1
|
Li C, Wang H, Chen X, Zhai T, Ma X, Yang X, Chen S, Li X, Zeng L, Lu K. Observation and modeling of organic nitrates on a suburban site in southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160287. [PMID: 36410483 DOI: 10.1016/j.scitotenv.2022.160287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Here we report the measurements of two types of organic nitrates (ONs), peroxy nitrates (PNs) and alkyl nitrates (ANs), in Chengdu, China, during summer 2019. The average concentrations of PNs and ANs were 1.3 ± 1.1 ppbv and 0.5 ± 0.3 ppbv during the day, with peaks of 7.7 ppbv and 1.9 ppbv, respectively, which were in the middle and upper end of the reported levels in China. Much higher PNs and ANs concentrations were found during the photochemical pollution period than during the clean period. Box model simulation was capable of reproducing PNs during photochemical pollution episodes but showed overestimation in other periods, which was likely caused by the simplification of PNs sinks. The OH oxidation of aldehydes and ketones was the most important source of the PNs precursors, PAs (peroxyacyl radicals), except for the thermal decomposition of PNs, which was further confirmed by the relative incremental reactivity (RIR) analysis. The model basically reproduced the observed ANs by the refinement of related mechanisms, with isoprene contributing to its formation by 29.2 %. The observed PNs and total oxidants (Ox = NO2 + O3) showed a good positive correlation, with a ratio of PNs to Ox of 0.079, indicating a strong suppression of PNs chemistry to ozone formation. The model quantified the suppression of PNs chemistry on the peak ozone production rate by 21.3 % on average and inhibited ozone formation up to 20 ppbv in total. The RIR analysis suggests that the production of both O3 and ANs was in the VOC-limited regime and highlights the importance of VOC control (especially aromatics) to mitigate photochemical pollution in Chengdu. The study deepens the understanding of photochemical pollution in urban areas of western China and further emphasizes the impacts of ONs chemistry on ozone pollution.
Collapse
Affiliation(s)
- Chunmeng Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, The State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Haichao Wang
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| | - Xiaorui Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, The State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Tianyu Zhai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, The State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xuefei Ma
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, The State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinping Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, The State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shiyi Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, The State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xin Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, The State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Limin Zeng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, The State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, The State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
2
|
Shrestha S, Yoon S, Erickson MH, Guo F, Mehra M, Bui AAT, Schulze BC, Kotsakis A, Daube C, Herndon SC, Yacovitch TI, Alvarez S, Flynn JH, Griffin RJ, Cobb GP, Usenko S, Sheesley RJ. Traffic, transport, and vegetation drive VOC concentrations in a major urban area in Texas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155861. [PMID: 35568171 DOI: 10.1016/j.scitotenv.2022.155861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
The population of Texas has increased rapidly in the past decade. The San Antonio Field Study (SAFS) was designed to investigate ozone (O3) production and precursors in this rapidly changing, sprawling metropolitan area. There are still many questions regarding the sources and chemistry of volatile organic compounds (VOCs) in urban areas like San Antonio which are affected by a complex mixture of industry, traffic, biogenic sources and transported pollutants. The goal of the SAFS campaign in May 2017 was to measure inorganic trace gases, VOCs, methane (CH4), and ethane (C2H6). The SAFS field design included two sites to better assess air quality across the metro area: an urban site (Traveler's World; TW) and a downwind/suburban site (University of Texas at San Antonio; UTSA). The results indicated that acetone (2.52 ± 1.17 and 2.39 ± 1.27 ppbv), acetaldehyde (1.45 ± 1.02 and 0.93 ± 0.45 ppbv) and isoprene (0.64 ± 0.49 and 1.21 ± 0.85 ppbv; TW and UTSA, respectively) were the VOCs with the highest concentrations. Additionally, positive matrix factorization showed three dominant factors of VOC emissions: biogenic, aged urban mixed source, and acetone. Methyl vinyl ketone and methacrolein (MVK + MACR) exhibited contributions from both secondary photooxidation of isoprene and direct emissions from traffic. The C2H6:CH4 demonstrated potential influence of oil and gas activities in San Antonio. Moreover, the high O3 days during the campaign were in the NOx-limited O3 formation regime and were preceded by evening peaks in select VOCs, NOx and CO. Overall, quantification of the concentration and trends of VOCs and trace gases in a major city in Texas offers vital information for general air quality management and supports strategies for reducing O3 pollution. The SAFS campaign VOC results will also add to the growing body of literature on urban sources and concentrations of VOCs in major urban areas.
