provides new information about the CbuCOMT gene family and will facilitate functional characterisation in further research.
Collapse
Affiliation(s)
- Nan Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Donghua Han
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, China
| | - Ying Liu
- College of Forestry, Northwest A&F University, Yangling, China
| | - Zhi Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Nan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Guijuan Yang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qiuxia Wang
- Nanyang Research Institute of Forestry, Nanyang, China
| | - Kun Zhao
- Luoyang Academy of Agriculture and Forestry, Luoyang, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
5
|
Carvalho SD, Folta KM. Sequential light programs shape kale (Brassica napus) sprout appearance and alter metabolic and nutrient content. HORTICULTURE RESEARCH 2014; 1:8. [PMID: 26504531 PMCID: PMC4591675 DOI: 10.1038/hortres.2014.8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/17/2013] [Indexed: 05/27/2023]
Abstract
Different light wavelengths have specific effects on plant growth and development. Narrow-bandwidth light-emitting diode (LED) lighting may be used to directionally manipulate size, color and metabolites in high-value fruits and vegetables. In this report, Red Russian kale (Brassica napus) seedlings were grown under specific light conditions and analyzed for photomorphogenic responses, pigment accumulation and nutraceutical content. The results showed that this genotype responds predictably to darkness, blue and red light, with suppression of hypocotyl elongation, development of pigments and changes in specific metabolites. However, these seedlings were relatively hypersensitive to far-red light, leading to uncharacteristically short hypocotyls and high pigment accumulation, even after growth under very low fluence rates (<1 μmol m(-2) s(-1)). General antioxidant levels and aliphatic glucosinolates are elevated by far-red light treatments. Sequential treatments of darkness, blue light, red light and far-red light were applied throughout sprout development to alter final product quality. These results indicate that sequential treatment with narrow-bandwidth light may be used to affect key economically important traits in high-value crops.
Collapse
Affiliation(s)
- Sofia D Carvalho
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA
| | - Kevin M Folta
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA
- Plant Innovation Program, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Lang-Mladek C, Xie L, Nigam N, Chumak N, Binkert M, Neubert S, Hauser MT. UV-B signaling pathways and fluence rate dependent transcriptional regulation of ARIADNE12. PHYSIOLOGIA PLANTARUM 2012; 145:527-39. [PMID: 22188380 DOI: 10.1111/j.1399-3054.2011.01561.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
ARI12 belongs to a family of 'RING between RING fingers' (RBR) domain proteins with E3 ligase activity (Eisenhaber et al. 2007). The Arabidopsis genome codes for 14 ARI genes and two pseudogenes (Mladek et al. 2003). Under standard growth conditions ARI12 is predominantly expressed in roots. In addition, ARI12 is strongly induced in leaves following exposure to ultraviolet (UV)-B radiation at dosages similar to those in areas under a reduced ozone layer. With quantitative reverse transcription polymerase chain reaction analyses and promoter:reporter constructs we show that the expression of ARI12 peaks 2-4 h after UV-B radiation exposure. To test if ARI12's transcriptional activation depends on key players of the UV-B signaling pathway, ARI12 expression was quantified in mutants of the ELONGATED HYPOCOTYL5 (HY5), HY5 HOMOLOG (HYH) and the UV RESISTANCE LOCUS8 (UVR8) genes. ARI12 transcription was reduced by 50-70% in hy5, hyh and hy5/hyh double mutants, but not in uvr8 mutants. However, under low fluence rate UV-B conditions ARI12 is not induced in these mutants. Our results show that ARI12 represents a downstream target of the low fluence rate UVR8/HY5/HYH UV-B signaling pathway while under high fluence rates its expression is regulated by the two bZIP transcription factors HY5 and HYH in an UVR8-independent manner.
