1
|
Rodríguez-Maese R, Cerdà V, Leal LO. An overview of automated flow systems for total and isotopic analysis of strontium and yttrium in samples of environmental interest. Talanta 2024; 270:125643. [PMID: 38199120 DOI: 10.1016/j.talanta.2024.125643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/27/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Due to the different uses of radioactivity during the last decades, there has been an increase in the concentration of natural and artificial radionuclides in the environment. This, along with some accidents with a high affect public opinion (for example, Chernobyl and Fukushima), have led to the growth and establishment of environmental radioactivity monitoring programs. Currently, trends in legislation and research are focused on the development of accurate, precise, reliable and fast analytical methods with low limits of detection (LOD) for radionuclides determination, such as strontium and yttrium, in environmental samples. In this paper, two comprehensive reviews and four automated analytical systems for total and isotopic determination of yttrium and strontium are presented. The developed methods have been applied in the analysis of environmental samples with low concentrations of these analytes. These methodologies have been automated by exploiting flow analysis techniques, such as multi-syringe flow injection analysis (MSFIA), Sequential injection analysis (SIA) and laboratory-on-valve (LOV) systems, achieving a minimal handling and low consumption of samples and reagents, a significant reduction in waste generation and a high frequency of analysis. In the developed methodologies, some spectrometric methods such as ICP-OES and ICP-MS have been implemented as detection techniques instead of radiometric detectors obtaining a fully automated, low-cost and fast yttrium and strontium determinations.
Collapse
Affiliation(s)
- Rogelio Rodríguez-Maese
- Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Av. Miguel de Cervantes #120, Complejo Industrial Chihuahua, Chihuahua, Chih, C.P. 31136, Mexico
| | - Víctor Cerdà
- Department of Chemistry, University of the Balearic Islands, 07122, Palma de Mallorca, Spain; Sciware Systems, S.L. 07193, Bunyola, Spain.
| | - Luz O Leal
- Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Av. Miguel de Cervantes #120, Complejo Industrial Chihuahua, Chihuahua, Chih, C.P. 31136, Mexico
| |
Collapse
|
2
|
Sherman LS, Blum JD, Dvonch JT, Gratz LE, Landis MS. The use of Pb, Sr, and Hg isotopes in Great Lakes precipitation as a tool for pollution source attribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 502:362-374. [PMID: 25265397 DOI: 10.1016/j.scitotenv.2014.09.034] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 06/03/2023]
Abstract
The anthropogenic emission and subsequent deposition of heavy metals including mercury (Hg) and lead (Pb) present human health and environmental concerns. Although it is known that local and regional sources of these metals contribute to deposition in the Great Lakes region, it is difficult to trace emissions from point sources to impacted sites. Recent studies suggest that metal isotope ratios may be useful for distinguishing between and tracing source emissions. We measured Pb, strontium (Sr), and Hg isotope ratios in daily precipitation samples that were collected at seven sites across the Great Lakes region between 2003 and 2007. Lead isotope ratios ((207)Pb/(206)Pb=0.8062 to 0.8554) suggest that Pb deposition was influenced by coal combustion and processing of Mississippi Valley-Type Pb ore deposits. Regional differences in Sr isotope ratios ((87)Sr/(86)Sr=0.70859 to 0.71155) are likely related to coal fly ash and soil dust. Mercury isotope ratios (δ(202)Hg=-1.13 to 0.13‰) also varied among the sites, likely due to regional differences in coal isotopic composition, and fractionation occurring within industrial facilities and in the atmosphere. These data represent the first combined characterization of Pb, Sr, and Hg isotope ratios in precipitation collected across the Great Lakes region. We demonstrate the utility of multiple metal isotope ratios in parallel with traditional trace element multivariate statistical modeling to enable more complete pollution source attribution.
