1
|
Lamont BB, He T, Cowling RM. Fossil pollen resolves origin of the South African Proteaceae as transcontinental not transoceanic. ANNALS OF BOTANY 2024; 133:649-658. [PMID: 37076271 PMCID: PMC11082520 DOI: 10.1093/aob/mcad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS The prevailing view from the areocladogenesis of molecular phylogenies is that the iconic South African Cape Proteaceae (subfamily Proteoideae) arrived from Australia across the Indian Ocean during the Late Cretaceous (100-65 million years ago, Ma). Since fossil pollen indicates that the family probably arose in North-West Africa during the Early Cretaceous, an alternative view is that it migrated to the Cape from North-West-Central Africa. The plan therefore was to collate fossil pollen records throughout Africa to determine if they are consistent with an African (para-autochthonous) origin for the Cape Proteaceae, and to seek further support from other palaeo-disciplines. METHODS We used palynology (identity, date and location of records), molecular phylogeny and chronogram preparation, biogeography of plate tectonics, and palaeo-atmospheric and ocean circulation models. KEY RESULTS Our collation of the rich assemblage of Proteaceae palynomorphs stretching back to 107 Ma (Triorites africaensis) in North-West Africa showed its progressive overland migration to the Cape by 75-65 Ma. No key palynomorphs recorded in Australia-Antarctica have morphological affinities with African fossils but specific clade assignment of the pre-Miocene records is not currently possible. The Cape Proteaceae encompass three molecular-based clades (tribes) whose most recent apparent ancestors are sisters to those in Australia. However, our chronogram shows that the major Adenanthos/Leucadendron-related clade, originating 54-34 Ma, would have 'arrived' too late as species with Proteaceae affinities were already present ~20 million years earlier. The Franklandia/Protea-related clade arose 118-81 Ma so its distinctive pollen should have been the foundation for the scores of palynomorphs recorded at 100-80 Ma, but it was not. Also, the prevailing winds and ocean currents trended away from South Africa rather than towards, as the 'out-of-Australia' hypothesis requires. Based on the evidence assembled here, we list three points favouring an Australian origin and nine against; four points favouring an Antarctic origin and seven against; and nine points favouring a North-West-Central African origin and three against. CONCLUSIONS We conclude that a gradual migration of the Proteaceae from North-West-Central Africa southeast→south→southwest to the Cape and its surroundings occurred via adaptation and speciation during the period 95-70 Ma. We caution that incorrect conclusions may be drawn from literal interpretations of molecular phylogenies that neglect the fossil record and do not recognize the possible confounding effects of selection under matched environments leading to parallel evolution and extinction of bona fide sister clades.
Collapse
Affiliation(s)
- Byron B Lamont
- Ecology Section, School of Molecular and Life Sciences, Curtin University, Perth, WA 6845, Australia
| | - Tianhua He
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Richard M Cowling
- African Centre for Coastal Palaeoscience, Nelson Mandela University, Eastern Cape, South Africa
| |
Collapse
|
2
|
Petrizzo MR, MacLeod KG, Watkins DK, Wolfgring E, Huber BT. Late Cretaceous Paleoceanographic Evolution and the Onset of Cooling in the Santonian at Southern High Latitudes (IODP Site U1513, SE Indian Ocean). PALEOCEANOGRAPHY AND PALEOCLIMATOLOGY 2022; 37:e2021PA004353. [PMID: 35910494 PMCID: PMC9303530 DOI: 10.1029/2021pa004353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 06/15/2023]
Abstract
The latest Cenomanian to Santonian sedimentary record recovered at IODP Expedition 369 Site U1513 in the Mentelle Basin (SE Indian Ocean, paleolatitude 60°S at 85 Ma) is studied to interpret the paleoceanographic evolution in the Southern Hemisphere. The planktonic foraminiferal assemblage changes, the depth ecology preferences of different species, and the surface and seafloor temperature inferred from the stable isotopic values measured on foraminiferal tests provide meaningful information to the understanding of the Late Cretaceous climate. The hothouse climate during the Turonian-Santonian, characterized by weak latitudinal temperature gradients and high atmospheric CO2 concentrations, is followed by a progressive cooling during the Campanian. At Site U1513 the beginning of this climatic transition is nicely recorded within the Santonian, as indicated by an ∼1‰ increase in δ18O values of planktonic foraminifera suggesting a decline in surface water paleotemperatures of 4°C. The onset of cooling is mirrored by changes in the planktonic foraminiferal assemblages including extinctions among surface and deep dwellers, appearances and diversification of newly evolving taxa, and changes from predominantly epifaunal oxic to infaunal dysoxic/suboxic taxa among co-occurring benthic foraminifera. Overall, the data presented here document an interval in the Santonian during which the rate of southern high latitude cooling increased. Both surface and bottom waters were affected, although the cooling signal is more evident in the data for surface waters. This pattern of cooling ascribes the deterioration of the Late Cretaceous climate to decreased CO2 in the atmosphere and changes in the oceanic circulation correlated with enhanced meridional circulation.
