1
|
Wei C, Zhao P, Wang Y, Wang Y, Mo S, Zhou Y. Aerosol influence on cloud macrophysical and microphysical properties over the Tibetan Plateau and its adjacent regions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30174-30195. [PMID: 38600373 DOI: 10.1007/s11356-024-33247-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
This study uses aerosol optical depth (AOD) and cloud properties data to investigate the influence of aerosol on the cloud properties over the Tibetan Plateau and its adjacent regions. The study regions are divided as the western part of the Tibetan Plateau (WTP), the Indo-Gangetic Plain (IGP), and the Sichuan Basin (SCB). All three regions show significant cloud effects under low aerosol loading conditions. In WTP, under low aerosol loading conditions, the effective radius of liquid cloud particles (LREF) decreases with the increase of aerosol loading, while the effective radius of ice cloud particles (IREF) and cloud top height (CTH) increase during the cold season. Increased aerosol loading might inhibit the development of warm rain processes, transporting more cloud droplets above the freezing level and promoting ice cloud development. During the warm season, under low aerosol loading conditions, both the cloud microphysical (LREF and IREF) and macrophysical (cloud top height and cloud fraction) properties increase with the increase of aerosol loading, likely due to higher dust aerosol concentration in this region. In IGP, both LREF and IREF increase with the increase in aerosol loading during the cold season. In SCB, LREF increases with the increase in aerosol loading, while IREF decreases, possibly due to the higher hygroscopic aerosol concentration in the SCB during the cold season. Meteorological conditions also modulate the aerosol-cloud interaction. Under different convective available potential energy (CAPE) and relative humidity (RH) conditions, the influence of aerosol on clouds varies in the three regions. Under low CAPE and RH conditions, the relationship between LREF and aerosol in both the cold and warm seasons is opposite in the WTP: LREF decreases with the increase of aerosol in the cold season, while it increases in the warm season. This discrepancy may be attributed to a difference in the moisture condition between the cold and warm seasons in this region. In general, the influence of aerosols on cloud properties in TP and its adjacent regions is characterized by significant nonlinearity and spatial variability, which is likely related to the differences in aerosol types and meteorological conditions between different regions.
Collapse
Affiliation(s)
- Chengqiang Wei
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, Chengdu Plain Urban Meteorology and Environment Observation and Research Station of Sichuan Province, College of Atmospheric Science, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Pengguo Zhao
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, Chengdu Plain Urban Meteorology and Environment Observation and Research Station of Sichuan Province, College of Atmospheric Science, Chengdu University of Information Technology, Chengdu, 610225, China.
| | - Yuting Wang
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, Chengdu Plain Urban Meteorology and Environment Observation and Research Station of Sichuan Province, College of Atmospheric Science, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Yuan Wang
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, Chengdu Plain Urban Meteorology and Environment Observation and Research Station of Sichuan Province, College of Atmospheric Science, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Shuying Mo
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, Chengdu Plain Urban Meteorology and Environment Observation and Research Station of Sichuan Province, College of Atmospheric Science, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Yunjun Zhou
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, Chengdu Plain Urban Meteorology and Environment Observation and Research Station of Sichuan Province, College of Atmospheric Science, Chengdu University of Information Technology, Chengdu, 610225, China
| |
Collapse
|
2
|
Xiong R, Li J, Zhang Y, Zhang L, Jiang K, Zheng H, Kong S, Shen H, Cheng H, Shen G, Tao S. Global brown carbon emissions from combustion sources. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 12:100201. [PMID: 36157345 PMCID: PMC9500369 DOI: 10.1016/j.ese.2022.100201] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 05/06/2023]
Abstract
Light-absorbing organic carbon (OC), sometimes known as Brown Carbon (BrC), has been recognized as an important fraction of carbonaceous aerosols substantially affecting radiative forcing. This study firstly developed a bottom-up estimate of global primary BrC, and discussed its spatiotemporal distribution and source contributions from 1960 to 2010. The global total primary BrC emission from both natural and anthropogenic sources in 2010 was 7.26 (5.98-8.93 as an interquartile range) Tg, with 43.5% from anthropogenic sources. High primary BrC emissions were in regions such as Africa, South America, South and East Asia with natural sources (wild fires and deforestation) contributing over 70% in the former two regions, while in East Asia, anthropogenic sources, especially residential solid fuel combustion, accounted for over 80% of the regional total BrC emissions. Globally, the historical trend was mainly driven by anthropogenic sources, which increased from 1960 to 1990 and then started to decline. Residential emissions significantly impacted on emissions and temporal trends that varied by region. In South and Southeast Asia, the emissions increased obviously due to population growth and a slow transition from solid fuels to clean modern energies in the residential sector. It is estimated that in primary OC, the global average was about 20% BrC, but this ratio varied from 13% to 47%, depending on sector and region. In areas with high residential solid fuel combustion emissions, the ratio was generally twice the value in other areas. Uncertainties in the work are associated with the concept of BrC and measurement technologies, pointing to the need for more studies on BrC analysis and quantification in both emissions and the air.
Collapse
Affiliation(s)
- Rui Xiong
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jin Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yuanzheng Zhang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Lu Zhang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Ke Jiang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Huang Zheng
- Department of Environmental Science and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Shaofei Kong
- Department of Environmental Science and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Huizhong Shen
- School of Environmental Sciences and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hefa Cheng
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Guofeng Shen
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Shu Tao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
- School of Environmental Sciences and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
3
|
Verma S, Ramana MV, Kumar R. Atmospheric rivers fueling the intensification of fog and haze over Indo-Gangetic Plains. Sci Rep 2022; 12:5139. [PMID: 35332243 PMCID: PMC8948212 DOI: 10.1038/s41598-022-09206-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/15/2022] [Indexed: 11/09/2022] Open
Abstract
Indo-Gangetic Plains (IGP) experiences persistent and widespread rise of fog and haze during the winter season. This has been attributed to the rise in pollution levels and water vapor, but the reason for enhancement in latter is not clear yet. We detect moisture incursion from Arabian Sea, a phenomenon called atmospheric rivers (AR), land-falling intermittently along 12-25° N corridor of the west-coast of India during winter; using satellite and reanalysis data. The total vertically integrated horizontal water vapor transport in AR-landfalls ranging from 0.7 × 108 to 2.2 × 108 kg/s; nearly five-orders of magnitude larger than the average discharge of liquid water from Indus River into Arabian Sea. These AR events are playing prominent role in enhancing water vapor over IGP region by 19 ± 5%; in turn fueling the intensification of fog and haze through aerosol-water vapor interaction. We found that AR events enhanced aerosol optical depths over IGP by about 29 ± 13%. The progression of moist-laden winds in ARs onto Himalayan Mountains contributes to the precipitation that explains the observed rise in the extreme flow of western Himalayan Rivers in winter. We conclude that these ARs likely contribute to the decline of snow albedo as pollution-mixed-ARs encounter Hindukush-Karakoram-Himalayan mountain region.
