1
|
Elm J. Clusteromics II: Methanesulfonic Acid-Base Cluster Formation. ACS OMEGA 2021; 6:17035-17044. [PMID: 34250361 PMCID: PMC8264942 DOI: 10.1021/acsomega.1c02115] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/11/2021] [Indexed: 05/21/2023]
Abstract
The role of methanesulfonic acid (MSA) in atmospheric new particle formation remains highly uncertain. Using state-of-the-art computational methods, we study the electrically neutral (MSA)0-2(base)0-2 clusters, with base = ammonia (A), methylamine (MA), dimethylamine (DMA), trimethylamine (TMA), and ethylenediamine (EDA). The cluster configurations are obtained using the ABCluster program and the number of initial cluster configurations is reduced based on PM7 calculations. Thermochemical parameters are calculated using the quasi-harmonic approximation based on the ωB97X-D/6-31++G(d,p) cluster structures and vibrational frequencies. The single point energies are calculated at the DLPNO-CCSD(T0)/aug-cc-pVTZ level of theory. We find that MSA shows a different interaction pattern with the bases compared to sulfuric acid and does not simply follow the basicity of the bases for these small clusters. In all cases, we find that the MSA-base clusters show very low cluster formation potential, indicating that electrically neutral clusters consisting solely of MSA as the clustering acid are most likely not capable of forming and growing under realistic atmospheric conditions.
Collapse
Affiliation(s)
- Jonas Elm
- Department of Chemistry and
iClimate, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
2
|
Rosati B, Christiansen S, Wollesen de Jonge R, Roldin P, Jensen MM, Wang K, Moosakutty SP, Thomsen D, Salomonsen C, Hyttinen N, Elm J, Feilberg A, Glasius M, Bilde M. New Particle Formation and Growth from Dimethyl Sulfide Oxidation by Hydroxyl Radicals. ACS EARTH & SPACE CHEMISTRY 2021; 5:801-811. [PMID: 33889792 PMCID: PMC8054244 DOI: 10.1021/acsearthspacechem.0c00333] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 05/30/2023]
Abstract
Dimethyl sulfide (DMS) is produced by plankton in oceans and constitutes the largest natural emission of sulfur to the atmosphere. In this work, we examine new particle formation from the primary pathway of oxidation of gas-phase DMS by OH radicals. We particularly focus on particle growth and mass yield as studied experimentally under dry conditions using the atmospheric simulation chamber AURA. Experimentally, we show that aerosol mass yields from oxidation of 50-200 ppb of DMS are low (2-7%) and that particle growth rates (8.2-24.4 nm/h) are comparable with ambient observations. An HR-ToF-AMS was calibrated using methanesulfonic acid (MSA) to account for fragments distributed across both the organic and sulfate fragmentation table. AMS-derived chemical compositions revealed that MSA was always more dominant than sulfate in the secondary aerosols formed. Modeling using the Aerosol Dynamics, gas- and particle-phase chemistry kinetic multilayer model for laboratory CHAMber studies (ADCHAM) indicates that the Master Chemical Mechanism gas-phase chemistry alone underestimates experimentally observed particle formation and that DMS multiphase and autoxidation chemistry is needed to explain observations. Based on quantum chemical calculations, we conclude that particle formation from DMS oxidation in the ambient atmosphere will most likely be driven by mixed sulfuric acid/MSA clusters clustering with both amines and ammonia.