Collapse
Affiliation(s)
| | - Kenneth G. MacLeod
- Department of Geological SciencesUniversity of Missouri‐ColumbiaColumbiaMOUSA
| | - David K. Watkins
- Department of Earth and Atmospheric SciencesUniversity of NebraskaLincolnNEUSA
| | - Erik Wolfgring
- Department of Earth Sciences "Ardito Desio"University of MilanMilanItaly
- Department of GeologyUniversity of ViennaViennaAustria
| | - Brian T. Huber
- National Museum of Natural HistorySmithsonian InstitutionWashingtonDCUSA
| |
Collapse
|
3
|
Walliser EO, Schöne BR. Paleoceanography of the Late Cretaceous northwestern Tethys Ocean: Seasonal upwelling or steady thermocline? PLoS One 2020; 15:e0238040. [PMID: 32853273 PMCID: PMC7451568 DOI: 10.1371/journal.pone.0238040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/07/2020] [Indexed: 11/24/2022] Open
Abstract
In this study we attempted to assess whether seasonal upwelling or a steady thermocline persisted at the western margin of the Tethys Ocean during the late Turonian–early Coniacian interval. For this scope, we employed novel and published stable oxygen isotope (δ18O) data of various organisms (bivalves, bivalves, brachiopods, fish and belemnites). New seasonally resolved temperature estimates were based on the δ18O record of sequentially sampled inoceramid (Inoceramus sp.) and rudist (Hippurites resectus) shells from the Scaglia Rossa and Gosau deposits of northern Italy and western Austria, respectively. Diagenetic screening was performed using reflected light, cathodoluminescence (CL), scanning electron microscopy (SEM) and stable isotope analysis. Originally preserved δ13C and δ18O values were used to characterize the lifestyle of the bivalves and detect vital effects that could have biased oxygen isotope-based temperature reconstructions. Inoceramid δ18O values provide–for the first time–information on temperatures of Tethyan benthic waters, which were, on average, 14.4 ± 0.6 °C and fluctuated seasonally within a range of less than 2 °C. Such a thermal regime is in line with the temperatures postulated for late Turonian boreal water masses and support the existence of a cold water supply from the North Atlantic to the Tethyan bottom. Bottom cooling, however, did not affect the shallow water environment. In fact, the rudist-based temperature estimates for shallow water environment revealed a mean annual range of 11 °C, between 24 and 35 °C (assuming a seasonally constant δ18Ow = 1.0 ‰), which are among the warmest temperatures recorded over the entire Late Cretaceous. Our findings, thus, suggest a strong thermal and food web decoupling between the two environments. The absence of a seasonal vertical homogenization of different water bodies suggests the existence of a steady thermocline and, therefore, contrasts with the presence of an active coastal upwelling in the region as hypothesized by previous authors.