Collapse
Affiliation(s)
- Shivali Verma
- Land and Atmospheric Physics Division, Earth and Climate Science Area (ECSA), National Remote Sensing Centre (NRSC), Indian Space Research Organization (ISRO), Balanagar, Hyderabad, 500 037, India.
| | - Muvva V Ramana
- Land and Atmospheric Physics Division, Earth and Climate Science Area (ECSA), National Remote Sensing Centre (NRSC), Indian Space Research Organization (ISRO), Balanagar, Hyderabad, 500 037, India
| | - Raj Kumar
- Land and Atmospheric Physics Division, Earth and Climate Science Area (ECSA), National Remote Sensing Centre (NRSC), Indian Space Research Organization (ISRO), Balanagar, Hyderabad, 500 037, India
| |
Collapse
|
4
|
Characterization and Source Discovery of Wintertime Fog on Coastal Island, Bangladesh. ATMOSPHERE 2022. [DOI: 10.3390/atmos13030497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An extensive chemical investigation of fog water’s chemical composition, as well as source characterization, were carried out during the winter season (December to February) at an outflow location (Bhola, Bangladesh) of the Indo-Gangetic Plain (IGP). Characterization of the source involved correlational analysis, enrichment factor analysis, estimation of percentage sources, and air mass trajectory analysis. The average pH of fog water in Bhola was found to be 7.03 ± 0.02, demonstrating that acid-neutralizing components were successful in neutralizing acidifying species. The concentrations of the water-soluble ions were determined, and they were in the following order: Ca2+ > NO3− > Cl− > Na+ > SO42− > NH4+ > Mg2+ > K+ > F− > HCO3−. Of the six trace elements (Fe, Zn, Mn, Cu, Ni, Cr, Pb) that were analyzed, Zn ions were found in the highest concentration, followed by Mn ions. Neutralization factor analysis showed that the key neutralization components of fog-water were Ca2+ and NH4+. Enrichment factor (EF) calculation revealed the anthropogenic origin of NO3−, SO42−, Zn, Mn, and Cu. The percentage source contributions of NO3− (99.74%), SO42− (84.02%), and Cl− (8.30%) further support the anthropogenic origin. Backward air mass trajectory analysis was performed using the NOAA-HYSPLIT model. Long-range transport of contaminants over the IGP area was found to have a profound impact on the chemical composition of fog on the Bhola coast. This research has provided novel findings for the chemical characterization of fog water and the detection of its source at IGP outflow, and highlighted the anthropogenic contributions to local air pollution, as well as the transboundary influence on local air quality.
Collapse
|
5
|
Banerjee S, Padmakumari B. Spatiotemporal variability and evolution of day and night winter fog over the Indo Gangetic Basin using INSAT-3D and comparison with surface visibility and aerosol optical depth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140962. [PMID: 32738683 DOI: 10.1016/j.scitotenv.2020.140962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Every year during the peak winter months (December-January), dense and prolonged fog envelops the Indo-Gangetic Basin (IGB) over the Indian sub-continent leading to economic loss. Many efforts are being made to understand its characteristics to improve forecasting skills. In the present work Indian National SATellite (INSAT-3D), a geostationary satellite, retrieved fog data available at every 30 min interval throughout the day and night is used to study its evolution, spatial and temporal variability for the winter months of December 2016 and January 2017 in conjunction with surface measurements. Fog data when compared with ground-based horizontal visibility over different stations in IGB showed good relationship, also depicted similar temporal variability in tune with the favorable meteorological parameters of temperature, relative humidity, and wind speed. It is observed that INSAT-3D captured fog very well for visibility ranging from 0 to 500 m representing very dense, dense, and moderate fog, while, the shallow fog with visibility >600 m is captured occasionally. From the maps of spatial and temporal variability of fog, the regions most affected are identified based on fog duration. The intense fog events covering the entire IGB for long duration are observed mostly in the midnight (00:00-04:00) and early morning (04:00-08:00) hours (local time) of December as compared to January. While in January, moderate intense fog spans the entire IGB during day time also. Due to increase in pollution levels, including biomass burning as inferred from MODIS fire counts, and stable atmosphere, high aerosol optical depths (AOD) are observed across IGB. The high AOD regions (> 0.8) covering central and west IGB, are also the hotspot regions of fog/smog onset and slowly expand over a larger area and intensify.
Collapse
Affiliation(s)
- Shravani Banerjee
- Department of Geoinformatics, Central University of Jharkhand, Ranchi 834205, India
| | - B Padmakumari
- Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune 411008, India.
