1
|
Chang CY, Wang JL, Chen YC, Chen WN, Wang SH, Chuang MT, Lin NH, Chou CCK, Huang WS, Ke LJ, Pan XX, Ho YJ, Chen YY, Chang CC. Spatiotemporal characterization of PM 2.5, O 3, and trace gases associated with East Asian continental outflows via drone sounding. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172732. [PMID: 38663609 DOI: 10.1016/j.scitotenv.2024.172732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
East Asian continental outflows with PM2.5, O3, and other species may determine the baseline conditions and affect the air quality in downwind areas via long-range transport (LRT). To gain insight into the impact and spatiotemporal characteristics of airborne pollutants in East Asian continental outflows, a versatile multicopter drone sounding platform was used to simultaneously observe PM2.5, O3, CO2, and meteorological variables (temperature, specific humidity, pressure, and wind vector) above the northern tip of Taiwan, Cape Fuiguei, which often encounters continental outflows during winter monsoon periods. By coordinating hourly high-spatial-resolution profiles provided by drone soundings, WRF/CMAQ model air quality predictions, HYSPLIT-simulated backward trajectories, and MERRA-2 reanalysis data, we analyzed two prominent phenomena of airborne pollutants in continental outflows to better understand their physical/chemical characteristics. First, we found that pollutants were well mixed within a sounding height of 500 m when continental outflows passed through and completely enveloped Cape Fuiguei. Eddies induced by significant fluctuations in wind speeds coupled with minimal temperature inversion and LRT facilitated vertical mixing, possibly resulting in high homogeneity of pollutants within the outflow layer. Second, the drone soundings indicated exceptionally high O3 concentrations (70-100 ppbv) but relatively low concentrations of PM2.5 (10-20 μg/m3), CO2 (420-425 ppmv), and VOCs in some air masses. The low levels of PM2.5, CO2, and VOCs ruled out photochemistry as the cause of the formation of high-level O3. Further coordination of spatiotemporal data with air mass trajectories and O3 cross sections provided by MERRA-2 suggested that the high O3 concentrations could be attributed to stratospheric intrusion and advection via continental outflows. High-level O3 concentrations persisted in the lower troposphere, even reaching the surface, suggesting that stratospheric intrusion O3 may be involved in the rising trend in O3 concentrations in parts of East Asia in recent years in addition to surface photochemical factors.
Collapse
Affiliation(s)
- Chih-Yuan Chang
- Research Center for Environmental Changes, Academia Sinica, Taipei 11529, Taiwan
| | - Jia-Lin Wang
- Department of Chemistry, National Central University, Chungli 320, Taiwan
| | - Yen-Chen Chen
- Research Center for Environmental Changes, Academia Sinica, Taipei 11529, Taiwan
| | - Wei-Nai Chen
- Research Center for Environmental Changes, Academia Sinica, Taipei 11529, Taiwan
| | - Sheng-Hsiang Wang
- Department of Atmospheric Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Ming-Tung Chuang
- Research Center for Environmental Changes, Academia Sinica, Taipei 11529, Taiwan
| | - Neng-Huei Lin
- Department of Atmospheric Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Charles C-K Chou
- Research Center for Environmental Changes, Academia Sinica, Taipei 11529, Taiwan
| | - Wei-Syun Huang
- Department of Atmospheric Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Li-Jin Ke
- Department of Atmospheric Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Xiang-Xu Pan
- Research Center for Environmental Changes, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Jui Ho
- Research Center for Environmental Changes, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Ying Chen
- Research Center for Environmental Changes, Academia Sinica, Taipei 11529, Taiwan
| | - Chih-Chung Chang
- Research Center for Environmental Changes, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
2
|
Raju A, Sijikumar S, Valsala V, Tiwari YK, Halder S, Girach IA, Jain CD, Ratnam MV. Regional estimation of methane emissions over the peninsular India using atmospheric inverse modelling. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:647. [PMID: 35931826 DOI: 10.1007/s10661-022-10323-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Accurate renditions of country-scale methane (CH4) emissions are critical in understanding the regional CH4 budget and essential for adapting national climate mitigation policies to curtail the atmospheric build-up of this greenhouse gas with high warming potential. India housing 30% of the Asian population is currently appraised as a region of CH4 source based on the inventories. To date, there have not been many reported efforts to estimate the regional CH4 emissions using direct measurements of boundary layer CH4 concentrations at multiple locations over India. Here, 2 years (2017-2018) of in situ CH4 observations from three distantly placed stations over the peninsular India is combined with state-of-the-art inversion using a Lagrangian particle dispersion model for the estimation of CH4 emission. This study updates CH4 emission over the peninsular India (land area south of 21.5°N) as ~ 10.63 Terra gram (Tg) CH4 year-1, which is 0.13 Tg CH4 year-1 higher than the existing inventory-based emission. On seasonal scale, the changes from the existing CH4 emission inventories are 0.12, 0.05, 0.055 and 0.28 Tg CH4 year-1 during winter, pre-monsoon, monsoon and post-monsoon seasons respectively. Spatial distributions of seasonal variability of posterior emissions suggest an enhancement over the eastern region of peninsular India compared to the western part. The study with observations from three stations over the peninsular India provides an update on the inventory-based estimation of CH4 emissions and urges the importance of more observations over the Indian region for the accurate estimation of fluxes.