Collapse
Affiliation(s)
| | - Bernd R. Schöne
- Institute of Geosciences, University of Mainz, Mainz, Germany
| |
Collapse
|
4
|
Ladant JB, Donnadieu Y. Palaeogeographic regulation of glacial events during the Cretaceous supergreenhouse. Nat Commun 2016; 7:12771. [PMID: 27650167 PMCID: PMC5036002 DOI: 10.1038/ncomms12771] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/30/2016] [Indexed: 11/21/2022] Open
Abstract
The historical view of a uniformly warm Cretaceous is being increasingly challenged by the accumulation of new data hinting at the possibility of glacial events, even during the Cenomanian–Turonian (∼95 Myr ago), the warmest interval of the Cretaceous. Here we show that the palaeogeography typifying the Cenomanian–Turonian renders the Earth System resilient to glaciation with no perennial ice accumulation occurring under prescribed CO2 levels as low as 420 p.p.m. Conversely, late Aptian (∼115 Myr ago) and Maastrichtian (∼70 Myr ago) continental configurations set the stage for cooler climatic conditions, favouring possible inception of Antarctic ice sheets under CO2 concentrations, respectively, about 400 and 300 p.p.m. higher than for the Cenomanian–Turonian. Our simulations notably emphasize that palaeogeography can crucially impact global climate by modulating the CO2 threshold for ice sheet inception and make the possibility of glacial events during the Cenomanian–Turonian unlikely. Indirect evidence indicates the surprising occurrence of glacial events during the peak warmth of the Cretaceous world. Here, based on coupled climate-ice sheet model simulations, the authors show that such events were likely thwarted by palaeogeographic reorganisations and complex ocean-atmosphere feedbacks.
Collapse
Affiliation(s)
- Jean-Baptiste Ladant
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Yannick Donnadieu
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France.,Aix-Marseille Université, CNRS, IRD, CEREGE, UM34, 13545 Aix-en-Provence, France
| |
Collapse
|
5
|
Donnadieu Y, Pucéat E, Moiroud M, Guillocheau F, Deconinck JF. A better-ventilated ocean triggered by Late Cretaceous changes in continental configuration. Nat Commun 2016; 7:10316. [PMID: 26777897 PMCID: PMC4735640 DOI: 10.1038/ncomms10316] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 11/27/2015] [Indexed: 11/09/2022] Open
Abstract
Oceanic anoxic events (OAEs) are large-scale events of oxygen depletion in the deep ocean that happened during pre-Cenozoic periods of extreme warmth. Here, to assess the role of major continental configuration changes occurring during the Late Cretaceous on oceanic circulation modes, which in turn influence the oxygenation level of the deep ocean, we use a coupled ocean atmosphere climate model. We simulate ocean dynamics during two different time slices and compare these with existing neodymium isotope data (ɛNd). Although deep-water production in the North Pacific is continuous, the simulations at 94 and 71 Ma show a shift in southern deep-water production sites from South Pacific to South Atlantic and Indian Ocean locations. Our modelling results support the hypothesis that an intensification of southern Atlantic deep-water production and a reversal of deep-water fluxes through the Caribbean Seaway were the main causes of the decrease in ɛNd values recorded in the Atlantic and Indian deep waters during the Late Cretaceous. In the Earth's history, the timing of oceanic large-scale events of oxygen depletion remains poorly understood. Here, the authors show that palaeogeography was a major preconditioning factor during the Cretaceous, implying that thresholds to shift toward a global anoxia are likely to be much higher at present.