Collapse
Affiliation(s)
- Bernadette Rosati
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, Vienna AT-1090, Austria
| | - Sigurd Christiansen
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | | | - Pontus Roldin
- Division
of Nuclear Physics, Lund University, P.O. Box 118, Lund SE-221
00, Sweden
| | - Mads Mørk Jensen
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | - Kai Wang
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | - Shamjad P. Moosakutty
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
- Clean Combustion
Research Center, King Abdullah University
of Science and Technology, Thuwal KSA-23955, Saudi Arabia
| | - Ditte Thomsen
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | - Camilla Salomonsen
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | - Noora Hyttinen
- Nano
and Molecular Systems Research Unit, University
of Oulu, P.O. Box 3000, Oulu FI-90014, Finland
- Department
of Applied Physics, University of Eastern
Finland, P.O. Box 1627, Kuopio FI-70211, Finland
| | - Jonas Elm
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | - Anders Feilberg
- Department
of Biological and Chemical Engineering, Aarhus University, Finlandsgade
12, Aarhus N DK-8200, Denmark
| | - Marianne Glasius
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | - Merete Bilde
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| |
Collapse
|
3
|
Zhao F, Feng YJ, Liu YR, Jiang S, Huang T, Wang ZH, Xu CX, Huang W. Enhancement of Atmospheric Nucleation by Highly Oxygenated Organic Molecules: A Density Functional Theory Study. J Phys Chem A 2019; 123:5367-5377. [PMID: 31199633 DOI: 10.1021/acs.jpca.9b03142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
New particle formation (NPF) by gas-particle conversion is the main source of atmospheric aerosols. Highly oxygenated organic molecules (HOMs) and sulfuric acid (SA) are important NPF participants. 2-Methylglyceric acid (MGA), a kind of HOMs, is a tracer of isoprene-derived secondary organic aerosols. The nucleation mechanisms of MGA with SA were studied using density functional theory and atmospheric cluster dynamics simulation in this study, along with that of MGA with methanesulfonic acid (MSA) as a comparison. Our theoretical works indicate that the (MGA)(SA) and (MGA)(MSA) clusters are the most stable ones in the (MGA) i(SA) j ( i = 1-2, j = 1-2) and (MGA) i(MSA) j ( i = 1-2, j = 1-2) clusters, respectively. Both the formation rates of (MGA)(SA) and (MGA)(MSA) clusters are quite large and could have significant contributions to NPF. The results imply that the homomolecular nucleation of MGA is unlikely to occur in the atmosphere, and MGA and SA can effectively contribute to heteromolecular nucleation mainly in the form of heterodimers. MSA exhibits properties similar to SA in its ability to form clusters with MGA but is slightly weaker than SA.
Collapse
Affiliation(s)
- Feng Zhao
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics , Chinese Academy of Sciences , Hefei , Anhui 230031 , China.,School of Information Science and Technology , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Ya-Juan Feng
- School of Information Science and Technology , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Yi-Rong Liu
- School of Information Science and Technology , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Shuai Jiang
- School of Information Science and Technology , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Teng Huang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics , Chinese Academy of Sciences , Hefei , Anhui 230031 , China
| | - Zi-Hang Wang
- School of Information Science and Technology , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Cai-Xin Xu
- School of Information Science and Technology , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Wei Huang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics , Chinese Academy of Sciences , Hefei , Anhui 230031 , China.,School of Information Science and Technology , University of Science and Technology of China , Hefei , Anhui 230026 , China.,Center for Excellent in Urban Atmospheric Environment, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen , Fujian 361021 , China
| |
Collapse
|
4
|
Chen H, Finlayson-Pitts BJ. New Particle Formation from Methanesulfonic Acid and Amines/Ammonia as a Function of Temperature. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:243-252. [PMID: 27935699 DOI: 10.1021/acs.est.6b04173] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Previous studies have shown that methanesulfonic acid (MSA) reacts with amines and ammonia to form particles, which is expected to be particularly important in coastal and agricultural areas. We present the first systematic study of temperature dependence of particle formation from the reactions of MSA with trimethylamine (TMA), dimethylamine (DMA), methylamine (MA), and ammonia over the range of 21-28 °C and 0.4-5.9 s in a flow reactor under dry conditions and in the presence of 3 × 1017 cm-3 water vapor. Overall activation energies (Eoverall) for particle formation calculated from the dependence of rates of particle formation on temperature for all of these bases are negative. The negative Eoverall is interpreted in terms of reverse reactions that decompose intermediate clusters in competition with the forward reactions that grow the clusters into particles. The average values of Eoverall for the formation of detectable particles are: TMA, -(168 ± 19) kcal mol-1; DMA, -(134 ± 30) kcal mol-1; MA, -(68 ± 23) kcal mol-1; NH3, -(110 ± 16) kcal mol-1 (±1σ). The strong inverse dependence of particle formation with temperature suggests that particle formation may not decline proportionally with concentrations of MSA and amines if temperature also decreases, for example at higher altitudes or in winter.