| |
Collapse
|
6
|
Rahman MM, Begum BA, Hopke PK, Nahar K, Thurston GD. Assessing the PM 2.5 impact of biomass combustion in megacity Dhaka, Bangladesh. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114798. [PMID: 32559884 PMCID: PMC9581344 DOI: 10.1016/j.envpol.2020.114798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/26/2020] [Accepted: 05/09/2020] [Indexed: 05/05/2023]
Abstract
In Dhaka, Bangladesh, fine particulate matter (PM2.5) air pollution shows strong seasonal trends, with significantly higher mean concentrations during winter than during the monsoon (winter = 178.1 μg/m3 vs. monsoon = 30.2 μg/m3). Large-scale open burning of post-harvest agricultural waste across the Indo-Gangetic Plain is a major source of PM2.5 air pollution in northern India during the non-monsoon period. This study evaluates the extent to which the seasonal differences in PM2.5 pollution concentrations in Dhaka are accounted for by biomass-burning vs. fossil-fuel combustion sources. To assess this, an index was developed based on elemental potassium (K) as a marker for biomass particulate matter, after adjusting for soil-associated K contributions. Alternatively, particulate sulfur was employed as a tracer index for fossil-fuel combustion PM2.5. By simultaneously regressing total PM2.5 on S and adjusted K, the PM2.5 mass for each day was apportioned into: 1) fossil-fuels combustion associated PM2.5; 2) biomass-burning associated PM2.5; and, 3) all other PM2.5. The results indicated that fossil-fuel combustion contributed 21.6% (19.5 μg/m3), while biomass contributed 40.2% (36.3 μg/m3) of overall average PM2.5 from September 2013 to December 2017. However, the mean source contributions varied by season: PM2.5 in Dhaka during the monsoon season was dominated by fossil-fuels sources (44.3%), whereas PM2.5 mass was dominated by biomass-burning (41.4%) during the remainder of the year. The contribution to PM2.5 and each of its source components by transport of pollution into Dhaka during non-monsoon time was also evaluated by: 1) Conditional bivariate (CBPF) and pollution rose plots; 2) Concentration weighted trajectories (CWT), and; 3) NASA satellite photos to identify aerosol loading and fire locations on high pollution days. The collective evidence indicates that, while the air pollution in Dhaka is contributed to by both local and transboundary sources, the highest pollution days were dominated by biomass-related PM2.5, during periods of crop-burning in the Indo-Gangetic Plain.
Collapse
Affiliation(s)
- Md Mostafijur Rahman
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA.
| | | | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Kamrun Nahar
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - George D Thurston
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
7
|
Spatiotemporal Trends of Aerosols over Urban Regions in Pakistan and Their Possible Links to Meteorological Parameters. ATMOSPHERE 2020. [DOI: 10.3390/atmos11030306] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aerosol optical depth (AOD) has become one of the most crucial parameters for climate change assessment on regional and global scales. The present study investigates trends in AOD using long-term data derived from moderate resolution imaging spectro-radiometer (MODIS) over twelve regions in Pakistan. Different statistical tests are used to assess the annual and seasonal trends in AOD. Results reveal increasing AOD trends over most of the selected regions with an obvious increase over the north and northeastern parts of the study area. Annually, increasing trends (0.0002–0.0047 year−1) were observed over seven regions, with three being statistically significant. All the selected regions experience increasing AOD trends during the winter season with six being statistically significant while during the summer season seven regions experience increasing AOD trends and the remaining five exhibit the converse with two being statistically significant. The changes in the sign and magnitude of AOD trends have been attributed to prevailing meteorological conditions. The decreasing rainfall and increasing temperature trends mostly support the increasing AOD trend over the selected regions. The high/low AOD phases during the study period may be ascribed to the anomalies in mid-tropospheric relative humidity and wind fields. The summer season is generally characterized by high AOD with peak values observed over the regions located in central plains, which can be attributed to the dense population and enhanced concentration of industrial and vehicular emissions over this part of the study area. The results derived from the present study give an insight into aerosol trends and could form the basis for aerosol-induced climate change assessment over the study area.
Collapse
|
8
|
Adhikari S, Mahapatra PS, Pokheral CP, Puppala SP. Cookstove Smoke Impact on Ambient Air Quality and Probable Consequences for Human Health in Rural Locations of Southern Nepal. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E550. [PMID: 31952226 PMCID: PMC7014065 DOI: 10.3390/ijerph17020550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/23/2019] [Accepted: 12/26/2019] [Indexed: 11/23/2022]
Abstract
Residential emission from traditional biomass cookstoves is a major source of indoor and outdoor air pollution in developing countries. However, exact quantification of the contribution of biomass cookstove emissions to outdoor air is still lacking. In order to address this gap, we designed a field study to estimate the emission factors of PM2.5 (particulate matter of less than 2.5 µ diameter) and BC (black carbon) indoors, from cookstove smoke using biomass fuel and with smoke escaping outdoors from the roof of the house. The field study was conducted in four randomly selected households in two rural locations of southern Nepal during April 2017. In addition, real-time measurement of ambient PM2.5 was performed for 20 days during the campaign in those two rural sites and one background location to quantify the contribution of cooking-related emissions to the ambient PM2.5. Emission factor estimates indicate that 66% of PM2.5 and 80% of BC emissions from biomass cookstoves directly escape into ambient air. During the cooking period, ambient PM2.5 concentrations in the rural sites were observed to be 37% higher than in the nearby background location. Based on the World Health Organization (WHO)'s AirQ+ model simulation, this 37% rise in ambient PM2.5 during cooking hours can lead to approximately 82 cases of annual premature deaths among the rural population of Chitwan district.
Collapse
Affiliation(s)
- Sagar Adhikari
- International Centre for Integrated Mountain Development (ICIMOD), G.P.O. Box 3226, Kathmandu 44700, Nepal; (S.A.); (P.S.M.)
| | - Parth Sarathi Mahapatra
- International Centre for Integrated Mountain Development (ICIMOD), G.P.O. Box 3226, Kathmandu 44700, Nepal; (S.A.); (P.S.M.)
| | | | - Siva Praveen Puppala
- International Centre for Integrated Mountain Development (ICIMOD), G.P.O. Box 3226, Kathmandu 44700, Nepal; (S.A.); (P.S.M.)