Collapse
Affiliation(s)
- Laura S Sherman
- University of Michigan, Department of Earth and Environmental Sciences, 1100 N. University Ave., Ann Arbor, MI 48109, USA.
| | - Joel D Blum
- University of Michigan, Department of Earth and Environmental Sciences, 1100 N. University Ave., Ann Arbor, MI 48109, USA
| | - J Timothy Dvonch
- University of Michigan, Air Quality Laboratory, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Lynne E Gratz
- University of Washington-Bothell, 18115 Campus Way NE, Bothell, WA 98011, USA
| | - Matthew S Landis
- U.S. EPA, Office of Research and Development, Research Triangle Park, NC 27709, USA
| |
Collapse
|
3
|
Beltrán B, Avivar J, Mola M, Ferrer L, Cerdà V, Leal LO. Automated method for simultaneous lead and strontium isotopic analysis applied to rainwater samples and airborne particulate filters (PM10). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:9850-9857. [PMID: 23883353 DOI: 10.1021/es400118w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A new automated, sensitive, and fast system for the simultaneous online isolation and preconcentration of lead and strontium by sorption on a microcolumn packed with Sr-resin using an inductively coupled plasma mass spectrometry (ICP-MS) detector was developed, hyphenating lab-on-valve (LOV) and multisyringe flow injection analysis (MSFIA). Pb and Sr are directly retained on the sorbent column and eluted with a solution of 0.05 mol L(-1) ammonium oxalate. The detection limits achieved were 0.04 ng for lead and 0.03 ng for strontium. Mass calibration curves were used since the proposed system allows the use of different sample volumes for preconcentration. Mass linear working ranges were between 0.13 and 50 ng and 0.1 and 50 ng for lead and strontium, respectively. The repeatability of the method, expressed as RSD, was 2.1% and 2.7% for Pb and Sr, respectively. Environmental samples such as rainwater and airborne particulate (PM10) filters as well as a certified reference material SLRS-4 (river water) were satisfactorily analyzed obtaining recoveries between 90 and 110% for both elements. The main features of the LOV-MSFIA-ICP-MS system proposed are the capability to renew solid phase extraction at will in a fully automated way, the remarkable stability of the column which can be reused up to 160 times, and the potential to perform isotopic analysis.
Collapse
Affiliation(s)
- Blanca Beltrán
- Renewable Energy and Environmental Protection Department, Advanced Materials Research Center (CIMAV) S.C. , Miguel de Cervantes 120, Chihuahua, Chih. 31109, Mexico
| | | | | | | | | | | |
Collapse
|
4
|
Graney JR, Landis MS. Coupling meteorology, metal concentrations, and Pb isotopes for source attribution in archived precipitation samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 448:141-150. [PMID: 22901426 DOI: 10.1016/j.scitotenv.2012.07.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 06/16/2012] [Accepted: 07/10/2012] [Indexed: 06/01/2023]
Abstract
A technique that couples lead (Pb) isotopes and multi-element concentrations with meteorological analysis was used to assess source contributions to precipitation samples at the Bondville, Illinois USA National Trends Network (NTN) site. Precipitation samples collected over a 16month period (July 1994-October 1995) at Bondville were parsed into six unique meteorological flow regimes using a minimum variance clustering technique on back trajectory endpoints. Pb isotope ratios and multi-element concentrations were measured using high resolution inductively coupled plasma-sector field mass spectrometry (ICP-SFMS) on the archived precipitation samples. Bondville is located in central Illinois, ~250km downwind from smelters in southeast Missouri. The Mississippi Valley Type ore deposits in Missouri provided a unique multi-element and Pb isotope fingerprint for smelter emissions which could be contrasted to industrial emissions from the Chicago and Indianapolis urban areas (~125km north and east, of Bondville respectively) and regional emissions from electric utility facilities. Differences in Pb isotopes and element concentrations in precipitation corresponded to flow regime. Industrial sources from urban areas, and thorogenic Pb from coal use, could be differentiated from smelter emissions from Missouri by coupling Pb isotopes with variations in element ratios and relative mass factors. Using a three endmember mixing model based on Pb isotope ratio differences, industrial processes in urban airsheds contributed 56±19%, smelters in southeast Missouri 26±13%, and coal combustion 18±7%, of the Pb in precipitation collected in Bondville in the mid-1990s.
