1
|
Jakubek RS, Corpolongo A, Bhartia R, Morris RV, Uckert K, Asher SA, Burton AS, Fries MD, Hand K, Hug WF, Lee C, McCubbin FM, Scheller EL, Sharma S, Siljeström S, Steele A. Spectral Background Calibration of Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) Spectrometer Onboard the Perseverance Rover Enables Identification of a Ubiquitous Martian Spectral Component. APPLIED SPECTROSCOPY 2024:37028241280081. [PMID: 39359239 DOI: 10.1177/00037028241280081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The Perseverance rover landed at Jezero crater, Mars, on 18 February 2021, with a payload of scientific instruments to examine Mars' past habitability, look for signs of past life, and process samples for future return to Earth. The instrument payload includes the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) deep ultraviolet Raman and fluorescence imaging spectrometer designed to detect, characterize, and map the presence of organics and minerals on the Martian surface. Operation and engineering constraints sometimes result in the acquisition of spectra with features near the detection limit. It is therefore important to separate instrumental (background) spectral components and spectral components inherent to Martian surface materials. For SHERLOC, the instrumental background is assessed by collecting spectra in the stowed-arm configuration where the instrument is pointed at the Martian nighttime sky with no surface sample present in its optical path. These measurements reveal weak Raman and fluorescence background spectral signatures as well as charged-coupled device pixels prone to erroneous intensity spikes separate from cosmic rays. We quantitatively describe these features and provide a subtraction procedure to remove the spectral background from surface spectra. By identifying and accounting for the SHERLOC Raman background features within the median Raman spectra of Martian target scans, we find that the undefined silicate spectral feature interpreted to be either amorphous silicate or plagioclase feldspar is ubiquitously found in every Mars target Raman scan collected through Sol 751.
Collapse
Affiliation(s)
| | - Andrea Corpolongo
- Department of Geology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Rohit Bhartia
- Photon Systems Incorporated, Covina, California, USA
| | | | - Kyle Uckert
- Jet Propulsion Laboratory, California Institution of Technology, Pasadena, California, USA
| | - Sanford A Asher
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | - Kevin Hand
- Jet Propulsion Laboratory, California Institution of Technology, Pasadena, California, USA
| | - William F Hug
- Photon Systems Incorporated, Covina, California, USA
| | - Carina Lee
- Jacobs JETS II, Texas State University, NASA Johnson Space Center, Houston, Texas, USA
| | | | - Eva L Scheller
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Sunanda Sharma
- Jet Propulsion Laboratory, California Institution of Technology, Pasadena, California, USA
| | | | - Andrew Steele
- Carnegie Institute of Washington, Washington, DC, USA
| |
Collapse
|
2
|
Fraeman AA, Johnson JR, Arvidson RE, Rice MS, Wellington DF, Morris RV, Fox VK, Horgan BHN, Jacob SR, Salvatore MR, Sun VZ, Pinet P, Bell JF, Wiens RC, Vasavada AR. Synergistic Ground and Orbital Observations of Iron Oxides on Mt. Sharp and Vera Rubin Ridge. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2020; 125:e2019JE006294. [PMID: 33042722 PMCID: PMC7539960 DOI: 10.1029/2019je006294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 05/04/2023]
Abstract
Visible/short-wave infrared spectral data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) show absorptions attributed to hematite at Vera Rubin ridge (VRR), a topographic feature on northwest Mt. Sharp. The goals of this study are to determine why absorptions caused by ferric iron are strongly visible from orbit at VRR and to improve interpretation of CRISM data throughout lower Mt. Sharp. These goals are achieved by analyzing coordinated CRISM and in situ spectral data along the Curiosity Mars rover's traverse. VRR bedrock within areas that have the deepest ferric absorptions in CRISM data also has the deepest ferric absorptions measured in situ. This suggests strong ferric absorptions are visible from orbit at VRR because of the unique spectral properties of VRR bedrock. Dust and mixing with basaltic sand additionally inhibit the ability to measure ferric absorptions in bedrock stratigraphically below VRR from orbit. There are two implications of these findings: (1) Ferric absorptions in CRISM data initially dismissed as noise could be real, and ferric phases are more widespread in lower Mt. Sharp than previously reported. (2) Patches with the deepest ferric absorptions in CRISM data are, like VRR, reflective of deeper absorptions in the bedrock. One model to explain this spectral variability is late-stage diagenetic fluids that changed the grain size of ferric phases, deepening absorptions. Curiosity's experience highlights the strengths of using CRISM data for spectral absorptions and associated mineral detections and the caveats in using these data for geologic interpretations and strategic path planning tools.