| |
Collapse
|
9
|
Chaliyakunnel S, Millet DB, Chen X. Constraining Emissions of Volatile Organic Compounds Over the Indian Subcontinent Using Space-Based Formaldehyde Measurements. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2019; 124:10525-10545. [PMID: 33614368 PMCID: PMC7894393 DOI: 10.1029/2019jd031262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/26/2019] [Indexed: 06/11/2023]
Abstract
India is an air pollution mortality hot spot, but regional emissions are poorly understood. We present a high-resolution nested chemical transport model (GEOS-Chem) simulation for the Indian subcontinent and use it to interpret formaldehyde (HCHO) observations from two satellite sensors (OMI and GOME-2A) in terms of constraints on regional volatile organic compound (VOC) emissions. We find modeled biogenic VOC emissions to be overestimated by ~30-60% for most locations and seasons, and derive a best estimate biogenic flux of 16 Tg C/year subcontinent-wide for year 2009. Terrestrial vegetation provides approximately half the total VOC flux in our base-case inversions (full uncertainty range: 44-65%). This differs from prior understanding, in which biogenic emissions represent >70% of the total. Our derived anthropogenic VOC emissions increase slightly (13-16% in the base case, for a subcontinent total of 15 Tg C/year in 2009) over RETRO year 2000 values, with some larger regional discrepancies. The optimized anthropogenic emissions agree well with the more recent CEDS inventory, both subcontinent-wide (within 2%) and regionally. An exception is the Indo-Gangetic Plain, where we find an underestimate for both RETRO and CEDS. Anthropogenic emissions thus constitute 37-50% of the annual regional VOC source in our base-case inversions and exceed biogenic emissions over the Indo-Gangetic Plain, West India, and South India, and over the entire subcontinent during winter and post-monsoon. Fires are a minor fraction (<7%) of the total regional VOC source in the prior and optimized model. However, evidence suggests that VOC emissions in the fire inventory used here (GFEDv4) are too low over the Indian subcontinent.
Collapse
Affiliation(s)
- Sreelekha Chaliyakunnel
- Department of Soil, Water, and Climate, University of Minnesota, Twin Cities, St. Paul, MN, USA
| | - Dylan B Millet
- Department of Soil, Water, and Climate, University of Minnesota, Twin Cities, St. Paul, MN, USA
| | - Xin Chen
- Department of Soil, Water, and Climate, University of Minnesota, Twin Cities, St. Paul, MN, USA
| |
Collapse
|
10
|
Dumka UC, Tiwari S, Kaskaoutis DG, Soni VK, Safai PD, Attri SD. Aerosol and pollutant characteristics in Delhi during a winter research campaign. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:3771-3794. [PMID: 30539401 DOI: 10.1007/s11356-018-3885-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/27/2018] [Indexed: 05/05/2023]
Abstract
Urban areas in developing countries are major sources of carbonaceous aerosols and air pollutants, pointing out the need for a detailed assessment of their levels and origin close to the source. A multi-instrument research campaign was performed in Delhi during December 2015-February 2016 aimed at exploring the pollution levels and the contribution of various sources to particulate matter (PM) concentrations, black carbon (BC) aerosols, and trace gases. The weak winds (< 5-6 m s-1) along with the shallow boundary layer favoured the formation of thick and persistent fog conditions, which along with the high BC (24.4 ± 12.2 μg m-3) concentrations lead to the formation of smog. Very high pollution levels were recorded during the campaign, with mean PM10, PM2.5, CO, NO, and O3 concentrations of 245.5 ± 109.8 μg m-3, 145.5 ± 69.5 μg m-3, 1.7 ± 0.5 ppm, 7.9 ± 2.3 ppb, and 31.3 ± 18.4 ppb, respectively. This study focuses on examining the daily/diurnal cycles of the aerosol optical properties (extinction, scattering, absorption coefficients, single scattering albedo), as well as of PM and other pollutant concentrations, along with changes in meteorology (mixing-layer height and wind speed). In addition, the hot-spot pollution sources in the greater Delhi area were determined via bivariate plots and conditional bivariate probability function (CBPF), while the distant sources were examined via the concentration weighted trajectory (CWT) analysis. The results show that the highest aerosol absorption and scattering coefficients, PM, and trace gas concentrations are detected for weak winds (< 2 m s-1) with a preference for eastern directions, revealing high contribution from local sources and accumulation of pollutants within urban Delhi.
Collapse
Affiliation(s)
- Umesh C Dumka
- Aryabhatta Research Institute of Observational Sciences, Nainital, 263 001, India.
| | - Suresh Tiwari
- Indian Institute of Tropical Meteorology, New Delhi Branch, New Delhi, 110 060, India
| | - Dimitris G Kaskaoutis
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 118 10, Athens, Greece
| | - Vijay K Soni
- Indian Metrological Department, Lodhi Road, New Delhi, 110 003, India
| | - Promod D Safai
- Indian Institute of Tropical Meteorology, Pune, 411 008, India
| | - Shiv D Attri
- Indian Metrological Department, Lodhi Road, New Delhi, 110 003, India
| |
Collapse
|
11
|
A sixfold rise in concurrent day and night-time heatwaves in India under 2 °C warming. Sci Rep 2018; 8:16922. [PMID: 30446705 PMCID: PMC6240077 DOI: 10.1038/s41598-018-35348-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/05/2018] [Indexed: 11/09/2022] Open
Abstract
Heatwaves with severe impacts have increased and projected to become more frequent under warming climate in India. Concurrent day and nighttime heatwaves can exacerbate human discomfort causing high morbidity and mortality; however, their changes in the observed and projected climate remain unrecognized. Here using observations and model simulations from climate of 20th century plus (C20C+) detection and attribution (D&A) and coupled model intercomparison project 5 (CMIP5) projects, we show that 1 and 3-day concurrent hot day and hot night (CHDHN) events have significantly increased during the observed climate in India. Our results show that the anthropogenic emissions contribute considerably to the increase of 1 and 3-day CHDHN events in India. The frequency of 3-day CHDHN events is projected to increase 12-fold of the current level by the end of 21st century and 4-fold by the mid 21st century under the high emission pathway of RCP 8.5. The increase in 3-day CHDHN events can be limited to only 2-fold by the end of 21st century under low emission scenario of RCP 2.6. One and 3-day CHDHN events are projected to increase by 4, 6, and 8 folds of the current level in India under the 1.5, 2, and 3 °C warming worlds, respectively. Restricting global mean temperature below 1.5° from the pre-industrial level can substantially reduce the risk of 1 and 3-day CHDHN events and associated implications in India.