Collapse
Affiliation(s)
- Joseph R Graney
- Geological Sciences and Environmental Studies, Binghamton University, Binghamton, NY 13902, USA.
| | | |
Collapse
|
5
|
Angelidis MO, Radakovitch O, Veron A, Aloupi M, Heussner S, Price B. Anthropogenic metal contamination and sapropel imprints in deep Mediterranean sediments. MARINE POLLUTION BULLETIN 2011; 62:1041-1052. [PMID: 21414636 DOI: 10.1016/j.marpolbul.2011.02.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 02/15/2011] [Accepted: 02/18/2011] [Indexed: 05/30/2023]
Abstract
Sediment cores from the deep Balearic basin and the Cretan Sea provide evidence for the accumulation of Cd, Pd and Zn in the top few centimeters of the abyssal Mediterranean sea-bottom. In both cores, 206Pb/207Pb profiles confirm this anthropogenic impact with less radiogenic imprints toward surface sediments. The similarity between excess 210Pb accumulated in the top core and the 210Pb flux suggests that top core metal inventories reasonably reflect long-term atmospheric deposition to the open Mediterranean. Pb inventory in the western core for the past 100 years represents 20-30% of sediment coastal inventories, suggesting that long-term atmospheric deposition determined from coastal areas has to be used cautiously for mass balance calculations in the open Mediterranean. In the deeper section of both cores, Al normalized trace metal profiles suggest diagenetic remobilization of Fe, Mn, Cu and, to a lesser extent, Pb that likely corresponds to sapropel event S1.
Collapse
Affiliation(s)
- M O Angelidis
- Department of Environment, University of the Aegean, Lofos Panepistimiou, 81100 Mytilene, Greece.
| | | | | | | | | | | |
Collapse
|
6
|
Geagea ML, Stille P, Gauthier-Lafaye F, Millet M. Tracing of industrial aerosol sources in an urban environment using Pb, Sr, and Nd isotopes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:692-698. [PMID: 18323089 DOI: 10.1021/es071704c] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A comprehensive Pb-Sr-Nd isotope tracer study of atmospheric trace metal pollution has been performed in the urban environment of Strasbourg-Kehl. Filter dust of the principal pollutant sources (waste incinerators, thermal power plant and steel plant) and soot of car and ship exhausts have been analyzed. In addition tree barks (as biomonitors) and PM10 have been analyzed to trace and determine the distribution of the pollution in the environment. The industrial sources have highly variable epsilonNd values (-9.7 and -12.5 for incinerators and -17.5 for steel plant). Much higher epsilonNd values have been found for soot of car exhausts (-6 and -6.9). These high values make the Nd isotope system a powerful tool for the discrimination of traffic emissions but especially for the identification of diesel derived particles in the urban environment. The 206Pb/207Pb isotope ratios of gasoline are low (1.089) compared to diesel soot (1.159). The 26Pb/207Pb ratios of 1.151-1.152 for the steel plant and 1.152 for the solid waste incinerator are close to the Pb isotope ratio of diesel. The 87Sr/ 8Sr isotope ratios of the principal industrial sources vary significantly: 0.7095 for the domestic solid waste incinerator, 0.709 for the steel plant, and 0.7087 for car exhaust soot. PM10 aerosols collected in the urban center of Strasbourg show the influence of the pollutant sources at 3-7 km distance from the center. Most of the aerosols Pb isotopic compositions suggest Pb admixtures from at least three sources: a natural background and in function of the wind direction the domestic waste incinerator (S-wind) or the steel plant and the chemical waste incinerator (NE-wind). The traffic contribution can only be estimated with help of Nd isotopes. Therefore the clear identification of different pollutant sources in the urban environment is only possible by combining the three different isotope systems and is based on the fact that significant differences exist between the Pb, Sr, and Nd isotope ratios of the natural atmospheric background and pollutants containing Pb, Sr, and Nd of industrial origin with similar variable 206Pb/207Pb, 87Sr/ 86Sr, and 143Nd/144Nd.