Collapse
Affiliation(s)
- Christina Lang-Mladek
- Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
7
|
Li J, Terzaghi W, Deng XW. Genomic basis for light control of plant development. Protein Cell 2012; 3:106-16. [PMID: 22426979 PMCID: PMC4875414 DOI: 10.1007/s13238-012-2016-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 02/05/2012] [Indexed: 10/28/2022] Open
Abstract
Light is one of the key environmental signals regulating plant growth and development. Therefore, understanding the mechanisms by which light controls plant development has long been of great interest to plant biologists. Traditional genetic and molecular approaches have successfully identified key regulatory factors in light signaling, but recent genomic studies have revealed massive reprogramming of plant transcriptomes by light, identified binding sites across the entire genome of several pivotal transcription factors in light signaling, and discovered the involvement of epigenetic regulation in light-regulated gene expression. This review summarizes the key genomic work conducted in the last decade which provides new insights into light control of plant development.
Collapse
Affiliation(s)
- Jigang Li
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-biotechnology, State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871 China
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8104 USA
| | - William Terzaghi
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8104 USA
- Department of Biology, Wilkes University, Wilkes-Barre, PA 18766 USA
| | - Xing Wang Deng
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-biotechnology, State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871 China
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8104 USA
| |
Collapse
|
8
|
Shi QM, Yang X, Song L, Xue HW. Arabidopsis MSBP1 is activated by HY5 and HYH and is involved in photomorphogenesis and brassinosteroid sensitivity regulation. MOLECULAR PLANT 2011; 4:1092-104. [PMID: 21715650 DOI: 10.1093/mp/ssr049] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Membrane Steroid Binding Protein 1 (MSBP1) can bind steroids in vitro and negatively regulates brassinosteroid (BR) signaling, as well as cell elongation and expansion. Detailed analysis of the MSBP1 expression pattern based on quantitative real-time RT-PCR and promoter-GUS fusion studies revealed that MSBP1 expression in hypocotyls is stimulated by various light conditions. Interestingly, MSBP1 expression is greatly suppressed in hy5, hyh, or hy5 hyh mutants but enhanced in cop1 mutants. Further analysis employing a yeast one-hybrid assay, an electrophoretic mobility shift assay (EMSA), and a Chromatin IP (ChIP) assay confirmed the direct binding of Long Hypocotyl 5 (HY5) and HY5 Homolog (HYH) to the promoter region of MSBP1, indicating that MSBP1 is involved in light-regulated hypocotyl growth by serving as a direct target for HY5 and HYH. In addition, hy5 and hy5 hyh mutants show altered BR responses to light, which is consistent with the suppressed expression of MSBP1 in these mutants. These results suggest that light triggers MSBP1 expression through direct binding to and activation by HY5 and HYH, thereby inhibiting hypocotyl elongation. The findings also provide informative clues regarding the mechanisms for the negative regulation of BR sensitivity and photomorphogenesis during the dark-light transition.
Collapse
Affiliation(s)
- Qiu-Ming Shi
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032 Shanghai, PR China
| | | | | | | |
Collapse
|
9
|
Smirnova OG, Stepanenko IL, Shumnyi VK. The role of the COP1, SPA, and PIF proteins in plant photomorphogenesis. ACTA ACUST UNITED AC 2011. [DOI: 10.1134/s2079086411040098] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Zhang C, Wang J, Hua X, Fang J, Zhu H, Gao X. A mutation degree model for the identification of transcriptional regulatory elements. BMC Bioinformatics 2011; 12:262. [PMID: 21708002 PMCID: PMC3228546 DOI: 10.1186/1471-2105-12-262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 06/27/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Current approaches for identifying transcriptional regulatory elements are mainly via the combination of two properties, the evolutionary conservation and the overrepresentation of functional elements in the promoters of co-regulated genes. Despite the development of many motif detection algorithms, the discovery of conserved motifs in a wide range of phylogenetically related promoters is still a challenge, especially for the short motifs embedded in distantly related gene promoters or very closely related promoters, or in the situation that there are not enough orthologous genes available. RESULTS A mutation degree model is proposed and a new word counting method is developed for the identification of transcriptional regulatory elements from a set of co-expressed genes. The new method comprises two parts: 1) identifying overrepresented oligo-nucleotides in promoters of co-expressed genes, 2) estimating the conservation of the oligo-nucleotides in promoters of phylogenetically related genes by the mutation degree model. Compared with the performance of other algorithms, our method shows the advantages of low false positive rate and higher specificity, especially the robustness to noisy data. Applying the method to co-expressed gene sets from Arabidopsis, most of known cis-elements were successfully detected. The tool and example are available at http://mcube.nju.edu.cn/jwang/lab/soft/ocw/OCW.html. CONCLUSIONS The mutation degree model proposed in this paper is adapted to phylogenetic data of different qualities, and to a wide range of evolutionary distances. The new word-counting method based on this model has the advantage of better performance in detecting short sequence of cis-elements from co-expressed genes of eukaryotes and is robust to less complete phylogenetic data.