Collapse
|
12
|
Development of a Regression Model for Estimating Daily Radiative Forcing Due to Atmospheric Aerosols from Moderate Resolution Imaging Spectrometers (MODIS) Data in the Indo Gangetic Plain (IGP). ATMOSPHERE 2018. [DOI: 10.3390/atmos9100405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The assessment of direct radiative forcing due to atmospheric aerosols (ADRF) in the Indo Gangetic Plain (IGP), which is a food basket of south Asia, is important for measuring the effect of atmospheric aerosols on the terrestrial ecosystem and for assessing the effect of aerosols on crop production in the region. Existing comprehensive analytical models to estimate ADRF require a large number of input parameters and high processing time. In this context, here, we develop a simple model to estimate daily ADRF at any location on the surface of the IGP through multiple regressions of AErosol RObotic NETwork (AERONET) aerosol optical depth (AOD) and atmospheric water vapour using data from 2002 to 2015 at 10 stations in the IGP. The goodness of fit of the model is indicated by an adjusted R2 value of 0.834. The Jackknife method of deleting one group (station data) was employed to cross validate and study the stability of the regression model. It was found to be robust with an adjusted R2 fluctuating between 0.813 and 0.842. In order to use the year-round ADRF model for locations beyond the AERONET stations in the IGP, AOD, and atmospheric water vapour products from MODIS Aqua and Terra were compared against AERONET station data and they were found to be similar. Using MODIS Aqua and Terra products as input, the year-round ADRF regression was evaluated at the IGP AERONET stations and found to perform well with Pearson correlation coefficients of 0.66 and 0.65, respectively. Using ADRF regression model with MODIS inputs allows for the estimation of ADRF across the IGP for assessing the aerosol impact on ecosystem and crop production.
Collapse
|
13
|
Tiwari S, Kaskaoutis D, Soni VK, Dev Attri S, Singh AK. Aerosol columnar characteristics and their heterogeneous nature over Varanasi, in the central Ganges valley. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:24726-24745. [PMID: 29923051 DOI: 10.1007/s11356-018-2502-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
The Indo-Gangetic Basin (IGB) experiences one of the highest aerosol loading over the globe with pronounced inter-/intra-seasonal variability. Four-year (January 2011-December 2014) continuous MICROTOPS-II sun-photometer measurements at Varanasi, central Ganges valley, provide an opportunity to investigate the aerosol physical and optical properties and their variability. A large variation in aerosol optical depth (AOD: from 0.23 to 1.89, mean of 0.82 ± 0.31) and Ångström exponent (AE: from 0.19 to 1.44, mean of 0.96 ± 0.27) is observed, indicating a highly turbid atmospheric environment with significant heterogeneity in aerosol sources, types and optical properties. The highest seasonal means of both AOD and AE are observed in the post-monsoon (October-November) season (0.95 ± 0.31 for AOD and 1.16 ± 0.14 for AE) followed by winter (December, January, February; 0.97 ± 0.34 for AOD and 1.09 ± 0.20 for AE) and are mainly attributed to the accumulation of aerosols from urban and biomass/crop residue burning emissions within a shallow boundary layer. In contrast, during the pre-monsoon and monsoon seasons, the aerosols are mostly coming from natural origin (desert and mineral dust) mixed with pollution in several cases. The spectral dependence of AE, the aerosol "curvature" effect and other graphical techniques are used for the identification of the aerosol types and their mixing processes in the atmosphere. Furthermore, the aerosol source-apportionment assessment using the weighted potential source contribution function (WPSCF) analysis reveals the different aerosol types, emission sources and transport pathways.
Collapse
Affiliation(s)
- Shani Tiwari
- Atmospheric Research Laboratory, Department of Physics, Banaras Hindu University, Varanasi, 221005, India
- Present Address: Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
| | - Dimitris Kaskaoutis
- Atmospheric Research Team, Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 11810, Athens, Greece
| | | | - Shiv Dev Attri
- India Meteorological Department, New Delhi, 110001, India
| | - Abhay Kumar Singh
- Atmospheric Research Laboratory, Department of Physics, Banaras Hindu University, Varanasi, 221005, India.
- DST-Mahamana Centre of Excellence in Climate Change Research, B.H.U, Varanasi, 221005, India.
| |
Collapse
|
14
|
Mor V, Dhankhar R, Attri SD, Soni VK, Sateesh M, Taneja K. Assessment of aerosols optical properties and radiative forcing over an Urban site in North-Western India. ENVIRONMENTAL TECHNOLOGY 2017; 38:1232-1244. [PMID: 27564392 DOI: 10.1080/09593330.2016.1221473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
The present work is aimed to analyze aerosols optical properties and to estimate aerosol radiative forcing (ARF) from January to December 2013, using sky radiometer data over Rohtak, an urban site in North-Western India. The results reveal strong wavelength dependency of aerosol optical depth (AOD), with high values of AOD at shorter wavelengths and lower values at longer wavelength during the study period. The highest AOD values of 1.07 ± 0.45 at 500 nm were observed during July. A significant decline in Ångström exponent was observed during April-May, which represents the dominance of coarse mode particles due to dust-raising convective activities. Aerosols' size distribution exhibits a bimodal structure with fine mode particles around 0.17 µm and coarse mode particles with a radius around 5.28 µm. Single scattering albedo values were lowest during November-December at all wavelengths, ranging from 0.87 to 0.76, which corresponds to the higher absorption during this period. Aerosols optical properties retrieved during observation period are used as input for SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer) to estimate the direct ARF at the surface, in the atmosphere and at the top of the atmosphere (TOA). The ARF at the TOA, surface and in the atmosphere are found to be in the range of -4.98 to -19.35 W m-2, -8.01 to -57.66 W m-2 and +3.02 to +41.64 W m-2, respectively. The averaged forcing for the whole period of observations at the TOA is -11.26 W m-2, while at the surface it is -38.64 W m-2, leading to atmospheric forcing of 27.38 W m-2. The highest (1.168 K day-1) values of heating rate was estimated during November, whereas the lowest value (0.084 K day-1) was estimated for the February.
