1
|
Pan LL, Atlas EL, Salawitch RJ, Honomichl SB, Bresch JF, Randel WJ, Apel EC, Hornbrook RS, Weinheimer AJ, Anderson DC, Andrews SJ, Baidar S, Beaton SP, Campos TL, Carpenter LJ, Chen D, Dix B, Donets V, Hall SR, Hanisco TF, Homeyer CR, Huey LG, Jensen JB, Kaser L, Kinnison DE, Koenig TK, Lamarque JF, Liu C, Luo J, Luo ZJ, Montzka DD, Nicely JM, Pierce RB, Riemer DD, Robinson T, Romashkin P, Saiz-Lopez A, Schauffler S, Shieh O, Stell MH, Ullmann K, Vaughan G, Volkamer R, Wolfe G. The Convective Transport of Active Species in the Tropics (CONTRAST) Experiment. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY 2017; 98:106-128. [PMID: 29636590 PMCID: PMC5889942 DOI: 10.1175/bams-d-14-00272.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The Convective Transport of Active Species in the Tropics (CONTRAST) experiment was conducted from Guam (13.5° N, 144.8° E) during January-February 2014. Using the NSF/NCAR Gulfstream V research aircraft, the experiment investigated the photochemical environment over the tropical western Pacific (TWP) warm pool, a region of massive deep convection and the major pathway for air to enter the stratosphere during Northern Hemisphere (NH) winter. The new observations provide a wealth of information for quantifying the influence of convection on the vertical distributions of active species. The airborne in situ measurements up to 15 km altitude fill a significant gap by characterizing the abundance and altitude variation of a wide suite of trace gases. These measurements, together with observations of dynamical and microphysical parameters, provide significant new data for constraining and evaluating global chemistry climate models. Measurements include precursor and product gas species of reactive halogen compounds that impact ozone in the upper troposphere/lower stratosphere. High accuracy, in-situ measurements of ozone obtained during CONTRAST quantify ozone concentration profiles in the UT, where previous observations from balloon-borne ozonesondes were often near or below the limit of detection. CONTRAST was one of the three coordinated experiments to observe the TWP during January-February 2014. Together, CONTRAST, ATTREX and CAST, using complementary capabilities of the three aircraft platforms as well as ground-based instrumentation, provide a comprehensive quantification of the regional distribution and vertical structure of natural and pollutant trace gases in the TWP during NH winter, from the oceanic boundary to the lower stratosphere.
Collapse
Affiliation(s)
- L L Pan
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | | | | | - S B Honomichl
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - J F Bresch
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - W J Randel
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - E C Apel
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - R S Hornbrook
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - A J Weinheimer
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - D C Anderson
- University of Maryland, College Park, Maryland, USA
| | | | - S Baidar
- University of Colorado Boulder, Boulder, Colorado, USA
| | - S P Beaton
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - T L Campos
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | | | - D Chen
- Georgia Institute of Technology, Atlanta, Georgia, USA
| | - B Dix
- University of Colorado Boulder, Boulder, Colorado, USA
| | - V Donets
- University of Miami, Florida, USA
| | - S R Hall
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - T F Hanisco
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - C R Homeyer
- University of Oklahoma, Norman, Oklahoma, USA
| | - L G Huey
- Georgia Institute of Technology, Atlanta, Georgia, USA
| | - J B Jensen
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - L Kaser
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - D E Kinnison
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - T K Koenig
- University of Colorado Boulder, Boulder, Colorado, USA
| | - J-F Lamarque
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - C Liu
- Texas A&M University at Corpus Christi, Texas, USA
| | - J Luo
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - Z J Luo
- City College of New York, New York, New York, USA
| | - D D Montzka
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - J M Nicely
- University of Maryland, College Park, Maryland, USA
| | - R B Pierce
- NOAA Satellite and Information Service (NESDIS) Center for Satellite Applications and Research (STAR), Madison Wisconsin, USA
| | | | - T Robinson
- University of Hawaii at Mānoa, Hawaii, USA
| | - P Romashkin
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - A Saiz-Lopez
- Institute of Physical Chemistry Rocasolano, CSIC, Madrid, Spain
| | - S Schauffler
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - O Shieh
- University of Hawaii at Mānoa, Hawaii, USA
| | - M H Stell
- National Center for Atmospheric Research, Boulder, Colorado, USA
- Metropolitan State University, Denver, Colorado, USA
| | - K Ullmann
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - G Vaughan
- University of Manchester, Manchester, UK
| | - R Volkamer
- University of Colorado Boulder, Boulder, Colorado, USA
| | - G Wolfe
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- University of Maryland Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Lin NH, Sayer AM, Wang SH, Loftus AM, Hsiao TC, Sheu GR, Hsu NC, Tsay SC, Chantara S. Interactions between biomass-burning aerosols and clouds over Southeast Asia: current status, challenges, and perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 195:292-307. [PMID: 25085565 DOI: 10.1016/j.envpol.2014.06.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 06/08/2014] [Accepted: 06/28/2014] [Indexed: 06/03/2023]
Abstract
The interactions between aerosols, clouds, and precipitation remain among the largest sources of uncertainty in the Earth's energy budget. Biomass-burning aerosols are a key feature of the global aerosol system, with significant annually-repeating fires in several parts of the world, including Southeast Asia (SEA). SEA in particular provides a "natural laboratory" for these studies, as smoke travels from source regions downwind in which it is coupled to persistent stratocumulus decks. However, SEA has been under-exploited for these studies. This review summarizes previous related field campaigns in SEA, with a focus on the ongoing Seven South East Asian Studies (7-SEAS) and results from the most recent BASELInE deployment. Progress from remote sensing and modeling studies, along with the challenges faced for these studies, are also discussed. We suggest that improvements to our knowledge of these aerosol/cloud effects require the synergistic use of field measurements with remote sensing and modeling tools.
Collapse
Affiliation(s)
- Neng-Huei Lin
- Department of Atmospheric Sciences, National Central University, Chung-Li, Taiwan; Chemistry Department and Environmental Science Program, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Andrew M Sayer
- Goddard Space Flight Center, NASA, Greenbelt, MD, USA; Universities Space Research Association, Columbia, MD, USA
| | - Sheng-Hsiang Wang
- Department of Atmospheric Sciences, National Central University, Chung-Li, Taiwan
| | - Adrian M Loftus
- Goddard Space Flight Center, NASA, Greenbelt, MD, USA; Oak Ridge Associated Universities, Oak Ridge, TN, USA
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Central University, Chung-Li, Taiwan
| | - Guey-Rong Sheu
- Department of Atmospheric Sciences, National Central University, Chung-Li, Taiwan
| | | | - Si-Chee Tsay
- Goddard Space Flight Center, NASA, Greenbelt, MD, USA
| | - Somporn Chantara
- Chemistry Department and Environmental Science Program, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|