Collapse
Affiliation(s)
- Changqing Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210093, China
| | | | | | | | | | | |
Collapse
|
11
|
Jiao Q, Yang Z, Huang J. Construction of a gene regulatory network for Arabidopsis based on metabolic pathway data. CHINESE SCIENCE BULLETIN-CHINESE 2010. [DOI: 10.1007/s11434-009-0728-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Lu L, Li J. A combinatorial approach to determine the context-dependent role in transcriptional and posttranscriptional regulation in Arabidopsis thaliana. BMC SYSTEMS BIOLOGY 2009; 3:43. [PMID: 19400940 PMCID: PMC2694151 DOI: 10.1186/1752-0509-3-43] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Accepted: 04/28/2009] [Indexed: 12/23/2022]
Abstract
Background While progresses have been made in mapping transcriptional regulatory networks, posttranscriptional regulatory roles just begin to be uncovered, which has arrested much attention due to the discovery of miRNAs. Here we demonstrated a combinatorial approach to incorporate transcriptional and posttranscriptional regulatory sequences with gene expression profiles to determine their probabilistic dependencies. Results We applied the proposed method to microarray time course gene expression profiles and could correctly predict expression patterns for more than 50% of 1,132 genes, based on the sequence motifs adopted in the network models, which was statistically significant. Our study suggested that the contribution of miRNA regulation towards gene expression in plants may be more restricted than that of transcription factors; however, miRNAs might confer additional layers of robustness on gene regulation networks. The programs written in C++ and PERL implementing methods in this work are available for download from our supplemental data web page. Conclusion In this study we demonstrated a combinatorial approach to incorporate miRNA target motifs (miRNA-mediated posttranscriptional regulatory sites) and TFBSs (transcription factor binding sites) with gene expression profiles to reconstruct the regulatory networks. The proposed approach may facilitate the incorporation of diverse sources with limited prior knowledge.
Collapse
Affiliation(s)
- Le Lu
- Division of Structural and Computational Biology, School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | | |
Collapse
|
13
|
Andronis C, Barak S, Knowles SM, Sugano S, Tobin EM. The clock protein CCA1 and the bZIP transcription factor HY5 physically interact to regulate gene expression in Arabidopsis. MOLECULAR PLANT 2008; 1:58-67. [PMID: 20031914 DOI: 10.1093/mp/ssm005] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The circadian clock regulates the expression of an array of Arabidopsis genes such as those encoding the LIGHT-HARVESTING CHLOROPHYLL A/B (Lhcb) proteins. We have previously studied the promoters of two of these Arabidopsis genes--Lhcb1*1 and Lhcb1*3--and identified a sequence that binds the clock protein CIRCADIAN CLOCK ASSOCIATED 1 (CCA1). This sequence, designated CCA1-binding site (CBS), is necessary for phytochrome and circadian responsiveness of these genes. In close proximity to this sequence, there exists a G-box core element that has been shown to bind the bZIP transcription factor HY5 in other light-regulated plant promoters. In the present study, we examined the importance of the interaction of transcription factors binding the CBS and the G-box core element in the control of normal circadian rhythmic expression of Lhcb genes. Our results show that HY5 is able to specifically bind the G-box element in the Lhcb promoters and that CCA1 can alter the binding activity of HY5. We further show that CCA1 and HY5 can physically interact and that they can act synergistically on transcription in a yeast reporter gene assay. An absence of HY5 leads to a shorter period of Lhcb1*1 circadian expression but does not affect the circadian expression of CATALASE3 (CAT3), whose promoter lacks a G-box element. Our results suggest that interaction of the HY5 and CCA1 proteins on Lhcb promoters is necessary for normal circadian expression of the Lhcb genes.