Collapse
Affiliation(s)
- Sujan Shrestha
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Subin Yoon
- Department of Environmental Science, Baylor University, Waco, TX, USA; Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA
| | - Matthew H Erickson
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA; TerraGraphics Environmental Engineering, Pasco, WA, USA
| | - Fangzhou Guo
- Department of Civil and Environmental Engineering, Rice University, TX, USA
| | - Manisha Mehra
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Alexander A T Bui
- Department of Civil and Environmental Engineering, Rice University, TX, USA
| | - Benjamin C Schulze
- Department of Civil and Environmental Engineering, Rice University, TX, USA; Department of Environmental Science and Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Alexander Kotsakis
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA; Universities Space Research Association, NASA/GSFC, Columbia, MD, USA
| | | | | | | | - Sergio Alvarez
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA
| | - James H Flynn
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA
| | - Robert J Griffin
- Department of Civil and Environmental Engineering, Rice University, TX, USA
| | - George P Cobb
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Sascha Usenko
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | | |
Collapse
|
3
|
Ninneman M, Marto J, Shaw S, Edgerton E, Blanchard C, Schwab J. Reactive oxidized nitrogen speciation and partitioning in urban and rural New York State. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2021; 71:348-365. [PMID: 33395373 DOI: 10.1080/10962247.2020.1837289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 06/12/2023]
Abstract
This study examined reactive oxidized nitrogen (NOy) speciation and partitioning at one urban site, Queens College (QC) in New York City, and one rural site, Pinnacle State Park (PSP) in Addison, New York (NY) from September 2016 to August 2018 and June 2016 to September 2018, respectively. Oxides of nitrogen (NOx), nitric acid (HNO3), particle nitrate (pNO3), peroxy nitrates (PNs), alkyl nitrates (ANs), and NOy measurements were made at both sites. Across all seasons at QC, the median NOx, HNO3, pNO3, PNs, ANs, and NOy concentrations were 10.99, 0.49, 0.24, 0.62, 0.94, and 13.95 parts per billion (ppb), respectively. All-season median percent contributions of NOx, HNO3, pNO3, PNs, and ANs to the total NOy at QC were 77, 4, 2, 5, and 7%, respectively. Therefore, the sum of the individual NOy species (NOyi ≈ NOx + HNO3 + pNO3 + PNs + ANs) accounted for 95% of the total NOy at QC, which was well within measurement uncertainties. At PSP, the median NOx, HNO3, pNO3, PNs, ANs, and NOy concentrations were 0.65, 0.16, 0.12, 0.13, 0.18, and 1.56 ppb, respectively, over all seasons. The median percent contributions of NOx, HNO3, pNO3, PNs, and ANs to NOy over all seasons at PSP were 42, 10, 8, 9, and 12%, respectively. NOyi comprised 81% of NOy across all seasons at PSP, and deviations from 100% closure were generally within measurement uncertainties. Since both datasets yielded NOy budget closure results that were either fully or largely explained by the measurement uncertainties, the observed NOyi is likely representative of ambient NOy in urban and rural New York. The results have implications for understanding the fate of NOx emissions and their impact on local and regional air quality in urban and rural New York State.Implications: Continuous speciated and total reactive oxidized nitrogen (NOy) measurements were made in urban and rural New York from 2016 to 2018. Different NOy species have contrasting effects on the chemistry that impacts ozone (O3) and fine particulate matter (PM2.5) formation and concentrations. Since O3 and PM2.5 are regulated pollutants that have proven difficult to control, the results have implications for current and future air quality policy.