Collapse
Affiliation(s)
- Vikram Mor
- a Department of Environment Science , Maharshi Dayanand University , Rohtak , India
| | - Rajesh Dhankhar
- a Department of Environment Science , Maharshi Dayanand University , Rohtak , India
| | - S D Attri
- b India Meteorological Department , Ministry of Earth Sciences , New Delhi , India
| | - V K Soni
- b India Meteorological Department , Ministry of Earth Sciences , New Delhi , India
| | - M Sateesh
- b India Meteorological Department , Ministry of Earth Sciences , New Delhi , India
| | - Kanika Taneja
- b India Meteorological Department , Ministry of Earth Sciences , New Delhi , India
| |
Collapse
|
15
|
Black carbon solar absorption suppresses turbulence in the atmospheric boundary layer. Proc Natl Acad Sci U S A 2016; 113:11794-11799. [PMID: 27702889 DOI: 10.1073/pnas.1525746113] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The introduction of cloud condensation nuclei and radiative heating by sunlight-absorbing aerosols can modify the thickness and coverage of low clouds, yielding significant radiative forcing of climate. The magnitude and sign of changes in cloud coverage and depth in response to changing aerosols are impacted by turbulent dynamics of the cloudy atmosphere, but integrated measurements of aerosol solar absorption and turbulent fluxes have not been reported thus far. Here we report such integrated measurements made from unmanned aerial vehicles (UAVs) during the CARDEX (Cloud Aerosol Radiative Forcing and Dynamics Experiment) investigation conducted over the northern Indian Ocean. The UAV and surface data reveal a reduction in turbulent kinetic energy in the surface mixed layer at the base of the atmosphere concurrent with an increase in absorbing black carbon aerosols. Polluted conditions coincide with a warmer and shallower surface mixed layer because of aerosol radiative heating and reduced turbulence. The polluted surface mixed layer was also observed to be more humid with higher relative humidity. Greater humidity enhances cloud development, as evidenced by polluted clouds that penetrate higher above the top of the surface mixed layer. Reduced entrainment of dry air into the surface layer from above the inversion capping the surface mixed layer, due to weaker turbulence, may contribute to higher relative humidity in the surface layer during polluted conditions. Measurements of turbulence are important for studies of aerosol effects on clouds. Moreover, reduced turbulence can exacerbate both the human health impacts of high concentrations of fine particles and conditions favorable for low-visibility fog events.
Collapse
|
16
|
Tiwari S, Tiwari S, Hopke PK, Attri SD, Soni VK, Singh AK. Variability in optical properties of atmospheric aerosols and their frequency distribution over a mega city "New Delhi," India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:8781-93. [PMID: 26810661 DOI: 10.1007/s11356-016-6060-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/05/2016] [Indexed: 05/27/2023]
Abstract
The role of atmospheric aerosols in climate and climate change is one of the largest uncertainties in understanding the present climate and in capability to predict future climate change. Due to this, the study of optical properties of atmospheric aerosols over a mega city "New Delhi" which is highly polluted and populated were conducted for two years long to see the aerosol loading and its seasonal variability using sun/sky radiometer data. Relatively higher mean aerosol optical depth (AOD) (0.90 ± 0.38) at 500 nm and associated Angstrom exponent (AE) (0.82 ± 0.35) for a pair of wavelength 400-870 nm is observed during the study period indicating highly turbid atmosphere throughout the year. Maximum AOD value is observed in the months of June and November while minimum is in transition months March and September. Apart from this, highest value of AOD (AE) value is observed in the post-monsoon [1.00 ± 0.42 (1.02 ± 0.16)] season followed by the winter [0.95 ± 0.36 (1.02 ± 0.20)] attributed to significance contribution of urban as well as biomass/crop residue burning aerosol which is further confirmed by aerosol type discrimination based on AOD vs AE. During the pre-monsoon season, mostly dust and mixed types aerosols are dominated. AODs value at shorter wavelength observed maximum in June and November while at longer wavelength maximum AOD is observed in June only. For the better understanding of seasonal aerosol modification process, the aerosol curvature effect is studied which show a strong seasonal dependency under a high turbid atmosphere, which are mainly associated with various emission sources. Five days air mass back trajectories were computed. They suggest different patterns of particle transport during the different seasons. Results suggest that mixtures of aerosols are present in the urban environment, which affect the regional air quality as well as climate. The present study will be very much useful to the modeler for validation of satellite data with observed data during estimation of radiative effect.
Collapse
Affiliation(s)
- S Tiwari
- Atmospheric Research Laboratory, Department of Physics, Banaras Hindu University, Varanasi, India
| | - Suresh Tiwari
- Indian Institute of Tropical Meteorology (New Delhi Branch), Prof Ramnath Vij Marg, New Delhi, 110060, India
| | - P K Hopke
- CARES, Clarkson University, Box 5708, Potsdam, NY, 13699-5708, USA
| | - S D Attri
- India Meteorological Department, New Delhi, 110001, India
| | - V K Soni
- India Meteorological Department, New Delhi, 110001, India
| | - Abhay Kumar Singh
- Atmospheric Research Laboratory, Department of Physics, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
17
|
Yu X, Kumar KR, Lü R, Ma J. Changes in column aerosol optical properties during extreme haze-fog episodes in January 2013 over urban Beijing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 210:217-226. [PMID: 26735167 DOI: 10.1016/j.envpol.2015.12.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
Several dense haze-fog (HF) episodes were occurred in the North China Plain (NCP), especially over Beijing in January 2013 characterized by a long duration, a large influential region, and an extremely high PM2.5 values (>500 μg m(-3)). In this study, we present the characteristics of aerosol optical properties and radiative forcing using Cimel sun-sky radiometer measurements during HF and no haze-fog (NHF) episodes occurred over Beijing during 1-31 January, 2013. The respective maximum values of daily mean aerosol optical depth at 440 nm (AOD440) were observed to be 1.21, 1.43, 1.52, and 2.21 occurred on 12, 14 19, and 28 January. It was found that the Ångström exponent (AE) values were almost higher than 1.0 during all the days with its maximum on 26 January (1.53), suggests the dominance of fine-mode particles. The maximum (minimum) aerosol volume size distributions occurred during dense HF (NHF) days with larger particle volumes of fine-mode. The single scattering albedo, asymmetry parameter, and complex refractive index values during HF events suggest the abundance of fine-mode particles from anthropogenic (absorbing) activities mixed with scattering dust particles. The average shortwave direct aerosol radiative forcing (DARF) values at the bottom-of-atmosphere (BOA) during HF and NHF days were estimated to be 112.29 ± 42.18 W m(-2) and -58.61 ± 13.09 W m(-2), while at the top-of-atmosphere (TOA) the forcing values were -45.78 ± 22.17 W m(-2) and -18.64 ± 5.84 W m(-2), with the corresponding heating rate of 1.61 ± 0.48 K day(-1) and 1.12 ± 0.31 K day(-1), respectively. The DARF values retrieved from the AERONET were in good agreement with the SBDART computed both at the TOA (r = 0.95) and the BOA (r = 0.97) over Beijing in January 2013.