Collapse
Affiliation(s)
- Anjumol Raju
- Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram, India
- Research Centre, University of Kerala, Thiruvananthapuram, India
| | - S Sijikumar
- Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram, India.
| | - Vinu Valsala
- Indian Institute of Tropical Meteorology, Pune, India
| | | | | | - I A Girach
- Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram, India
- Presently at Space Application Centre, Indian Space Research Organisation, Ahmedabad, India
| | | | | |
Collapse
|
3
|
Kim Y, Jeon K, Park J, Shim K, Kim SW, Shin HJ, Yi SM, Hopke PK. Local and transboundary impacts of PM 2.5 sources identified in Seoul during the early stage of the COVID-19 outbreak. ATMOSPHERIC POLLUTION RESEARCH 2022; 13:101510. [PMID: 35875788 PMCID: PMC9292463 DOI: 10.1016/j.apr.2022.101510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Countries in Northeast Asia have been regulating PM2.5 sources and studying their local and transboundary origins since PM2.5 causes severe impacts on public health and economic losses. However, the separation of local and transboundary impacts is not fully realized because it is impossible to change air pollutant emissions from multiple countries experimentally. Exceptionally, the early stage of the COVID-19 outbreak (January-March 2020) provided a cross-country experiment to separate each impact of PM2.5 sources identified in Seoul, a downwind area of China. We evaluated the contributions of PM2.5 sources compared to 2019 using dispersion normalized positive matrix factorization (DN-PMF) during three meteorological episodes. Episodes 1 and 2 revealed transboundary impacts and were related to reduced anthropogenic emissions and accumulated primary pollutants in Northeast China. Anthropogenic emissions, except for the residential sector, decreased, but primary air pollutants accumulated by residential coal combustion enhanced secondary aerosol formation. Thus, the contributions of sulfate and secondary nitrate increased in Seoul during episode 1 but then decreased maximally with other primary sources (biomass burning, district heating and incineration, industrial sources, and oil combustion) during episode 2 under meteorological conditions favorable to long-range transport. Local impact was demonstrated by atmospheric stagnation during episode 3. Meteorological condition unfavorable to local dispersion elevated the contributions of mobile and coal combustion and further contributed to PM2.5 high concentration events (HCE). Our study separates the local and transboundary impacts and highlights that cooperations in Northeast Asia on secondary aerosol formation and management of local sources are necessary.
Collapse
Affiliation(s)
- Youngkwon Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Division of Policy Research, Green Technology Center, Seoul, 04554, Republic of Korea
| | - Kwonho Jeon
- Climate and Air Quality Research Department Global Environment Research Division, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Jieun Park
- Institute of Health and Environment, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Kyuseok Shim
- School of Earth and Environmental Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sang-Woo Kim
- School of Earth and Environmental Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hye-Jung Shin
- Air Quality Research Division, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Seung-Muk Yi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Institute of Health and Environment, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Philip K Hopke
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, 13699, USA
- Department of Public Health Sciences, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| |
Collapse
|
4
|
Shen L, Liu J, Zhao T, Xu X, Han H, Wang H, Shu Z. Atmospheric transport drives regional interactions of ozone pollution in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154634. [PMID: 35307436 DOI: 10.1016/j.scitotenv.2022.154634] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/13/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
In recent years, ozone pollution becomes a serious environmental issue in China. A good understanding of source-receptor relationships of ozone transport from aboard and inside China is beneficial to mitigating ozone pollution there. To date, these issues have not been comprehensively assessed, especially for highly polluted regions in the central and eastern China (CEC), including the North China Plain (NCP), Twain-Hu region (THR), Yangtze River Delta (YRD), Pearl River Delta (PRD), and Sichuan Basin (SCB). Here, based on simulations over 2013-2020 from a well-validated chemical transport model, GEOS-Chem, we show that foreign ozone accounts for a large portion of surface ozone over CEC, ranging from 25.0% in THR to 39.4% in NCP. Focusing on transport of domestic ozone between the five regions in CEC, we find that atmospheric transport can largely modulate regional interactions of ozone pollution in China. At the surface, THR receives the largest amount of ozone from the other four regions (54.2% of domestic ozone in the receptor region, the same in below), followed by PRD (32.3%), SCB (26.7%), YRD (21.1%), and NCP (18.0%). Meanwhile, YRD exports largest amount of ozone to the other regions, ranging from 8.9% in SCB to 28.4% in THR. Although SCB is relatively isolated and thus impacts NCP, YRD, and PRD weakly (< 2.2%), export of SCB ozone to THR reaches 9.3%. The regional ozone transport over CEC, occurring mostly in the lower troposphere, is mainly modulated by the East Asian monsoon circulations, proximity between source and receptor regions, seasonal changes of ozone production, and topography.
Collapse
Affiliation(s)
- Lijuan Shen
- Key Laboratory for Aerosol-Cloud-Precipitation of the China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China; Department of Geography and Planning, University of Toronto, Toronto, Ontario M5S3G3, Canada
| | - Jane Liu
- Department of Geography and Planning, University of Toronto, Toronto, Ontario M5S3G3, Canada.
| | - Tianliang Zhao
- Key Laboratory for Aerosol-Cloud-Precipitation of the China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Xiangde Xu
- State Key Laboratory of Disastrous Weather, China Academy of Meteorological Sciences, Beijing 100081, China
| | - Han Han
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| | - Honglei Wang
- Key Laboratory for Aerosol-Cloud-Precipitation of the China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China; Department of Geography and Planning, University of Toronto, Toronto, Ontario M5S3G3, Canada
| | - Zhuozhi Shu
- Key Laboratory for Aerosol-Cloud-Precipitation of the China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
5
|
Chang CY, Wang JL, Chen YC, Pan XX, Chen WN, Lin MR, Ho YJ, Chuang MT, Liu WT, Chang CC. A study of the vertical homogeneity of trace gases in East Asian continental outflow. CHEMOSPHERE 2022; 297:134165. [PMID: 35245587 DOI: 10.1016/j.chemosphere.2022.134165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/19/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
East Asian continental outflows containing with pollutants may deteriorate air quality in the downwind region via long-range transport (LRT). In particular, cold fronts with high wind speeds generally promote the LRT of air pollutants to further downwind areas, including Taiwan. To gain an insightful understanding of the characteristics and vertical homogeneity of trace gases in East Asian continental outflows, as well as their relation with atmospheric meteorological conditions, whole air samples were collected above a cape at the northern tip of the island of Taiwan during frontal passages. Aerial samples were collected at multiple altitudes from the surface to a maximum height of 700 m with a multicopter sounding platform carrying a robotic whole air sampling device. Simultaneously, aerial meteorological variables of temperature and wind vector from near the surface to a maximum height of 1000 m were also measured during the whole air sampling periods. An array of 106 volatile organic compounds (VOCs) as well as CO, CO2, and CH4 were analyzed to characterize the air composition and vertical homogeneity of trace gases. The results revealed rather homogeneous vertical distributions of most VOCs, CO, CO2, and CH4 in the frontal passages, indicating well-mixed conditions of trace gases in the East Asian continental outflows. The strong wind shear and minimal temperature inversion associated with the frontal passage likely induced turbulence and increased vertical mixing. Furthermore, higher levels of species characteristic of the East Asian continent were observed from the surface up to hundreds of meters above the cape, revealing a strong inflow of polluted air masses from the East Asian continent brought by cold frontal passages.