Collapse
Affiliation(s)
- Yannick Donnadieu
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif sur Yvette, France
| | - Emmanuelle Pucéat
- Biogéosciences Dijon, Université Bourgogne-Franche-Comté, UMR CNRS 6282, Dijon 21000, France
| | - Mathieu Moiroud
- Biogéosciences Dijon, Université Bourgogne-Franche-Comté, UMR CNRS 6282, Dijon 21000, France
| | | | - Jean-François Deconinck
- Biogéosciences Dijon, Université Bourgogne-Franche-Comté, UMR CNRS 6282, Dijon 21000, France
| |
Collapse
|
6
|
Taylor ML, Rogers AD. Evolutionary dynamics of a common sub-Antarctic octocoral family. Mol Phylogenet Evol 2014; 84:185-204. [PMID: 25481103 DOI: 10.1016/j.ympev.2014.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/23/2014] [Accepted: 11/11/2014] [Indexed: 10/24/2022]
Abstract
Sequence data were obtained for five different loci, both mitochondrial (cox1, mtMutS, 16S) and nuclear (18S, 28S rDNA), from 64 species representing 25 genera of the common deep-sea octocoral family Primnoidae. We tested the hypothesis that Primnoidae have an Antarctic origin, as this is where they currently have high species richness, using Maximum likelihood and Bayesian inference methods of phylogenetic analysis. Using a time-calibrated molecular phylogeny we also investigated the time of species radiation in sub-Antarctic Primnoidae. Our relatively wide taxon sampling and phylogenetic analysis supported Primnoidae as a monophyletic family. The base of the well-supported phylogeny was Pacific in origin, indicating Primnoidae sub-Antarctic diversity is a secondary species radiation. There is also evidence for a subsequent range extension of sub-Antarctic lineages into deep-water areas of the Indian and Pacific Oceans. Conservative and speculative fossil-calibration analyses resulted in two differing estimations of sub-Antarctic species divergence times. Conservative analysis suggested a sub-Antarctic species radiation occurred ∼52MYA (95% HPD: 36-73MYA), potentially before the opening of the Drake Passage and Antarctic Circumpolar Current (ACC) formation (41-37MYA). Speculative analysis pushed this radiation back into the late Jurassic, 157MYA (95% HPD: 118-204MYA). Genus-level groupings were broadly supported in this analysis with some notable polyphyletic exceptions: Callogorgia, Fanellia, Primnoella, Plumarella, Thouarella. Molecular and morphological evidence supports the placement of Tauroprimnoa austasensis within Dasystenella and Fannyella kuekenthali within Metafannyella.
Collapse
Affiliation(s)
- Michelle L Taylor
- Department of Zoology, University of Oxford, Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK.
| | - Alex D Rogers
- Department of Zoology, University of Oxford, Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
7
|
Davies A, Kemp AES, Pike J. Late Cretaceous seasonal ocean variability from the Arctic. Nature 2009; 460:254-8. [PMID: 19587768 DOI: 10.1038/nature08141] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 05/13/2009] [Indexed: 11/10/2022]
Abstract
The modern Arctic Ocean is regarded as a barometer of global change and amplifier of global warming and therefore records of past Arctic change are critical for palaeoclimate reconstruction. Little is known of the state of the Arctic Ocean in the greenhouse period of the Late Cretaceous epoch (65-99 million years ago), yet records from such times may yield important clues to Arctic Ocean behaviour in near-future warmer climates. Here we present a seasonally resolved Cretaceous sedimentary record from the Alpha ridge of the Arctic Ocean. This palaeo-sediment trap provides new insight into the workings of the Cretaceous marine biological carbon pump. Seasonal primary production was dominated by diatom algae but was not related to upwelling as was previously hypothesized. Rather, production occurred within a stratified water column, involving specially adapted species in blooms resembling those of the modern North Pacific subtropical gyre, or those indicated for the Mediterranean sapropels. With increased CO(2) levels and warming currently driving increased stratification in the global ocean, this style of production that is adapted to stratification may become more widespread. Our evidence for seasonal diatom production and flux testify to an ice-free summer, but thin accumulations of terrigenous sediment within the diatom ooze are consistent with the presence of intermittent sea ice in the winter, supporting a wide body of evidence for low temperatures in the Late Cretaceous Arctic Ocean, rather than recent suggestions of a 15 degrees C mean annual temperature at this time.