Collapse
Affiliation(s)
- Xingna Yu
- Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu province, China
| | - K Raghavendra Kumar
- Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu province, China.
| | - Rui Lü
- Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu province, China
| | - Jia Ma
- Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu province, China
| |
Collapse
|
18
|
Boreddy SKR, Kawamura K, Bikkina S, Sarin MM. Hygroscopic growth of particles nebulized from water-soluble extracts of PM2.5 aerosols over the Bay of Bengal: Influence of heterogeneity in air masses and formation pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 544:661-669. [PMID: 26688049 DOI: 10.1016/j.scitotenv.2015.11.164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 11/27/2015] [Accepted: 11/29/2015] [Indexed: 06/05/2023]
Abstract
Hygroscopic properties of water-soluble matter (WSM) extracted from fine-mode aerosols (PM2.5) in the marine atmospheric boundary layer of the Bay of Bengal (BoB) have been investigated during a cruise from 27th December 2008 to 30th January 2009. Hygroscopic growth factors were measured on particles generated from the WSM using an H-TDMA system with an initial dry size of 100 nm in the range of 5-95% relative humidity (RH). The measured hygroscopic growth of WSM at 90% RH, g(90%)WSM, were ranged from 1.11 to 1.74 (mean: 1.43 ± 0.19) over the northern BoB and 1.12 to 1.38 (mean: 1.25 ± 0.09) over the southern BoB. A key finding is that distinct hygroscopic growth factors are associated with the air masses from the Indo-Gangetic plains (IGP), which are clearly distinguishable from those associated with air masses from Southeast Asia (SEA). We found higher (lower) g(90%)WSM over the northern (southern) BoB, which were associated with an IGP (SEA) air masses, probably due the formation of high hygroscopic salts such as (NH4)2SO4. On the other hand, biomass burning influenced SEA air masses confer the low hygroscopic salts such as K2SO4, MgSO4, and organic salts over the southern BoB. Interestingly, mass fractions of water-soluble organic matter (WSOM) showed negative and positive correlations with g(90%)WSM over the northern and southern BoB, respectively, suggesting that the mixing state of organic and inorganic fractions could play a major role on the g(90%)WSM over the BoB. Further, WSOM/SO4(2-) mass ratios suggest that SO4(2-) dominates the g(90%)WSM over the northern BoB whereas WSOM fractions were important over the southern BoB. The present study also suggests that aging process could significantly alter the hygroscopic growth of aerosol particles over the BoB, especially over the southern BoB.
Collapse
Affiliation(s)
- S K R Boreddy
- Institute of Low Temperature Science, Hokkaido University, N19, W8, Kita-Ku, Sapporo 060-0819, Japan
| | - Kimitaka Kawamura
- Institute of Low Temperature Science, Hokkaido University, N19, W8, Kita-Ku, Sapporo 060-0819, Japan.
| | - Srinivas Bikkina
- Institute of Low Temperature Science, Hokkaido University, N19, W8, Kita-Ku, Sapporo 060-0819, Japan
| | - M M Sarin
- Physical Research Laboratory, Ahmedabad 380 009, India
| |
Collapse
|
19
|
Tiwari S, Pipal AS, Hopke PK, Bisht DS, Srivastava AK, Tiwari S, Saxena PN, Khan AH, Pervez S. Study of the carbonaceous aerosol and morphological analysis of fine particles along with their mixing state in Delhi, India: a case study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:10744-10757. [PMID: 25758418 DOI: 10.1007/s11356-015-4272-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/23/2015] [Indexed: 06/04/2023]
Abstract
Because of high emissions of anthropogenic as well as natural particles over the Indo-Gangetic Plains (IGP), it is important to study the characteristics of fine (PM2.5) and inhalable particles (PM10), including their morphology, physical and chemical characteristics, etc., in Delhi during winter 2013. The mean mass concentrations of fine (PM2.5) and inhalable (PM10) (continuous) was 117.6 ± 79.1 and 191.0 ± 127.6 μg m(-3), respectively, whereas the coarse mode (PM10-2.5) particle PM mass was 73.38 ± 28.5 μg m(-3). During the same period, offline gravimetric monitoring of PM2.5 was conducted for morphological analysis, and its concentration was ~37 % higher compared to the continuous measurement. Carbonaceous PM such as organic carbon (OC) and elemental carbon (EC) were analyzed on the collected filters, and their mean concentration was respectively 33.8 and 4.0 μg m(-3) during the daytime, while at night it was 41.2 and 10.1 μg m(-3), respectively. The average OC/EC ratio was 8.97 and 3.96 during the day and night, respectively, indicating the formation of secondary organic aerosols during daytime. Effective carbon ratio was studied to see the effect of aerosols on climate, and its mean value was 0.52 and 1.79 during night and day, indicating the dominance of absorbing and scattering types of aerosols respectively into the atmosphere over the study region. Elemental analysis of individual particles indicates that Si is the most abundant element (~37-90 %), followed by O (oxide) and Al. Circularity and aspect ratio was studied, which indicates that particles are not perfectly spherical and not elongated in any direction. Trajectory analysis indicated that in the months of February and March, air masses appear to be transported from the Middle Eastern part along with neighboring countries and over Thar Desert region, while in January it was from the northeast direction which resulted in high concentrations of fine particles.