Collapse
Affiliation(s)
- Chih-Yuan Chang
- Research Center for Environmental Changes, Academia Sinica, Taipei, 11529, Taiwan
| | - Jia-Lin Wang
- Department of Chemistry, National Central University, Chungli, 320, Taiwan
| | - Yen-Chen Chen
- Research Center for Environmental Changes, Academia Sinica, Taipei, 11529, Taiwan
| | - Xiang-Xu Pan
- Research Center for Environmental Changes, Academia Sinica, Taipei, 11529, Taiwan
| | - Wei-Nai Chen
- Research Center for Environmental Changes, Academia Sinica, Taipei, 11529, Taiwan
| | - Ming-Ren Lin
- Research Center for Environmental Changes, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Jui Ho
- Research Center for Environmental Changes, Academia Sinica, Taipei, 11529, Taiwan
| | - Ming-Tung Chuang
- Research Center for Environmental Changes, Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Tzu Liu
- Center for Environmental Monitoring and Technology, National Central University, Chungli, 320, Taiwan
| | - Chih-Chung Chang
- Research Center for Environmental Changes, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
6
|
Lalitaporn P, Mekaumnuaychai T. Satellite measurements of aerosol optical depth and carbon monoxide and comparison with ground data. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:369. [PMID: 32415358 DOI: 10.1007/s10661-020-08346-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Satellite data of aerosol optical depths (AODs) from the moderate resolution imaging spectroradiometer (MODIS) and carbon monoxide (CO) columns from the measurements of pollution in the troposphere (MOPITT) were collected for the study in Northern Thailand. Comparative analyses were conducted of MODIS (Terra and Aqua) AODs with ground particulate matter with diameter below 10 microns (PM10) concentrations and MOPITT CO surface/total columns with ground CO concentrations for 2014-2017. Temporal variations in both the satellite and ground datasets were in good agreement. High levels of air pollutants were common during March-April. The annual analysis of both satellite and ground datasets revealed the highest levels of air pollutants in 2016 and the lowest levels in 2017. The AODs and PM10 concentrations were at higher levels in the morning than in the afternoon. The comparison between satellite products showed that AODs correlated better with the CO total columns than the CO surface columns. The regression analysis presented better performance of Aqua AODs-PM10 than Terra AODs-PM10 with correlation coefficients (r) of 0.72-0.83 and 0.57-0.79, respectively. Ground CO concentrations correlated better with MOPITT CO surface columns (r = 0.65-0.73) than with CO total columns (r = 0.56-0.72). The r values of satellite and ground datasets were greatest when the analysis was restricted to November-March (dry weather periods with possible low mixing height (MH)). Overall, the results suggested that the relationships between satellite and ground data can be used to develop predictive models for ground PM10 and CO in northern Thailand, particularly during air pollution episodes located where ground monitoring stations are limited.
Collapse
Affiliation(s)
- Pichnaree Lalitaporn
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand.
| | - Tipvadee Mekaumnuaychai
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
7
|
Cui S, Fu Q, Tian C, Zhang Z, Hough R, Shen Z, Ma J, An L, Li YF. Modeling primary and secondary fractionation effects and atmospheric transport of polychlorinated biphenyls through single-source emissions. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:1939-1951. [PMID: 30739235 DOI: 10.1007/s10653-019-00252-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
The Chinese Gridded Industrial Pollutants Emission and Residue Model (ChnGIPERM) was used to investigate potential fractionation effects and atmospheric transport of polychlorinated biphenyls (PCBs) derived from single-source emissions in China. Modeling the indicative PCBs (CB28, CB101, CB153, and CB180) revealed spatiotemporal trends in atmospheric transport, gas/particle partitioning, and primary and secondary fractionation effects. These included the inference that the Westerlies and East Asian monsoons affect atmospheric transport patterns of PCBs by influencing the atmospheric transport time (ATT). In this study, dispersion pathways with long ATTs in winter tended to have short ones in summer and vice versa. The modeled partitioning of PCB congeners between gas and particles was mainly controlled by temperature, which can further influence the ATT. The potential for primary and secondary fractionation was explored by means of numerical simulations with single-source emissions. Within ChnGIPERM, these phenomena were mainly controlled by the temperature and soil organic carbon content. The secondary fractionation of PCBs is a slow process, with model results suggesting a timescale of several decades.
Collapse
Affiliation(s)
- Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- IJRC-PTS, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
| | - Qiang Fu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Chongguo Tian
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China
| | - Zulin Zhang
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Rupert Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Zhenxing Shen
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jianmin Ma
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Lihui An
- State Environmental Protection Key Laboratory of Estuarine and Coastal Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yi-Fan Li
- IJRC-PTS, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China.
| |
Collapse
|
8
|
Laskar AH, Lin L, Jiang X, Liang M. Distribution of CO 2 in Western Pacific, Studied Using Isotope Data Made in Taiwan, OCO-2 Satellite Retrievals, and CarbonTracker Products. EARTH AND SPACE SCIENCE (HOBOKEN, N.J.) 2018; 5:827-842. [PMID: 30775410 PMCID: PMC6360507 DOI: 10.1029/2018ea000415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 10/12/2018] [Accepted: 10/20/2018] [Indexed: 06/09/2023]
Abstract
To assess sources and processes that affect the variability of CO2 at local to regional scales, we have analyzed the mixing ratio [CO2] and stable isotopic compositions (δ13C and δ18O) of atmospheric CO2 for three years (2014-2016) in urban and sub-urban areas in Taipei, Taiwan. The data are compared with those from some background sites, viz., Lulin, Mauna Loa, and Minamitorishima, to evaluate how local emissions affect CO2 level regionally. [CO2] over the urban and sub-urban stations are significantly higher than that observed at the three aforementioned remote sites mainly due to local emissions, which partly mask the seasonal cycle caused by photosynthesis and respiration. Likewise, significantly low δ13C and δ18O values observed at two Taipei stations also point to anthropogenic emissions. The seasonal cycles in [CO2] and in the isotopic compositions are retrieved using the ensemble empirical mode decomposition method. Regional impact is assessed using CO2 products from the Orbiting Carbon Observatory-2 satellite, the NOAA/EARL CarbonTracker project, and meteorological data from European Centre for Medium range Weather Forecast-Interim. We found that besides local emissions, Taiwan is largely affected by external CO2 in winter and spring originated from north, west and southwest landmasses. In winter air masses with elevated CO2 concentrations, originated in eastern China influence Taipei. In spring season, about 2 ppmv enhancement in CO2 observed at the top of Lulin, a high mountain station (2.8 km), could be linked to CO2 produced by biomass burning in the southeast Asian countries and transported to the region by easterly winds.