Collapse
Affiliation(s)
- Majdi Lahd Geagea
- EOST: Centre de Géochimie de la Surface, CNRS-UMR 7517, 1 rue Blessig, 67084 Strasbourg, France
| | | | | | | |
Collapse
|
7
|
Geagea ML, Stille P, Millet M, Perrone T. REE characteristics and Pb, Sr and Nd isotopic compositions of steel plant emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2007; 373:404-19. [PMID: 17175008 DOI: 10.1016/j.scitotenv.2006.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 10/31/2006] [Accepted: 11/02/2006] [Indexed: 05/13/2023]
Abstract
A comprehensive Pb-Sr-Nd isotope and REE tracer study of atmospheric trace metal pollution by a steel plant situated to the north of the urban communities of Strasbourg (France) and Kehl (Germany) has been performed using tree barks as biomonitors. The 206Pb/207Pb and 208Pb/207Pb isotopic ratios of the steel plant's filter dust are similar to values found in dust of waste incinerators. The 87Sr/86Sr ratio is similar to present-day ratios of Phanerozoic or Precambrian granitic rocks. The 143Nd/144Nd isotopic composition is very low and corresponds to an (Nd) value of -17.5. Such a low value is characteristic of old Precambrian granitic rocks and banded iron formations. Thus, this low (Nd) value might point to the origin of the iron necessary for the steel production. The fact, that this isotopic composition does not occur in crustal rocks of Western Central Europe makes the Nd isotope ratio a powerful tool to trace steel plants atmospheric emissions. The rare earth element (REE) distribution pattern of the steel plant's filter dust shows very specific fractionations like La and Nd enrichments which are traceable in tree barks over a distance of 4 km. The Pb, Sr and Nd isotope ratios not only enable the steel plant's emissions to be traced in a north-easterly direction, along the principal wind pathway but also enables the interference of this emission at 4 km NE from the steel plant with another atmospheric component originating from the Strasbourg Rhine harbour to be identified.
Collapse
Affiliation(s)
- M Lahd Geagea
- EOST - Centre de Géochimie de la Surface, CNRS-UMR 7517, 1 rue Blessig, 67084 Strasbourg, France
| | | | | | | |
Collapse
|
8
|
Cloquet C, Carignan J, Libourel G, Sterckeman T, Perdrix E. Tracing source pollution in soils using cadmium and lead isotopes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2006; 40:2525-30. [PMID: 16683587 DOI: 10.1021/es052232+] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Tracing the source of heavy metals in the environment is of key importance for our understanding of their pollution and natural cycles in the surface Earth reservoirs. Up to now, most exclusively Pb isotopes were used to effectively trace metal pollution sources in the environment. Here we report systematic variations of Cd isotope ratios measured in polluted topsoils surrounding a Pb-Zn refinery plant in northern France. Fractionated Cd was measured in soil samples surrounding the refinery, and this fractionation can be attributed to the refining processes. Despite the Cd isotopic ratios being precisely measured, the obtained uncertainties are still large compared to the total isotopic variation. Nevertheless, for the first time, Cd isotopically fractionated by industrial processes may be traced in the environment. On the same samples, Pb isotope systematics suggested that materials actually used by the refinery were not the major source of Pb in soils, probably because refined ore origins changed over the 100 years of operation. On the other hand, Cd isotopes and concentrations measured in topsoils allowed identification of three main origins (industrial dust and slag and agriculture), assuming that all Cd ores are not fractionated, as suggested by terrestrial rocks so far analyzed, and calculation of their relative contributions for each sampling point. Understanding that this refinery context was an ideal situation for such a study, our results lead to the possibility of tracing sources of anthropogenic Cd and better constrain mixing processes, fluxes, transport, and phasing out of industrial input in nature.
Collapse
Affiliation(s)
- C Cloquet
- CRPG-CNRS, 15 Rue Notre Dame des Pauvres, BP 20, 54501 Vandoeuvre-lès-Nancy, France.
| | | | | | | | | |
Collapse
|