Collapse
Affiliation(s)
- Christos Andronis
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095-1606, USA
| | | | | | | | | |
Collapse
|
14
|
Kleine T, Kindgren P, Benedict C, Hendrickson L, Strand A. Genome-wide gene expression analysis reveals a critical role for CRYPTOCHROME1 in the response of Arabidopsis to high irradiance. PLANT PHYSIOLOGY 2007; 144:1391-406. [PMID: 17478635 PMCID: PMC1914119 DOI: 10.1104/pp.107.098293] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Exposure to high irradiance results in dramatic changes in nuclear gene expression in plants. However, little is known about the mechanisms by which changes in irradiance are sensed and how the information is transduced to the nucleus to initiate the genetic response. To investigate whether the photoreceptors are involved in the response to high irradiance, we analyzed expression of EARLY LIGHT-INDUCIBLE PROTEIN1 (ELIP1), ELIP2, ASCORBATE PEROXIDASE2 (APX2), and LIGHT-HARVESTING CHLOROPHYLL A/B-BINDING PROTEIN2.4 (LHCB2.4) in the phytochrome A (phyA), phyB, cryptochrome1 (cry1), and cry2 photoreceptor mutants and long hypocotyl5 (hy5) and HY5 homolog (hyh) transcription factor mutants. Following exposure to high intensity white light for 3 h (1,000 mumol quanta m(-2) s(-1)) expression of ELIP1/2 and APX2 was strongly induced and LHCB2.4 expression repressed in wild type. The cry1 and hy5 mutants showed specific misregulation of ELIP1/2, and we show that the induction of ELIP1/2 expression is mediated via CRY1 in a blue light intensity-dependent manner. Furthermore, using the Affymetrix Arabidopsis (Arabidopsis thaliana) 24 K Gene-Chip, we showed that 77 of the high light-responsive genes are regulated via CRY1, and 26 of those genes were also HY5 dependent. As a consequence of the misregulation of these genes, the cry1 mutant displayed a high irradiance-sensitive phenotype with significant photoinactivation of photosystem II, indicated by reduced maximal fluorescence ratio. Thus, we describe a novel function of CRY1 in mediating plant responses to high irradiances that is essential to the induction of photoprotective mechanisms. This indicates that high irradiance can be sensed in a chloroplast-independent manner by a cytosolic/nucleic component.
Collapse
Affiliation(s)
- Tatjana Kleine
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | | | | | | | | |
Collapse
|
15
|
Freeling M, Rapaka L, Lyons E, Pedersen B, Thomas BC. G-boxes, bigfoot genes, and environmental response: characterization of intragenomic conserved noncoding sequences in Arabidopsis. THE PLANT CELL 2007; 19:1441-57. [PMID: 17496117 PMCID: PMC1913728 DOI: 10.1105/tpc.107.050419] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 03/10/2007] [Accepted: 04/19/2007] [Indexed: 05/15/2023]
Abstract
A tetraploidy left Arabidopsis thaliana with 6358 pairs of homoeologs that, when aligned, generated 14,944 intragenomic conserved noncoding sequences (CNSs). Our previous work assembled these phylogenetic footprints into a database. We show that known transcription factor (TF) binding motifs, including the G-box, are overrepresented in these CNSs. A total of 254 genes spanning long lengths of CNS-rich chromosomes (Bigfoot) dominate this database. Therefore, we made subdatabases: one containing Bigfoot genes and the other containing genes with three to five CNSs (Smallfoot). Bigfoot genes are generally TFs that respond to signals, with their modal CNS positioned 3.1 kb 5' from the ATG. Smallfoot genes encode components of signal transduction machinery, the cytoskeleton, or involve transcription. We queried each subdatabase with each possible 7-nucleotide sequence. Among hundreds of hits, most were purified from CNSs, and almost all of those significantly enriched in CNSs had no experimental history. The 7-mers in CNSs are not 5'- to 3'-oriented in Bigfoot genes but are often oriented in Smallfoot genes. CNSs with one G-box tend to have two G-boxes. CNSs were shared with the homoeolog only and with no other gene, suggesting that binding site turnover impedes detection. Bigfoot genes may function in adaptation to environmental change.