Collapse
Affiliation(s)
- Amzad H. Laskar
- Research Center for Environmental Changes, Academia SinicaTaipeiTaiwan
- Now at Institute for Marine and Atmospheric Research UtrechtUtrecht UniversityUtrechtNetherlands
| | - Li‐Ching Lin
- Research Center for Environmental Changes, Academia SinicaTaipeiTaiwan
- Now at Institute of Earth Sciences, Academia SinicaTaipeiTaiwan
| | - Xun Jiang
- Department of Earth and Atmospheric SciencesUniversity of HoustonHoustonTXUSA
| | - Mao‐Chang Liang
- Research Center for Environmental Changes, Academia SinicaTaipeiTaiwan
- Now at Institute of Earth Sciences, Academia SinicaTaipeiTaiwan
| |
Collapse
|
9
|
Wu Z, Lin T, Li Z, Jiang Y, Li Y, Yao X, Gao H, Guo Z. Air-sea exchange and gas-particle partitioning of polycyclic aromatic hydrocarbons over the northwestern Pacific Ocean: Role of East Asian continental outflow. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:444-452. [PMID: 28675854 DOI: 10.1016/j.envpol.2017.06.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/07/2017] [Accepted: 06/24/2017] [Indexed: 06/07/2023]
Abstract
We measured 15 parent polycyclic aromatic hydrocarbons (PAHs) in atmosphere and water during a research cruise from the East China Sea (ECS) to the northwestern Pacific Ocean (NWP) in the spring of 2015 to investigate the occurrence, air-sea gas exchange, and gas-particle partitioning of PAHs with a particular focus on the influence of East Asian continental outflow. The gaseous PAH composition and identification of sources were consistent with PAHs from the upwind area, indicating that the gaseous PAHs (three-to five-ring PAHs) were influenced by upwind land pollution. In addition, air-sea exchange fluxes of gaseous PAHs were estimated to be -54.2-107.4 ng m-2 d-1, and was indicative of variations of land-based PAH inputs. The logarithmic gas-particle partition coefficient (logKp) of PAHs regressed linearly against the logarithmic subcooled liquid vapor pressure (logPL0), with a slope of -0.25. This was significantly larger than the theoretical value (-1), implying disequilibrium between the gaseous and particulate PAHs over the NWP. The non-equilibrium of PAH gas-particle partitioning was shielded from the volatilization of three-ring gaseous PAHs from seawater and lower soot concentrations in particular when the oceanic air masses prevailed. Modeling PAH absorption into organic matter and adsorption onto soot carbon revealed that the status of PAH gas-particle partitioning deviated more from the modeling Kp for oceanic air masses than those for continental air masses, which coincided with higher volatilization of three-ring PAHs and confirmed the influence of air-sea exchange. Meanwhile, significant linear regressions between logKp and logKoa (logKsa) for PAHs were observed for continental air masses, suggesting the dominant effect of East Asian continental outflow on atmospheric PAHs over the NWP during the sampling campaign.
Collapse
Affiliation(s)
- Zilan Wu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Institute of Atmospheric Sciences, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Tian Lin
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Zhongxia Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Institute of Atmospheric Sciences, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yuqing Jiang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Institute of Atmospheric Sciences, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yuanyuan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Institute of Atmospheric Sciences, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiaohong Yao
- College of Environmental Science & Engineering, Ocean University of China, Qingdao 266100, China
| | - Huiwang Gao
- College of Environmental Science & Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhigang Guo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Institute of Atmospheric Sciences, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
10
|
Guo Y, Liu J, Mauzerall DL, Li X, Horowitz LW, Tao W, Tao S. Long-Lived Species Enhance Summertime Attribution of North American Ozone to Upwind Sources. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5017-5025. [PMID: 28350955 DOI: 10.1021/acs.est.6b05664] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Ground-level ozone (O3), harmful to most living things, is produced from both domestic and foreign emissions of anthropogenic precursors. Previous estimates of the linkage from distant sources rely on the sensitivity approach (i.e., modeling the change of ozone concentrations that result from modifying precursor emissions) as well as the tagging approach (i.e., tracking ozone produced from specific O3 precursors emitted from one region). Here, for the first time, we tag all O3 precursors (i.e., nitrogen oxides (NOx), carbon monoxide (CO), and volatile organic compounds (VOCs)) from East Asia and explicitly track their physicochemical evolution without perturbing the nonlinear O3 chemistry. We show that, even in summer, when intercontinental influence on ozone has typically been found to be weakest, nearly 3 parts per billion by volume (ppbv) seasonal average surface O3 over North America can be attributed to East Asian anthropogenic emissions, compared with 0.7 ppbv using the sensitivity approach and 0.5 ppbv by tagging reactive nitrogen oxides. Considering the acute effects of O3 exposure, approximately 670 cardiovascular and 300 respiratory premature mortalities within North America could be attributed to East Asia. CO and longer-lived VOCs, largely overlooked in previous studies, extend the influence of regional ozone precursors emissions and, thus, greatly enhance O3 attribution to source region.