Collapse
Affiliation(s)
- S Tiwari
- Indian Institute of Tropical Meteorology, New Delhi, India, 110060
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ram K, Sarin MM. Atmospheric carbonaceous aerosols from Indo-Gangetic Plain and Central Himalaya: impact of anthropogenic sources. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 148:153-163. [PMID: 25199599 DOI: 10.1016/j.jenvman.2014.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 07/03/2014] [Accepted: 08/15/2014] [Indexed: 06/03/2023]
Abstract
In the present-day scenario of growing anthropogenic activities, carbonaceous aerosols contribute significantly (∼20-70%) to the total atmospheric particulate matter mass and, thus, have immense potential to influence the Earth's radiation budget and climate on a regional to global scale. In addition, formation of secondary organic aerosols is being increasingly recognized as an important process in contributing to the air-pollution and poor visibility over urban regions. It is, thus, essential to study atmospheric concentrations of carbonaceous species (EC, OC and WSOC), their mixing state and absorption properties on a regional scale. This paper presents the comprehensive data on emission sources, chemical characteristics and optical properties of carbonaceous aerosols from selected urban sites in the Indo-Gangetic Plain (IGP) and from a high-altitude location in the central Himalaya. The mass concentrations of OC, EC and WSOC exhibit large spatio-temporal variability in the IGP. This is attributed to seasonally varying emissions from post-harvest agricultural-waste burning, their source strength, boundary layer dynamics and secondary aerosol formation. The high concentrations of OC and SO4(2-), and their characteristic high mass scattering efficiency, contribute significantly to the aerosol optical depth and scattering coefficient. This has implications to the assessment of single scattering albedo and aerosol radiative forcing on a regional scale.
Collapse
Affiliation(s)
- Kirpa Ram
- Physical Research Laboratory, Ahmedabad 380009, India; Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221 005, India.
| | - M M Sarin
- Physical Research Laboratory, Ahmedabad 380009, India.
| |
Collapse
|
21
|
Verma S, Payra S, Gautam R, Prakash D, Soni M, Holben B, Bell S. Dust events and their influence on aerosol optical properties over Jaipur in Northwestern India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2013; 185:7327-42. [PMID: 23397540 DOI: 10.1007/s10661-013-3103-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 01/16/2013] [Indexed: 05/04/2023]
Abstract
In this study, we systematically document the link between dust episodes and local scale regional aerosol optical properties over Jaipur located in the vicinity of Thar Desert in the northwestern state of Rajasthan. The seasonal variation of AOT(500 nm) (aerosol optical thickness) shows high values (0.51 ± 0.18) during pre-monsoon (dust dominant) season while low values (0.36 ± 0.14) are exhibited during winter. The Ångström wavelength exponent has been found to exhibit low value (<0.25) indicating relative dominance of coarse-mode particles during pre-monsoon season. The AOT increased from 0.36 (Aprilmean) to 0.575 (May-June(mean)). Consequently, volume concentration range increases from April through May-June followed by a sharp decline in July during the first active phase of the monsoon. Significantly high dust storms were observed over Jaipur as indicated by high values of single scattering albedo (SSA(440 nm) = 0.89, SSA(675 nm) = 0.95, SSA870 nm = 0.97, SSA(1,020 nm) = 0.976) than the previously reported values over IGP region sites. The larger SSA values (more scattering aerosol), especially at longer wavelengths, is due to the abundant dust loading, and is attributed to the measurement site's proximity to the Thar Desert. The mean and standard deviation in SSA and asymmetry parameter during pre-monsoon season over Jaipur is 0.938 ± 0.023 and 0.712 ± 0.017 at 675 nm wavelength, respectively. Back-trajectory air mass simulations suggest Thar Desert in northwestern India as the primary source of high aerosols dust loading over Jaipur region as well as contribution by long-range transport from the Arabian Peninsula and Middle East gulf regions, during pre-monsoon season.
Collapse
Affiliation(s)
- Sunita Verma
- Centre of Excellence in Climatology, Birla Institute of Technology Mesra, Extension Centre Jaipur, Jaipur, 302017 Rajasthan, India.
| | | | | | | | | | | | | |
Collapse
|
22
|
Mahapatra PS, Ray S, Das N, Mohanty A, Ramulu TS, Das T, Chaudhury GR, Das SN. Urban air-quality assessment and source apportionment studies for Bhubaneshwar, Odisha. THEORETICAL AND APPLIED CLIMATOLOGY 2013; 112:243-251. [DOI: 10.1007/s00704-012-0732-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
23
|
Kaskaoutis DG, Gautam R, Singh RP, Houssos EE, Goto D, Singh S, Bartzokas A, Kosmopoulos PG, Sharma M, Hsu NC, Holben BN, Takemura T. Influence of anomalous dry conditions on aerosols over India: Transport, distribution and properties. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd017314] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Eck TF, Holben BN, Reid JS, Giles DM, Rivas MA, Singh RP, Tripathi SN, Bruegge CJ, Platnick S, Arnold GT, Krotkov NA, Carn SA, Sinyuk A, Dubovik O, Arola A, Schafer JS, Artaxo P, Smirnov A, Chen H, Goloub P. Fog- and cloud-induced aerosol modification observed by the Aerosol Robotic Network (AERONET). ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016839] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Nair VS, Solmon F, Giorgi F, Mariotti L, Babu SS, Moorthy KK. Simulation of South Asian aerosols for regional climate studies. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016711] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Gautam R, Hsu NC, Lau KM. Premonsoon aerosol characterization and radiative effects over the Indo-Gangetic Plains: Implications for regional climate warming. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010jd013819] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Oshima N, Koike M, Zhang Y, Kondo Y. Aging of black carbon in outflow from anthropogenic sources using a mixing state resolved model: 2. Aerosol optical properties and cloud condensation nuclei activities. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd011681] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Kar J, Jones DBA, Drummond JR, Attié JL, Liu J, Zou J, Nichitiu F, Seymour MD, Edwards DP, Deeter MN, Gille JC, Richter A. Measurement of low-altitude CO over the Indian subcontinent by MOPITT. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009362] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Pandithurai G, Dipu S, Dani KK, Tiwari S, Bisht DS, Devara PCS, Pinker RT. Aerosol radiative forcing during dust events over New Delhi, India. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2008jd009804] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|