Collapse
Affiliation(s)
- Michael Freeling
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.
| | | | | | | | | |
Collapse
|
16
|
Lee J, He K, Stolc V, Lee H, Figueroa P, Gao Y, Tongprasit W, Zhao H, Lee I, Deng XW. Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. THE PLANT CELL 2007; 19:731-49. [PMID: 17337630 PMCID: PMC1867377 DOI: 10.1105/tpc.106.047688] [Citation(s) in RCA: 724] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The transcription factor LONG HYPOCOTYL5 (HY5) acts downstream of multiple families of the photoreceptors and promotes photomorphogenesis. Although it is well accepted that HY5 acts to regulate target gene expression, in vivo binding of HY5 to any of its target gene promoters has yet to be demonstrated. Here, we used a chromatin immunoprecipitation procedure to verify suspected in vivo HY5 binding sites. We demonstrated that in vivo association of HY5 with promoter targets is not altered under distinct light qualities or during light-to-dark transition. Coupled with DNA chip hybridization using a high-density 60-nucleotide oligomer microarray that contains one probe for every 500 nucleotides over the entire Arabidopsis thaliana genome, we mapped genome-wide in vivo HY5 binding sites. This analysis showed that HY5 binds preferentially to promoter regions in vivo and revealed >3000 chromosomal sites as putative HY5 binding targets. HY5 binding targets tend to be enriched in the early light-responsive genes and transcription factor genes. Our data thus support a model in which HY5 is a high hierarchical regulator of the transcriptional cascades for photomorphogenesis.
Collapse
Affiliation(s)
- Jungeun Lee
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Conecticut 06520-8104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Shin J, Park E, Choi G. PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:981-94. [PMID: 17319847 DOI: 10.1111/j.1365-313x.2006.03021.x] [Citation(s) in RCA: 272] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Phytochromes are red/far-red light receptors that regulate various light responses by initiating the transcriptional cascades responsible for changing the expression patterns of 10-30% of the entire plant transcriptome. Several transcription factors that are thought to participate in this process have been identified, but the functional relationships among them have not yet been fully elucidated. Here we investigated the functional relationship between two such transcription factors, PIF3 and HY5, and their effects on anthocyanin biosynthesis. Our results revealed that PIF3 and HY5 do not regulate each other at either the transcriptional or the protein levels in continuous light conditions, suggesting that they are not directly linked within phytochrome-mediated signaling. We found that both PIF3 and HY5 positively regulate anthocyanin biosynthesis by activating the transcription of the same anthocyanin biosynthetic genes, but the positive effects of PIF3 required functional HY5. Chromatin immunoprecipitation analyses indicated that both PIF3 and HY5 regulate anthocyanin biosynthetic gene expression by directly binding to different regions of the gene promoters in vivo. Additional experiments revealed that PIF3 bound the promoters regardless of light and HY5. Collectively, these data show that PIF3 and HY5 regulate anthocyanin biosynthesis by simultaneously binding anthocyanin biosynthetic gene promoters at separate sequence elements.