Collapse
Affiliation(s)
| | | | | | | | - Larry W Horowitz
- NOAA Geophysical Fluid Dynamics Laboratory , Princeton, New Jersey 08540, United States
| | | | | |
Collapse
|
11
|
Yang X, Wang X, Yang W, Xu J, Ren L, He Y, Liu B, Bai Z, Meng F, Hu M. Aircraft measurements of SO2, NOx, CO, and O3 over the coastal and offshore area of Yellow Sea of China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:527. [PMID: 27544762 DOI: 10.1007/s10661-016-5533-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
In order to investigate long-range transport of the air pollution in the East Asia, air pollutants, including SO2, NOx, CO, and O3, were observed by aircraft measurement over the coastal and offshore area of Yellow Sea of China in April 2011. NOx and SO2 seemed to become moderate in recent years, and the concentrations during the whole observations ranged from 0.49 to 9.57 ppb and from 0.10 to 16.02 ppb, respectively. The high concentrations of CO were measured with an average value of 0.98 ppm. The measured O3 average concentration was 76.25 ppb, which showed a higher level comparing with the results from some previous studies. Most of the results for the concentration values generally followed the typical characteristic of vertical and spatial distribution, which were "low altitude > high altitude" and "land/coastal > sea," respectively. Transport of polluted air mass from the continent to the aircraft measurement area was confirmed in some days during the observation by the meteorological analysis, while the measurement results supposed to represent the background level of the pollutants in rest days. Additionally, some small-scale air pollution plumes were observed. Significant positive correlations between NOx and SO2 indicated that these two species originated from the same region. On the other hand, good positive correlations between NOx and O3 found during 2-day flight suggested that the O3 formation was probably under "NOx-limited" regime in these days.
Collapse
Affiliation(s)
- Xiaoyang Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xinhua Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Wen Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jun Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Lihong Ren
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Youjiang He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Bing Liu
- China National Environmental Monitoring Center, Beijing, China
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fan Meng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Min Hu
- Peking University, Beijing, China
| |
Collapse
|
12
|
Kim SK, Chae DH. Seasonal variation in diffusive exchange of polycyclic aromatic hydrocarbons across the air-seawater interface in coastal urban area. MARINE POLLUTION BULLETIN 2016; 109:221-229. [PMID: 27269384 DOI: 10.1016/j.marpolbul.2016.05.078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/13/2016] [Accepted: 05/29/2016] [Indexed: 06/06/2023]
Abstract
Concentrations of 15 polycyclic aromatic hydrocarbons (PAHs) in air-seawater interface were measured over 1year in the coastal region of Incheon, South Korea. Most individual PAHs and total PAHs in air displayed statistically significant negative correlations with temperature, but not significant in seawater. Less hydrophobic compounds with three rings were at or near equilibrium in summer, while PAHs with four to six rings were in disequilibrium in all seasons, with higher fugacity gradients in colder seasons and for more hydrophobic compounds. Differently from fugacity gradients, the highest net fluxes occurred for some three- and four-ring PAHs showing the highest atmospheric concentrations. Net gaseous exchange, which was higher in winter, occurred from air to seawater with an annual cumulative flux of 2075μg/m(2)/year (for Σ15PAHs), indicating that atmospheric PAHs in this region, originating from coal/biomass combustion, can deteriorate the quality of seawater and sediment.
Collapse
Affiliation(s)
- Seung-Kyu Kim
- Department of Marine Science, College of Natural Sciences, Incheon National University, 119 Academy-ro (Songdo-dong), Yeonsu-gu, Incheon 22012, South Korea; Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro (Songdo-dong), Yeonsu-gu, Incheon 22012, South Korea.
| | - Doo Hyun Chae
- Department of Biology, Incheon National University, 119 Academy-ro (Songdo-dong), Yeonsu-gu, Incheon 22012, South Korea
| |
Collapse
|
13
|
Tang M, Cziczo DJ, Grassian VH. Interactions of Water with Mineral Dust Aerosol: Water Adsorption, Hygroscopicity, Cloud Condensation, and Ice Nucleation. Chem Rev 2016; 116:4205-59. [DOI: 10.1021/acs.chemrev.5b00529] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mingjin Tang
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Daniel J. Cziczo
- Department
of Earth, Atmospheric and Planetary Sciences and Civil and Environmental
Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vicki H. Grassian
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
- Departments
of Chemistry and Biochemistry, Nanoengineering and Scripps Institution
of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
14
|
Zhang Y, Liu H, Crawford JH, Considine DB, Chan C, Oltmans SJ, Thouret V. Distribution, variability and sources of tropospheric ozone over south China in spring: Intensive ozonesonde measurements at five locations and modeling analysis. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd017498] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Hsu NC, Li C, Krotkov NA, Liang Q, Yang K, Tsay SC. Rapid transpacific transport in autumn observed by the A-train satellites. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016626] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Tian C, Ma J, Chen Y, Liu L, Ma W, Li YF. Assessing and forecasting atmospheric outflow of α-HCH from China on intra-, inter-, and decadal time scales. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:2220-2227. [PMID: 22260348 DOI: 10.1021/es202851n] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Atmospheric outflow of α-HCH from China from 1952 to 2009 was investigated using Chinese Gridded Pesticide Emission and Residue Model (ChnGPERM). The model results show that the outflows via the northeast boundary (NEB, longitude 115-135 °E along 55 °N and latitude 37-55 °N along 135 °E) and the mid-south boundary (MSB, longitude 100-120 °E along 17 °N) of China account for 47% and 35% of the total outflow, respectively. Two climate indices based on the statistical association between the time series of modeled α-HCH outflow and atmospheric sea-level pressure were developed to predict the outflow on different time scales. The first index explains 70/83% and 10/46% of the intra-annual variability of the outflow via the NEB and MSB during the periods of 1952-1984 and 1985-2009, respectively. The second index explains 16% and 19% of the interannual and longer time scale variability in the outflow through the NEB during June-August and via the MSB during October-December for 1991-2009, respectively. Results also revealed that climate warming may potentially result in stronger outflow via the NEB than the MSB. The linkage between the outflow with large scale atmospheric circulation patterns and climate warming trend over China was also discussed.