Collapse
Affiliation(s)
- Haihan Chen
- Department of Chemistry, University of California, Irvine , Irvine, California 92697, United States
| | | |
Collapse
|
5
|
Kulmala M, Petäjä T, Ehn M, Thornton J, Sipilä M, Worsnop D, Kerminen VM. Chemistry of Atmospheric Nucleation: On the Recent Advances on Precursor Characterization and Atmospheric Cluster Composition in Connection with Atmospheric New Particle Formation. Annu Rev Phys Chem 2014; 65:21-37. [DOI: 10.1146/annurev-physchem-040412-110014] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- M. Kulmala
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland;
| | - T. Petäjä
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland;
| | - M. Ehn
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland;
- Institute for Energy and Climate Research (IEK-8), 52425 Jülich, Germany
| | - J. Thornton
- Department of Atmospheric Sciences, University of Washington, Seattle, Washington 98195
| | - M. Sipilä
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland;
| | - D.R. Worsnop
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland;
- Aerodyne Research, Inc., Billerica, Massachusetts 01821
| | - V.-M. Kerminen
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland;
| |
Collapse
|
6
|
Nishino N, Arquero KD, Dawson ML, Finlayson-Pitts BJ. Infrared studies of the reaction of methanesulfonic acid with trimethylamine on surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 48:323-330. [PMID: 24304088 DOI: 10.1021/es403845b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Organosulfur compounds generated from a variety of biological as well as anthropogenic sources are oxidized in air to form sulfuric acid and methanesulfonic acid (MSA). Both of these acids formed initially in the gas phase react with ammonia and amines in air to form and grow new particles, which is important for visibility, human health and climate. A competing sink is deposition on surfaces in the boundary layer. However, relatively little is known about reactions after they deposit on surfaces. We report here diffuse reflectance infrared Fourier transform spectrometry (DRIFTS) studies of the reaction of MSA with trimethylamine (TMA) on a silicon powder at atmospheric pressure in synthetic air and at room temperature, either in the absence or in the presence of water vapor. In both cases, DRIFTS spectra of the product surface species are essentially the same as the transmission spectrum obtained for trimethylaminium methanesulfonate, indicating the formation of the salt on the surface with a lower limit to the reaction probability of γ > 10(-6). To the best of our knowledge, this is the first infrared study to demonstrate this chemistry from the heterogeneous reaction of MSA with an amine on a surface. This heterogeneous chemistry appears to be sufficiently fast that it could impact measurements of gas-phase amines through reactions with surface-adsorbed acids on sampling lines and inlets. It could also represent an additional sink for amines in the boundary layer, especially at night when the gas-phase reactions of amines with OH radical and ozone are minimized.