Collapse
Affiliation(s)
- Jieun Shin
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea
| | | | | |
Collapse
|
18
|
Vandenbussche F, Habricot Y, Condiff AS, Maldiney R, Van der Straeten D, Ahmad M. HY5 is a point of convergence between cryptochrome and cytokinin signalling pathways in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:428-41. [PMID: 17217468 DOI: 10.1111/j.1365-313x.2006.02973.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Blue-light-dependent photomorphogenesis in Arabidopsis is regulated principally by the cryptochrome flavin-type photoreceptors, which control hypocotyl growth inhibition, cotyledon and leaf expansion, and the expression of light-regulated genes. Interestingly the plant hormone cytokinin induces similar responses when added exogenously to germinating seedlings, suggesting a link between cryptochrome and cytokinin signalling pathways. In this work we explore the relationship between cryptochrome and cytokinin signalling pathways in the promotion of photomorphogenesis. The effect of exogenously added cytokinins on hypocotyl growth inhibition occurs in the dark, and is largely independent and additive to that of cryptochromes in blue light, via distinct signalling pathways. By contrast, cytokinin-dependent stimulation of anthocyanin accumulation occurs only in light, and interacts with the signalling pathway downstream of cryptochrome 1 (CRY1) at the level of transcript accumulation of anthocyanin biosynthetic genes. Mutants in elongated hypocotyl 5 (hy5), a downstream intermediate in the CRY1 signalling pathway, show a reduced induction of anthocyanin accumulation in blue light by cytokinins, similar to that observed for cryptochrome (cry1) mutants. Furthermore cytokinins are shown to increase levels of HY5 protein accumulation, suggesting that cytokinins may function by reducing HY5 degradation by COP1 (constitutively photomorphogenic 1). As both cryptochrome and cytokinin signalling pathways increase HY5 protein levels, and as HY5 binds to the promoters of anthocyanin biosynthetic enzymes to stimulate gene expression, it is concluded that the regulation of HY5 protein stability represents a point of convergence between cryptochrome and cytokinin signalling pathways.
Collapse
Affiliation(s)
- Filip Vandenbussche
- Department of Molecular Genetics, Unit Plant Hormone Signalling and Bio-imaging, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | | | | | |
Collapse
|
19
|
Galbraith DW. DNA Microarray Analyses in Higher Plants. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2006; 10:455-73. [PMID: 17233557 DOI: 10.1089/omi.2006.10.455] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA microarrays were originally devised and described as a convenient technology for the global analysis of plant gene expression. Over the past decade, their use has expanded enormously to cover all kingdoms of living organisms. At the same time, the scope of applications of microarrays has increased beyond expression analyses, with plant genomics playing a leadership role in the on-going development of this technology. As the field has matured, the rate-limiting step has moved from that of the technical process of data generation to that of data analysis. We currently face major problems in dealing with the accumulating datasets, not simply with respect to how to archive, access, and process the huge amounts of data that have been and are being produced, but also in determining the relative quality of the different datasets. A major recognized concern is the appropriate use of statistical design in microarray experiments, without which the datasets are rendered useless. A vigorous area of current research involves the development of novel statistical tools specifically for microarray experiments. This article describes, in a necessarily selective manner, the types of platforms currently employed in microarray research and provides an overview of recent activities using these platforms in plant biology.
Collapse
Affiliation(s)
- David W Galbraith
- Department of Plant Sciences, Bio5 Institute, University of Arizona, Tucson, Arizona 85721, USA.
| |
Collapse
|
20
|
Lorrain S, Genoud T, Fankhauser C. Let there be light in the nucleus! CURRENT OPINION IN PLANT BIOLOGY 2006; 9:509-14. [PMID: 16979932 DOI: 10.1016/j.pbi.2006.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 07/18/2006] [Indexed: 05/11/2023]
Abstract
Ambient light conditions trigger both developmental transitions, such as the induction of flowering, and a suite of adaptive responses, exemplified by the shade-avoidance syndrome. These responses are initiated by three families of photoreceptors that are conserved in all higher plants: the phototropins, cryptochromes and phytochromes (phyA--phyE, cry1--cry3, phot1 and phot2 in Arabidopsis). Molecular genetic studies performed mainly in Arabidopsis indicate that photon capture by these light sensors usually initiates rapid changes in the gene expression profile, leading to plant adaptation to their environment. Interestingly, numerous transcription factors are early targets of light regulation, both at the transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Séverine Lorrain
- Centre for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
21
|
Jan A, Komatsu S. Functional characterization of gibberellin-regulated genes in rice using microarray system. GENOMICS, PROTEOMICS & BIOINFORMATICS 2006; 4:137-44. [PMID: 17127211 PMCID: PMC5054068 DOI: 10.1016/s1672-0229(06)60026-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gibberellin (GA) is collectively referred to a group of diterpenoid acids, some of which act as plant hormones and are essential for normal plant growth and development. DNA microarray technology has become the standard tool for the parallel quantification of large numbers of messenger RNA transcripts. The power of this approach has been demonstrated in dissecting plant physiology and development, and in unraveling the underlying cellular signaling pathways. To understand the molecular mechanism by which GA regulates the growth and development of plants, with reference to the monocot model plant-rice, it is essential to identify and analyze more genes and their products at the transcription and translation levels that are regulated by GA. With the availability of draft sequences of two major rice types, indica and japonica rice, it has become possible to analyze global expression profiles of genes on a genome scale. In this review, the progress made in finding new genes in rice leaf sheath using microarray system and their characterization is discussed. It is believed that the findings made in this regard have important implications for understanding the mechanism by which GA regulates the growth and development of rice.