Collapse
Affiliation(s)
- Chongguo Tian
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai Shandong 264003, P. R. China.
| | | | | | | | | | | |
Collapse
|
17
|
Zhang YN, Zhang ZS, Chan CY, Engling G, Sang XF, Shi S, Wang XM. Levoglucosan and carbonaceous species in the background aerosol of coastal southeast China: case study on transport of biomass burning smoke from the Philippines. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:244-255. [PMID: 21735161 DOI: 10.1007/s11356-011-0548-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 06/08/2011] [Indexed: 05/31/2023]
Abstract
INTRODUCTION Levoglucosan and carbonaceous species in the background aerosol of coastal southeast China were measured at Jianfengling (JFL), a background mountain site in a National Reserve Park on Hainan Island, and at Hok Tsui (HT), a rural site on the southern coast of Hong Kong from April to May of 2004 during an intensive field study. METHODS We integrated the information from field study, satellite and backward trajectory model to examine the long-range transport of biomass burning smoke from the Philippines and assess its impact on background aerosol in coastal southeast China. RESULTS AND DISCUSSION The average levoglucosan concentrations were 42 and 30 ng m(-3) at JFL and HT, respectively, while the organic and elemental carbon concentrations were 3.1 and 0.4 μg C m(-3) respectively at JFL, and 4.1 and 1.3 μg C m(-3) respectively at HT. Elevated levoglucosan concentrations of 85-106 ng m(-3) (250-340% extra loadings) at JFL and 57 ng m(-3) (170% extra loading) at HT were observed during transport events in which air masses originated from the Philippines. Fire hot spot counts and aerosol index derived from satellite data showed that the spread of biomass burning smoke from the Philippines resulted in large-scale dense aerosol clouds in the adjacent South China Sea and the western Pacific Ocean. The observed high ratio of two biomass-burning tracers (levoglucosan to mannosan) at JFL (7-36) and HT (27) indicated that the biomass smoke originating from the Philippines had significant contributions from open-field burning of agricultural residues, such as rice straw. The pollution plumes were transported to southeast China resulting in elevated concentrations of carbonaceous aerosol and levoglucosan in particular. Using a simplified receptor-based approach, biomass smoke aerosol was estimated to account for 16-28% of OC in the background atmosphere of Hainan and 4.9% of OC at the rural site of Hong Kong during these episode cases, indicating that biomass burning smoke generated in the Philippines could have a significant contribution to background ambient aerosol of southeast coastal China.
Collapse
Affiliation(s)
- Yi-Nan Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Ott L, Pawson S, Bacmeister J. An analysis of the impact of convective parameter sensitivity on simulated global atmospheric CO distributions. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011jd016077] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lesley Ott
- Global Modeling and Assimilation Office; NASA Goddard Space Flight Center; Greenbelt Maryland USA
| | - Steven Pawson
- Global Modeling and Assimilation Office; NASA Goddard Space Flight Center; Greenbelt Maryland USA
| | - Julio Bacmeister
- Global Modeling and Assimilation Office; NASA Goddard Space Flight Center; Greenbelt Maryland USA
| |
Collapse
|
19
|
Tian C, Liu L, Ma J, Tang J, Li YF. Modeling redistribution of α-HCH in Chinese soil induced by environment factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:2961-2967. [PMID: 21555175 DOI: 10.1016/j.envpol.2011.04.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 03/29/2011] [Accepted: 04/16/2011] [Indexed: 05/30/2023]
Abstract
This study explores long-term environmental fate of α-HCH in China from 1952 to 2007 using ChnGPERM (Chinese Gridded Pesticide Emission and Residue Model). The model captures well the temporal and spatial variations of α-HCH concentration in Chinese soils by comparing with a number of measured data across China in different periods. The results demonstrate α-HCH grasshopping effect in Eastern China and reveal several important features of the chemical in Northeast and Southeast China. It is found that Northeast China is a prominent sink region of α-HCH emitted from Chinese sources and α-HCH contamination in Southwest China is largely attributed to foreign sources. Southeast China is shown to be a major source contributing to α-HCH contamination in Northeast China, incurred by several environmental factors including temperature, soil organic carbon content, wind field and precipitation.
Collapse
Affiliation(s)
- Chongguo Tian
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003 Shangdong, China
| | | | | | | | | |
Collapse
|
20
|
Evidence of neutron leakage at the Fukushima nuclear plant from measurements of radioactive 35S in California. Proc Natl Acad Sci U S A 2011; 108:14422-5. [PMID: 21844372 DOI: 10.1073/pnas.1109449108] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A recent earthquake and the subsequent tsunami have extensively damaged the Fukushima nuclear power plant, releasing harmful radiation into the environment. Despite the obvious implication for human health and the surrounding ecology, there are no quantitative estimates of the neutron flux leakage during the weeks following the earthquake. Here, using measurements of radioactive (35)S contained in sulfate aerosols and SO(2) gas at a coastal site in La Jolla, California, we show that nearly 4 × 10(11) neutrons per m(2) leaked at the Fukushima nuclear power plant before March 20, 2011. A significantly higher (35)SO(2-)(4) activity as measured on March 28 is in accord with neutrons escaping the reactor core and being absorbed by the coolant seawater (35)Cl to produce (35)S by a (n, p) reaction. Once produced, (35)S oxidizes to (35)SO(2) and (35)SO(2-)(4) and was then transported to Southern California due to the presence of strong prevailing westerly winds at this time. Based on a moving box model, we show that the observed activity enhancement in (35)SO(2-)(4) is compatible with long-range transport of the radiation plume from Fukushima. Our model predicts that (35)SO(2-)(4), the concentration in the marine boundary layer at Fukushima, was approximately 2 × 10(5) atoms per m(3), which is approximately 365 times above expected natural concentrations. These measurements and model calculations imply that approximately 0.7% of the total radioactive sulfate present at the marine boundary layer at Fukushima reached Southern California as a result of the trans-Pacific transport.