Collapse
Affiliation(s)
- Matthew Ninneman
- Atmospheric Sciences Research Center, State University of New York at Albany, Albany, NY, USA
| | - Joseph Marto
- Atmospheric Sciences Research Center, State University of New York at Albany, Albany, NY, USA
| | | | - Eric Edgerton
- Atmospheric Research & Analysis, Inc., Cary, NC, USA
| | | | - James Schwab
- Atmospheric Sciences Research Center, State University of New York at Albany, Albany, NY, USA
| |
Collapse
|
4
|
Millet DB, Alwe HD, Chen X, Deventer MJ, Griffis TJ, Holzinger R, Bertman SB, Rickly PS, Stevens PS, Léonardis T, Locoge N, Dusanter S, Tyndall GS, Alvarez SL, Erickson MH, Flynn JH. Bidirectional Ecosystem-Atmosphere Fluxes of Volatile Organic Compounds Across the Mass Spectrum: How Many Matter? ACS EARTH & SPACE CHEMISTRY 2018; 2:764-777. [PMID: 33615099 PMCID: PMC7894362 DOI: 10.1021/acsearthspacechem.8b00061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Terrestrial ecosystems are simultaneously the largest source and a major sink of volatile organic compounds (VOCs) to the global atmosphere, and these two-way fluxes are an important source of uncertainty in current models. Here, we apply high-resolution mass spectrometry (proton transfer reaction-quadrupole interface time-of-flight; PTR-QiTOF) to measure ecosystem-atmosphere VOC fluxes across the entire detected mass range (m/z 0-335) over a mixed temperate forest and use the results to test how well a state-of-science chemical transport model (GEOS-Chem CTM) is able to represent the observed reactive carbon exchange. We show that ambient humidity fluctuations can give rise to spurious VOC fluxes with PTR-based techniques and present a method to screen for such effects. After doing so, 377 of the 636 detected ions exhibited detectable gross fluxes during the study, implying a large number of species with active ecosystem-atmosphere exchange. We introduce the reactivity flux as a measure of how Earth-atmosphere fluxes influence ambient OH reactivity and show that the upward total VOC (∑VOC) carbon and reactivity fluxes are carried by a far smaller number of species than the downward fluxes. The model underpredicts the ∑VOC carbon and reactivity fluxes by 40-60% on average. However, the observed net fluxes are dominated (90% on a carbon basis, 95% on a reactivity basis) by known VOCs explicitly included in the CTM. As a result, the largest CTM uncertainties in simulating VOC carbon and reactivity exchange for this environment are associated with known rather than unrepresented species. This conclusion pertains to the set of species detectable by PTR-TOF techniques, which likely represents the majority in terms of carbon mass and OH reactivity, but not necessarily in terms of aerosol formation potential. In the case of oxygenated VOCs, the model severely underpredicts the gross fluxes and the net exchange. Here, unrepresented VOCs play a larger role, accounting for ~30% of the carbon flux and ~50% of the reactivity flux. The resulting CTM biases, however, are still smaller than those that arise from uncertainties for known and represented compounds.
Collapse
Affiliation(s)
- Dylan B. Millet
- University of Minnesota, Saint Paul, Minnesota 55108, United States
| | | | - Xin Chen
- University of Minnesota, Saint Paul, Minnesota 55108, United States
| | | | | | | | - Steven B. Bertman
- Western Michigan University, Kalamazoo, Michigan 49008, United States
| | | | | | - Thierry Léonardis
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l’Atmosphère et Génie de l’Environnement, 59000 Lille, France
| | - Nadine Locoge
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l’Atmosphère et Génie de l’Environnement, 59000 Lille, France
| | - Sébastien Dusanter
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l’Atmosphère et Génie de l’Environnement, 59000 Lille, France
| | - Geoffrey S. Tyndall
- National Center for Atmospheric Research, Boulder, Colorado 80305, United States
| | | | | | - James H. Flynn
- University of Houston, Houston, Texas 77004, United States
| |
Collapse
|
5
|
Ng NL, Brown SS, Archibald AT, Atlas E, Cohen RC, Crowley JN, Day DA, Donahue NM, Fry JL, Fuchs H, Griffin RJ, Guzman MI, Herrmann H, Hodzic A, Iinuma Y, Jimenez JL, Kiendler-Scharr A, Lee BH, Luecken DJ, Mao J, McLaren R, Mutzel A, Osthoff HD, Ouyang B, Picquet-Varrault B, Platt U, Pye HOT, Rudich Y, Schwantes RH, Shiraiwa M, Stutz J, Thornton JA, Tilgner A, Williams BJ, Zaveri RA. Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol. ATMOSPHERIC CHEMISTRY AND PHYSICS 2017; 17:2103-2162. [PMID: 30147712 PMCID: PMC6104845 DOI: 10.5194/acp-17-2103-2017] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry-climate models. This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models.