Collapse
Affiliation(s)
- Noriko Nishino
- Department of Chemistry, University of California , Irvine, California, 92697-2025, United States
| | | | | | | |
Collapse
|
7
|
Rempillo O, Seguin AM, Norman AL, Scarratt M, Michaud S, Chang R, Sjostedt S, Abbatt J, Else B, Papakyriakou T, Sharma S, Grasby S, Levasseur M. Dimethyl sulfide air-sea fluxes and biogenic sulfur as a source of new aerosols in the Arctic fall. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011jd016336] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Liu X. Global modeling of aerosol dynamics: Model description, evaluation, and interactions between sulfate and nonsulfate aerosols. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2004jd005674] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Shon ZH, Kim KH, Bower KN, Lee G, Kim J. Assessment of the photochemistry of OH and NO3 on Jeju Island during the Asian-dust-storm period in the spring of 2001. CHEMOSPHERE 2004; 55:1127-1142. [PMID: 15050810 DOI: 10.1016/j.chemosphere.2003.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2002] [Revised: 07/22/2003] [Accepted: 10/02/2003] [Indexed: 05/24/2023]
Abstract
In this study, we examined the influence of the long-range transport of dust particles and air pollutants on the photochemistry of OH and NO3 on Jeju Island, Korea (33.17 degrees N, 126.10 degrees E) during the Asian-dust-storm (ADS) period of April 2001. Three ADS events were observed during the periods of April 10-12, 13-14, and 25-26. Average concentration levels of daytime OH and nighttime NO3 on Jeju Island during the ADS period were estimated to be about 1x10(6) and 2x10(8) moleculescm(-3) ( approximately 9 pptv), respectively. OH levels during the ADS period were lower than those during the non-Asian-dust-storm (NADS) period by a factor of 1.5. This was likely to result from higher CO levels and the significant loading of dust particles, reducing the photolysis frequencies of ozone. Decreases in NO3 levels during the ADS period was likely to be determined mainly by the enhancement of the N2O5 heterogeneous reaction on dust aerosol surfaces. Averaged over 24 h, the reaction between HO2 and NO was the most important source of OH during the study period, followed by ozone photolysis, which contributed more than 95% of the total source. The reactions with CO, NO2, and non-methane hydrocarbons (NMHCs) during the study period were major sinks for OH. The reaction of N2O5 on aerosol surfaces was a more important sink for nighttime NO3 during the ADS due to the significant loading of dust particles. The reaction of NO3 with NMHCs and the gas-phase reaction of N2O5 with water vapor were both significant loss mechanisms during the study period, especially during the NADS. However, dry deposition of these oxidized nitrogen species and a heterogeneous reaction of NO3 were of no importance.
Collapse
Affiliation(s)
- Zang-Ho Shon
- Department of Environmental Engineering, Dong-Eui University, Busanjingu Gayadong San 24, Busan 614-714, South Korea.
| | | | | | | | | |
Collapse
|
10
|
Affiliation(s)
- Dwayne E Heard
- Department of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| | | |
Collapse
|
11
|
Cantrell CA, Edwards GD, Stephens S, Mauldin L, Kosciuch E, Zondlo M, Eisele F. Peroxy radical observations using chemical ionization mass spectrometry during TOPSE. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2002jd002715] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christopher A. Cantrell
- Atmospheric Chemistry Division National Center for Atmospheric Research Boulder Colorado USA
| | - G. D. Edwards
- Atmospheric Chemistry Division National Center for Atmospheric Research Boulder Colorado USA
| | - S. Stephens
- Atmospheric Chemistry Division National Center for Atmospheric Research Boulder Colorado USA
| | - L. Mauldin
- Atmospheric Chemistry Division National Center for Atmospheric Research Boulder Colorado USA
| | - E. Kosciuch
- Atmospheric Chemistry Division National Center for Atmospheric Research Boulder Colorado USA
| | - M. Zondlo
- Atmospheric Chemistry Division National Center for Atmospheric Research Boulder Colorado USA
- Now at Southwest Sciences, Inc., Santa Fe, New Mexico, USA
| | - F. Eisele
- Georgia Institute of Technology Atlanta Georgia USA
| |
Collapse
|
12
|
Mauldin RL. Highlights of OH, H2SO4, and methane sulfonic acid measurements made aboard the NASA P-3B during Transport and Chemical Evolution over the Pacific. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2003jd003410] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Cantrell CA. Steady state free radical budgets and ozone photochemistry during TOPSE. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2002jd002198] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Evans MJ. Coupled evolution of BrOx-ClOx-HOx-NOxchemistry during bromine-catalyzed ozone depletion events in the arctic boundary layer. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2002jd002732] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
15
|
Atlas EL. The Tropospheric Ozone Production about the Spring Equinox (TOPSE) Experiment: Introduction. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2002jd003172] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Emmons LK. Budget of tropospheric ozone during TOPSE from two chemical transport models. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2002jd002665] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|