Collapse
|
21
|
Bourgeois Q, Bey I. Pollution transport efficiency toward the Arctic: Sensitivity to aerosol scavenging and source regions. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd015096] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Wang SH, Lin NH, Chou MD, Tsay SC, Welton EJ, Hsu NC, Giles DM, Liu GR, Holben BN. Profiling transboundary aerosols over Taiwan and assessing their radiative effects. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd013798] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Wang SH, Lin NH, OuYang CF, Wang JL, Campbell JR, Peng CM, Lee CT, Sheu GR, Tsay SC. Impact of Asian dust and continental pollutants on cloud chemistry observed in northern Taiwan during the experimental period of ABC/EAREX 2005. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd013692] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Liu Y, Yang D, Chen W, Zhang H. Measurements of Asian dust optical properties over the Yellow Sea of China by shipboard and ground-based photometers, along with satellite remote sensing: A case study of the passage of a frontal system during April 2006. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd012684] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
|
26
|
Fischer EV, Jaffe DA, Reidmiller DR, Jaeglé L. Meteorological controls on observed peroxyacetyl nitrate at Mount Bachelor during the spring of 2008. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd012776] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Chiang CK, Fan JF, Li J, Chang JS. Impact of Asian continental outflow on the springtime ozone mixing ratio in northern Taiwan. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd011322] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Oshima N, Koike M, Zhang Y, Kondo Y. Aging of black carbon in outflow from anthropogenic sources using a mixing state resolved model: 2. Aerosol optical properties and cloud condensation nuclei activities. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd011681] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Oshima N, Koike M, Zhang Y, Kondo Y, Moteki N, Takegawa N, Miyazaki Y. Aging of black carbon in outflow from anthropogenic sources using a mixing state resolved model: Model development and evaluation. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd010680] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Wang K, Zhang Y, Jang C, Phillips S, Wang B. Modeling intercontinental air pollution transport over the trans-Pacific region in 2001 using the Community Multiscale Air Quality modeling system. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd010807] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
31
|
Fiore AM, Dentener FJ, Wild O, Cuvelier C, Schultz MG, Hess P, Textor C, Schulz M, Doherty RM, Horowitz LW, MacKenzie IA, Sanderson MG, Shindell DT, Stevenson DS, Szopa S, Van Dingenen R, Zeng G, Atherton C, Bergmann D, Bey I, Carmichael G, Collins WJ, Duncan BN, Faluvegi G, Folberth G, Gauss M, Gong S, Hauglustaine D, Holloway T, Isaksen ISA, Jacob DJ, Jonson JE, Kaminski JW, Keating TJ, Lupu A, Marmer E, Montanaro V, Park RJ, Pitari G, Pringle KJ, Pyle JA, Schroeder S, Vivanco MG, Wind P, Wojcik G, Wu S, Zuber A. Multimodel estimates of intercontinental source-receptor relationships for ozone pollution. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd010816] [Citation(s) in RCA: 390] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Solmon F, Chuang PY, Meskhidze N, Chen Y. Acidic processing of mineral dust iron by anthropogenic compounds over the north Pacific Ocean. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd010417] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Zhang L, Ma J, Venkatesh S, Li YF, Cheung P. Modeling evidence of episodic intercontinental long-range transport of lindane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:8791-8797. [PMID: 19192799 DOI: 10.1021/es801271b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Two global atmospheric transport models for persistent toxic substances were employed to quantify the intercontinental atmospheric transport of lindane in 2005 using a recently constructed global lindane emission inventory. The focus of this numerical investigation was to identify, on an intercontinental scale, the major sources of lindane that contributed to the contamination of North America and the Arctic. Both models simulated several strong episodic trans-Pacific atmospheric transport events of lindane from its sources in Asia to the western seaboard of North America. Modeling results also detected, forthe firsttime, an important atmospheric pathway for persistent toxic substances from Western Africa/Western Europe to the Caribbean, the southern United States, and the eastern seaboard of North America. Several episodic lindane transAtlantic atmospheric transport events were found from May to October. These events were associated primarily with the easterly trade winds and the African easterly wave that extends from the subtropical eastern Atlantic to the Caribbean. This atmospheric pathway for toxic chemicals has a substantial implication for the level of toxic substances in North America. Atmospheric mechanisms contributing to these transport events are briefly discussed. Multiple modeling scenarios were studied to assess the contribution of lindane sources in Europe, Asia, and North America to its fate in the Arctic. Results show that these continental contributions are season-dependent with the highest contribution from Europe in the spring.
Collapse
Affiliation(s)
- Lisheng Zhang
- Lamu Environment, 41 Mountfield Crescent, Thornhill, Ontario L4J 7E9, Canada
| | | | | | | | | |
Collapse
|
34
|
Koumoutsaris S, Bey I, Generoso S, Thouret V. Influence of El Niño–Southern Oscillation on the interannual variability of tropospheric ozone in the northern midlatitudes. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009753] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Kar J, Jones DBA, Drummond JR, Attié JL, Liu J, Zou J, Nichitiu F, Seymour MD, Edwards DP, Deeter MN, Gille JC, Richter A. Measurement of low-altitude CO over the Indian subcontinent by MOPITT. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009362] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Liang Q, Stolarski RS, Douglass AR, Newman PA, Nielsen JE. Evaluation of emissions and transport of CFCs using surface observations and their seasonal cycles and the GEOS CCM simulation with emissions-based forcing. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009617] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Takiguchi Y, Takami A, Sadanaga Y, Lun X, Shimizu A, Matsui I, Sugimoto N, Wang W, Bandow H, Hatakeyama S. Transport and transformation of total reactive nitrogen over the East China Sea. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009462] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Dickerson RR, Li C, Li Z, Marufu LT, Stehr JW, McClure B, Krotkov N, Chen H, Wang P, Xia X, Ban X, Gong F, Yuan J, Yang J. Aircraft observations of dust and pollutants over northeast China: Insight into the meteorological mechanisms of transport. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2007jd008999] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Lang C, Tao S, Zhang G, Fu J, Simonich S. Outflow of polycyclic aromatic hydrocarbons from Guangdong, southern China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:8370-8375. [PMID: 18200865 DOI: 10.1021/es071853v] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The atmospheric outflow of polycyclic aromatic hydrocarbons (PAHs) from Guangdong, China, a region of high PAH emission, was modeled using a potential receptor influence function (PRIF) probabilistic model which was based on a spatially resolved PAH inventory and air mass forward-trajectory calculations. Photochemical degradation and deposition (dry and wet) of PAHs during atmospheric transport were taken into consideration. On average, 48% of the PAHs (by mass) remained in the atmosphere for a transport period of 5 days, staying within the boundary of the source region. The medium molecular weight PAHs (four rings) were predicted to travel longer distances in the atmosphere than the low (three rings) or high molecular weight PAHs (five rings) because they are less photodegradable than the lower molecular weight, gas-phase PAHs and less likelyto undergo wet and dry depositions than the higher molecular weight, particulate phase PAHs. Under the strong influence of the East Asian monsoons in winter, the predominant outflow pattern of PAHs from Guangdong was to the South China Sea and Southeast Asian countries. In summer, PAHs were transported primarily to northern mainland China. Under particular weather conditions in winter, the PAH-containing air masses were lifted by cold fronts or convection and transported toward the Pacific Ocean by westerly winds. In addition to the distinct seasonality in PAH dispersion and outflow, interannual long-term variation in the outflow is likely influenced by El Niño and southern oscillation.