Collapse
Affiliation(s)
- Nga Lee Ng
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Steven S. Brown
- NOAA Earth System Research Laboratory, Chemical Sciences Division, Boulder, CO, USA
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| | | | - Elliot Atlas
- Department of Atmospheric Sciences, RSMAS, University of Miami, Miami, FL, USA
| | - Ronald C. Cohen
- Department of Chemistry, University of California at Berkeley, Berkeley, CA, USA
| | - John N. Crowley
- Max-Planck-Institut für Chemie, Division of Atmospheric Chemistry, Mainz, Germany
| | - Douglas A. Day
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - Neil M. Donahue
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Juliane L. Fry
- Department of Chemistry, Reed College, Portland, OR, USA
| | - Hendrik Fuchs
- Institut für Energie und Klimaforschung: Troposphäre (IEK-8), Forschungszentrum Jülich, Jülich, Germany
| | - Robert J. Griffin
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | | | - Hartmut Herrmann
- Atmospheric Chemistry Department, Leibniz Institute for Tropospheric Research, Leipzig, Germany
| | - Alma Hodzic
- Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, CO, USA
| | - Yoshiteru Iinuma
- Atmospheric Chemistry Department, Leibniz Institute for Tropospheric Research, Leipzig, Germany
| | - José L. Jimenez
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - Astrid Kiendler-Scharr
- Institut für Energie und Klimaforschung: Troposphäre (IEK-8), Forschungszentrum Jülich, Jülich, Germany
| | - Ben H. Lee
- Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
| | - Deborah J. Luecken
- National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jingqiu Mao
- Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA
- Geophysical Fluid Dynamics Laboratory/National Oceanic and Atmospheric Administration, Princeton, NJ, USA
| | - Robert McLaren
- Centre for Atmospheric Chemistry, York University, Toronto, Ontario, Canada
| | - Anke Mutzel
- Atmospheric Chemistry Department, Leibniz Institute for Tropospheric Research, Leipzig, Germany
| | - Hans D. Osthoff
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - Bin Ouyang
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Benedicte Picquet-Varrault
- Laboratoire Interuniversitaire des Systemes Atmospheriques (LISA), CNRS, Universities of Paris-Est Créteil and ì Paris Diderot, Institut Pierre Simon Laplace (IPSL), Créteil, France
| | - Ulrich Platt
- Institute of Environmental Physics, University of Heidelberg, Heidelberg, Germany
| | - Havala O. T. Pye
- National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute, Rehovot, Israel
| | - Rebecca H. Schwantes
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Manabu Shiraiwa
- Department of Chemistry, University of California Irvine, Irvine, CA, USA
| | - Jochen Stutz
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA, USA
| | - Joel A. Thornton
- Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
| | - Andreas Tilgner
- Atmospheric Chemistry Department, Leibniz Institute for Tropospheric Research, Leipzig, Germany
| | - Brent J. Williams
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Rahul A. Zaveri
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
6
|
Perring AE, Pusede SE, Cohen RC. An Observational Perspective on the Atmospheric Impacts of Alkyl and Multifunctional Nitrates on Ozone and Secondary Organic Aerosol. Chem Rev 2013; 113:5848-70. [DOI: 10.1021/cr300520x] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A. E. Perring
- Department
of Chemistry, and ‡Department of Earth and Planetary Sciences, University of California Berkeley, Berkeley, California
94720, United States
| | - S. E. Pusede
- Department
of Chemistry, and ‡Department of Earth and Planetary Sciences, University of California Berkeley, Berkeley, California
94720, United States
| | - R. C. Cohen
- Department
of Chemistry, and ‡Department of Earth and Planetary Sciences, University of California Berkeley, Berkeley, California
94720, United States
| |
Collapse
|
7
|
Pyle JA, Warwick N, Yang X, Young PJ, Zeng G. Climate/chemistry feedbacks and biogenic emissions. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2007; 365:1727-40. [PMID: 17513263 DOI: 10.1098/rsta.2007.2041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The oxidizing capacity of the atmosphere is affected by anthropogenic emissions and is projected to change in the future. Model calculations indicate that the change in surface ozone at some locations could be large and have significant implications for human health. The calculations depend on the precise scenarios used for the anthropogenic emissions and on the details of the feedback processes included in the model. One important factor is how natural biogenic emissions will change in the future. We carry out a sensitivity calculation to address the possible increase in isoprene emissions consequent on increased surface temperature in a future climate. The changes in ozone are significant but depend crucially on the background chemical regime. In these calculations, we find that increased isoprene will increase ozone in the Northern Hemisphere but decrease ozone in the tropics. We also consider the role of bromine compounds in tropospheric chemistry and consider cases where, in a future climate, the impact of bromine could change.