Collapse
Affiliation(s)
- Andrew Davies
- National Oceanography Centre Southampton, School of Ocean and Earth Science, University of Southampton, Southampton, SO14 3ZH, UK
| | | | | |
Collapse
|
8
|
Osborne CP, Beerling DJ. Nature's green revolution: the remarkable evolutionary rise of C4 plants. Philos Trans R Soc Lond B Biol Sci 2006; 361:173-94. [PMID: 16553316 PMCID: PMC1626541 DOI: 10.1098/rstb.2005.1737] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 08/18/2005] [Indexed: 11/12/2022] Open
Abstract
Plants with the C4 photosynthetic pathway dominate today's tropical savannahs and grasslands, and account for some 30% of global terrestrial carbon fixation. Their success stems from a physiological CO2-concentrating pump, which leads to high photosynthetic efficiency in warm climates and low atmospheric CO2 concentrations. Remarkably, their dominance of tropical environments was achieved in only the past 10 million years (Myr), less than 3% of the time that terrestrial plants have existed on Earth. We critically review the proposal that declining atmospheric CO2 triggered this tropical revolution via its effects on the photosynthetic efficiency of leaves. Our synthesis of the latest geological evidence from South Asia and North America suggests that this emphasis is misplaced. Instead, we find important roles for regional climate change and fire in South Asia, but no obvious environmental trigger for C4 success in North America. CO2-starvation is implicated in the origins of C4 plants 25-32 Myr ago, raising the possibility that the pathway evolved under more extreme atmospheric conditions experienced 10 times earlier. However, our geochemical analyses provide no evidence of the C4 mechanism at this time, although possible ancestral components of the C4 pathway are identified in ancient plant lineages. We suggest that future research must redress the substantial imbalance between experimental investigations and analyses of the geological record.
Collapse
Affiliation(s)
- Colin P Osborne
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK.
| | | |
Collapse
|
9
|
|
10
|
Abstract
AbstractThe South Sandwich Islands are one of the world’s classic examples of an intraoceanic arc. Formed on recently generated back-arc crust, they represent the earliest stages of formation of arc crust, and are an excellent laboratory for investigating variations in magma chemistry resulting from mantle processes, and generation of silicic magmas in a dominantly basaltic environment. Two volcanoes are examined. Southern Thule in the south of the arc is a complex volcanic edifice with three calderas and compositions that range from mafic to silicic and tholeiitic to calc-alkaline. It is compared to the Candlemas-Vindication edifice in the north of the arc, which is low-K tholeiitic and strongly bimodal from mafic to silicic. Critically, Southern Thule lies along a cross-arc, wide-angle seismic section that reveals the velocity structure of the underlying arc crust. Trace element variations are used to argue that the variations in both mantle depletion and input of a subducted sediment component produced the diverse low-K tholeiite, tholeiite and calc-alkaline series. Primitive, mantle-derived melts fractionally crystallized by c. 36% to produce the most Mg-rich erupted basalts and a high-velocity cumulitic crustal keel. Plagioclase cumulation produced abundant high-Al basalts (especially in the tholeiitic series), and strongly influenced Sr abundances in the magmas. However, examination of volumetric and geochemical arguments indicates that the silicic rocks do not result from fractional crystallization, and are melts of amphibolitic arc crust instead.
Collapse
Affiliation(s)
- P. T. Leat
- British Antarctic Survey
High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - J. L. Smellie
- British Antarctic Survey
High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - I. L. Millar
- British Antarctic Survey, c/o NERC Isotope Geoscience Laboratory, Kingsley Dunham Centre
Keyworth, Nottingham NG12 5GG, UK
| | - R. D. Larter
- British Antarctic Survey
High Cross, Madingley Road, Cambridge CB3 0ET, UK
| |
Collapse
|