Collapse
Affiliation(s)
- Chang Lang
- Laboratory for Earth Surface Processes, College of Environmental Sciences, Peking University, Beijing 100871, China
| | | | | | | | | |
Collapse
|
40
|
Price H, Jaeglé L, Rice A, Quay P, Novelli PC, Gammon R. Global budget of molecular hydrogen and its deuterium content: Constraints from ground station, cruise, and aircraft observations. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd008152] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Li Z, Chen H, Cribb M, Dickerson R, Holben B, Li C, Lu D, Luo Y, Maring H, Shi G, Tsay SC, Wang P, Wang Y, Xia X, Zheng Y, Yuan T, Zhao F. Preface to special section on East Asian Studies of Tropospheric Aerosols: An International Regional Experiment (EAST-AIRE). ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2007jd008853] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Duncan BN, Logan JA, Bey I, Megretskaia IA, Yantosca RM, Novelli PC, Jones NB, Rinsland CP. Global budget of CO, 1988–1997: Source estimates and validation with a global model. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2007jd008459] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Sawa Y, Tanimoto H, Yonemura S, Matsueda H, Wada A, Taguchi S, Hayasaka T, Tsuruta H, Tohjima Y, Mukai H, Kikuchi N, Katagiri S, Tsuboi K. Widespread pollution events of carbon monoxide observed over the western North Pacific during the East Asian Regional Experiment (EAREX) 2005 campaign. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd008055] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
Wuebbles DJ, Lei H, Lin J. Intercontinental transport of aerosols and photochemical oxidants from Asia and its consequences. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2007; 150:65-84. [PMID: 17714840 DOI: 10.1016/j.envpol.2007.06.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 06/22/2007] [Indexed: 05/16/2023]
Abstract
The intercontinental transport of aerosols and photochemical oxidants from Asia is a crucial issue for air quality concerns in countries downwind of the significant emissions and concentrations of pollutants occurring in this important region of the world. Since the lifetimes of some important pollutants are long enough to be transported over long distance in the troposphere, regional control strategies for air pollution in downwind countries might be ineffective without considering the effects of long-range transport of pollutants from Asia. Field campaigns provide strong evidence for the intercontinental transport of Asian pollutants. They, together with ground-based observations and model simulations, show that the air quality over parts of North America is being affected by the pollutants transported from Asia. This paper examines the current understanding of the intercontinental transport of gases and aerosols from Asia and resulting effects on air quality, and on the regional and global climate system.
Collapse
Affiliation(s)
- Donald J Wuebbles
- Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, 105 S. Gregory Street, Urbana, IL 61802, USA.
| | | | | |
Collapse
|
45
|
Generoso S, Bey I, Attié JL, Bréon FM. A satellite- and model-based assessment of the 2003 Russian fires: Impact on the Arctic region. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd008344] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Wespes C, Hurtmans D, Herbin H, Barret B, Turquety S, Hadji‐Lazaro J, Clerbaux C, Coheur P. First global distributions of nitric acid in the troposphere and the stratosphere derived from infrared satellite measurements. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd008202] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Catherine Wespes
- Spectroscopie de l’Atmosphère, Service de Chimie Quantique et Photophysique Université Libre de Bruxelles Brussels Belgium
| | - Daniel Hurtmans
- Spectroscopie de l’Atmosphère, Service de Chimie Quantique et Photophysique Université Libre de Bruxelles Brussels Belgium
| | - Hervé Herbin
- Spectroscopie de l’Atmosphère, Service de Chimie Quantique et Photophysique Université Libre de Bruxelles Brussels Belgium
| | - Brice Barret
- Spectroscopie de l’Atmosphère, Service de Chimie Quantique et Photophysique Université Libre de Bruxelles Brussels Belgium
- Now at Laboratoire d’Aérologie, UMR 5560 CNRS/Université Paul Sabatier, Observatoire de Midi‐Pyrénées, Toulouse, France
| | - Solène Turquety
- Service d’Aéronomie, Institut Pierre‐Simon Laplace Université Pierre et Marie Curie Paris France
| | - Juliette Hadji‐Lazaro
- Service d’Aéronomie, Institut Pierre‐Simon Laplace Université Pierre et Marie Curie Paris France
| | - Cathy Clerbaux
- Spectroscopie de l’Atmosphère, Service de Chimie Quantique et Photophysique Université Libre de Bruxelles Brussels Belgium
- Service d’Aéronomie, Institut Pierre‐Simon Laplace Université Pierre et Marie Curie Paris France
| | - Pierre‐François Coheur
- Spectroscopie de l’Atmosphère, Service de Chimie Quantique et Photophysique Université Libre de Bruxelles Brussels Belgium
- Research Associate with the F.N.R.S. Belgium
| |
Collapse
|
47
|
Sudo K, Akimoto H. Global source attribution of tropospheric ozone: Long-range transport from various source regions. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007992] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Neu JL, Prather MJ, Penner JE. Global atmospheric chemistry: Integrating over fractional cloud cover. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd008007] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
49
|
Liang Q, Jaeglé L, Hudman RC, Turquety S, Jacob DJ, Avery MA, Browell EV, Sachse GW, Blake DR, Brune W, Ren X, Cohen RC, Dibb JE, Fried A, Fuelberg H, Porter M, Heikes BG, Huey G, Singh HB, Wennberg PO. Summertime influence of Asian pollution in the free troposphere over North America. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007919] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Wada A, Sawa Y, Matsueda H, Taguchi S, Murayama S, Okubo S, Tsutsumi Y. Influence of continental air mass transport on atmospheric CO2in the western North Pacific. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007552] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|