Collapse
Affiliation(s)
- Asad Jan
- National Institute of Agrobiological Sciences, Tsukuba305-8602, Japan
| | - Setsuko Komatsu
- National Institute of Agrobiological Sciences, Tsukuba305-8602, Japan
- National Institute of Crop Science, Tsukuba305-8518, Japan
| |
Collapse
|
22
|
Palaniswamy SK, James S, Sun H, Lamb RS, Davuluri RV, Grotewold E. AGRIS and AtRegNet. a platform to link cis-regulatory elements and transcription factors into regulatory networks. PLANT PHYSIOLOGY 2006; 140:818-29. [PMID: 16524982 PMCID: PMC1400579 DOI: 10.1104/pp.105.072280] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Gene regulatory pathways converge at the level of transcription, where interactions among regulatory genes and between regulators and target genes result in the establishment of spatiotemporal patterns of gene expression. The growing identification of direct target genes for key transcription factors (TFs) through traditional and high-throughput experimental approaches has facilitated the elucidation of regulatory networks at the genome level. To integrate this information into a Web-based knowledgebase, we have developed the Arabidopsis Gene Regulatory Information Server (AGRIS). AGRIS, which contains all Arabidopsis (Arabidopsis thaliana) promoter sequences, TFs, and their target genes and functions, provides the scientific community with a platform to establish regulatory networks. AGRIS currently houses three linked databases: AtcisDB (Arabidopsis thaliana cis-regulatory database), AtTFDB (Arabidopsis thaliana transcription factor database), and AtRegNet (Arabidopsis thaliana regulatory network). AtTFDB contains 1,690 Arabidopsis TFs and their sequences (protein and DNA) grouped into 50 (October 2005) families with information on available mutants in the corresponding genes. AtcisDB consists of 25,806 (September 2005) promoter sequences of annotated Arabidopsis genes with a description of putative cis-regulatory elements. AtRegNet links, in direct interactions, several hundred genes with the TFs that control their expression. The current release of AtRegNet contains a total of 187 (September 2005) direct targets for 66 TFs. AGRIS can be accessed at http://Arabidopsis.med.ohio-state.edu.
Collapse
Affiliation(s)
- Saranyan K Palaniswamy
- Human Cancer Genetics Program, Comprehensive Cancer Center, Department of Molecular Virology, Immunology and Medical Genetics , The Ohio State University, Columbus, 43210, USA
| | | | | | | | | | | |
Collapse
|
23
|
Clarke JD, Zhu T. Microarray analysis of the transcriptome as a stepping stone towards understanding biological systems: practical considerations and perspectives. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:630-50. [PMID: 16441353 DOI: 10.1111/j.1365-313x.2006.02668.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
DNA microarrays have been used to characterize plant transcriptomes to answer various biological questions. While many studies have provided significant insights, there has been great debate about the general reliability of the technology and data analysis. When compared to well-established transcript analysis technologies, such as RNA blot analysis or quantitative reverse transcription-PCR, discrepancies have frequently been observed. The reasons for these discrepancies often relate to the technical and experimental systems. This review-tutorial addresses common problems in microarray analysis and describes: (i) methods to maximize extraction of valuable biological information from the vast amount of microarray data and (ii) approaches to balance resource availability with high scientific standards and technological innovation with peer acceptability.
Collapse
Affiliation(s)
- Joseph D Clarke
- Syngenta Biotechnology Inc., 3054 Cornwallis Road, Research Triangle Park, NC 27709-2257, USA
| | | |
Collapse
|