Collapse
Affiliation(s)
- John A Pyle
- National Centre for Atmospheric Science, University of Cambridge, Cambridge, UK.
| | | | | | | | | |
Collapse
|
8
|
Horowitz LW, Fiore AM, Milly GP, Cohen RC, Perring A, Wooldridge PJ, Hess PG, Emmons LK, Lamarque JF. Observational constraints on the chemistry of isoprene nitrates over the eastern United States. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007747] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Wu S, Mickley LJ, Jacob DJ, Logan JA, Yantosca RM, Rind D. Why are there large differences between models in global budgets of tropospheric ozone? ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007801] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Patchen AK, Pennino MJ, Kiep AC, Elrod MJ. Direct kinetics study of the product-forming channels of the reaction of isoprene-derived hydroxyperoxy radicals with NO. INT J CHEM KINET 2007. [DOI: 10.1002/kin.20248] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Giacopelli P. Comparison of the measured and simulated isoprene nitrate distributions above a forest canopy. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2004jd005123] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Grossenbacher JW. A comparison of isoprene nitrate concentrations at two forest-impacted sites. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003jd003966] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Rosen RS. Observations of total alkyl nitrates during Texas Air Quality Study 2000: Implications for O3and alkyl nitrate photochemistry. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003jd004227] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Affiliation(s)
- Keren Treves
- Department of Environmental Sciences, Weizmann Institute, Rehovot 76100, Israel
| | - Yinon Rudich
- Department of Environmental Sciences, Weizmann Institute, Rehovot 76100, Israel
| |
Collapse
|
15
|
|
16
|
Hayden KL. Partitioning of reactive atmospheric nitrogen oxides at an elevated site in southern Quebec, Canada. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2002jd003188] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Day DA, Wooldridge PJ, Dillon MB, Thornton JA, Cohen RC. A thermal dissociation laser-induced fluorescence instrument for in situ detection of NO2, peroxy nitrates, alkyl nitrates, and HNO3. ACTA ACUST UNITED AC 2002. [DOI: 10.1029/2001jd000779] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- D. A. Day
- Department of Chemistry; University of California; Berkeley California USA
| | - P. J. Wooldridge
- Department of Chemistry; University of California; Berkeley California USA
| | - M. B. Dillon
- Department of Chemistry; University of California; Berkeley California USA
| | - J. A. Thornton
- Department of Chemistry; University of California; Berkeley California USA
| | - R. C. Cohen
- Department of Chemistry; University of California; Berkeley California USA
| |
Collapse
|
18
|
Carroll MA, Bertman SB, Shepson PB. Overview of the Program for Research on Oxidants: PHotochemistry, Emissions, and Transport (PROPHET) summer 1998 measurements intensive. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2001jd900189] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Thornberry T, Carroll MA, Keeler GJ, Sillman S, Bertman SB, Pippin MR, Ostling K, Grossenbacher JW, Shepson PB, Cooper OR, Moody JL, Stockwell WR. Observations of reactive oxidized nitrogen and speciation of NOyduring the PROPHET summer 1998 intensive. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2000jd900760] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Ostling K, Kelly B, Bird S, Bertman S, Pippin M, Thornberry T, Carroll MA. Fast-turnaround alkyl nitrate measurements during the PROPHET 1998 summer intensive. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2001jd900094] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Hurst JM, Barket DJ, Herrera-Gomez O, Couch TL, Shepson PB, Faloona I, Tan D, Brune W, Westberg H, Lamb B, Biesenthal T, Young V, Goldstein A, Munger JW, Thornberry T, Carroll MA. Investigation of the nighttime decay of isoprene. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2000jd900727] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|