Collapse
Affiliation(s)
- A. A. Fraeman
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - J. R. Johnson
- Johns Hopkins University Applied Physics LaboratoryLaurelMDUSA
| | - R. E. Arvidson
- Department of Earth and Planetary SciencesWashington UniversitySt. LouisMOUSA
| | - M. S. Rice
- Geology Department, Physics and Astronomy DepartmentWestern Washington UniversityBellinghamWAUSA
| | - D. F. Wellington
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | | | - V. K. Fox
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - B. H. N. Horgan
- Department of Earth, Atmospheric, and Planetary SciencesPurdue UniversityWest LafayetteINUSA
| | - S. R. Jacob
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | - M. R. Salvatore
- Department of Astronomy and Planetary ScienceNorthern Arizona UniversityFlagstaffAZUSA
| | - V. Z. Sun
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - P. Pinet
- Institut de Recherche en Astrophysique et PlanétologieUniversité de Toulouse, CNRS, UPS, CNESToulouseFrance
| | - J. F. Bell
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | - R. C. Wiens
- Los Alamos National LaboratoryLos AlamosNMUSA
| | - A. R. Vasavada
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| |
Collapse
|
3
|
Ojha L, Lewis K, Karunatillake S, Schmidt M. The Medusae Fossae Formation as the single largest source of dust on Mars. Nat Commun 2018; 9:2867. [PMID: 30030425 PMCID: PMC6054634 DOI: 10.1038/s41467-018-05291-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 06/26/2018] [Indexed: 11/09/2022] Open
Abstract
Transport of fine-grained dust is one of the most widespread sedimentary processes occurring on Mars today. In the present climate, eolian abrasion and deflation of rocks are likely the most pervasive and active dust-forming mechanism. Martian dust is globally enriched in S and Cl and has a distinct mean S:Cl ratio. Here we identify a potential source region for Martian dust based on analysis of elemental abundance data. We show that a large sedimentary unit called the Medusae Fossae Formation (MFF) has the highest abundance of S and Cl, and provides the best chemical match to surface measurements of Martian dust. Based on volume estimates of the eroded materials from the MFF, along with the enrichment of elemental S and Cl, and overall geochemical similarity, we propose that long-term deflation of the MFF has significantly contributed to the global Martian dust reservoir.
Collapse
Affiliation(s)
- Lujendra Ojha
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Kevin Lewis
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Suniti Karunatillake
- Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Mariek Schmidt
- Department of Earth Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| |
Collapse
|
4
|
Ehlmann BL, Edgett KS, Sutter B, Achilles CN, Litvak ML, Lapotre MGA, Sullivan R, Fraeman AA, Arvidson RE, Blake DF, Bridges NT, Conrad PG, Cousin A, Downs RT, Gabriel TSJ, Gellert R, Hamilton VE, Hardgrove C, Johnson JR, Kuhn S, Mahaffy PR, Maurice S, McHenry M, Meslin PY, Ming DW, Minitti ME, Morookian JM, Morris RV, O'Connell-Cooper CD, Pinet PC, Rowland SK, Schröder S, Siebach KL, Stein NT, Thompson LM, Vaniman DT, Vasavada AR, Wellington DF, Wiens RC, Yen AS. Chemistry, mineralogy, and grain properties at Namib and High dunes, Bagnold dune field, Gale crater, Mars: A synthesis of Curiosity rover observations. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2017; 122:2510-2543. [PMID: 29497589 DOI: 10.1002/2016je005225] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 05/25/2023]
Abstract
The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in the active Bagnold dune field. The Bagnold sands are rounded to subrounded, very fine to medium sized (~45-500 μm) with ≥6 distinct grain colors. In contrast to sands examined by Curiosity in a dust-covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt-sized or smaller grains, and show no evidence for cohesion. Nevertheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprising >90% of crystalline phases, along with a substantial amorphous component (35% ± 15%). Yet Bagnold and Rocknest bulk chemistry differ. Bagnold sands are Si enriched relative to other soils at Gale crater, and H2O, S, and Cl are lower relative to all previously measured Martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse-sieved fraction of Bagnold sands, corroborated by visible/near-infrared spectra that suggest enrichment of olivine. Collectively, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in Martian soils: (1) amorphous components in the sand-sized fraction (represented by Bagnold) that are Si-enriched, hydroxylated alteration products and/or H2O- or OH-bearing impact or volcanic glasses and (2) amorphous components in the fine fraction (<40 μm; represented by Rocknest and other bright soils) that are Fe, S, and Cl enriched with low Si and adsorbed and structural H2O.
Collapse
|
5
|
Ehlmann BL, Edgett KS, Sutter B, Achilles CN, Litvak ML, Lapotre MGA, Sullivan R, Fraeman AA, Arvidson RE, Blake DF, Bridges NT, Conrad PG, Cousin A, Downs RT, Gabriel TSJ, Gellert R, Hamilton VE, Hardgrove C, Johnson JR, Kuhn S, Mahaffy PR, Maurice S, McHenry M, Meslin P, Ming DW, Minitti ME, Morookian JM, Morris RV, O'Connell‐Cooper CD, Pinet PC, Rowland SK, Schröder S, Siebach KL, Stein NT, Thompson LM, Vaniman DT, Vasavada AR, Wellington DF, Wiens RC, Yen AS. Chemistry, mineralogy, and grain properties at Namib and High dunes, Bagnold dune field, Gale crater, Mars: A synthesis of Curiosity rover observations. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2017; 122:2510-2543. [PMID: 29497589 PMCID: PMC5815393 DOI: 10.1002/2017je005267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 05/31/2023]
Abstract
The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in the active Bagnold dune field. The Bagnold sands are rounded to subrounded, very fine to medium sized (~45-500 μm) with ≥6 distinct grain colors. In contrast to sands examined by Curiosity in a dust-covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt-sized or smaller grains, and show no evidence for cohesion. Nevertheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprising >90% of crystalline phases, along with a substantial amorphous component (35% ± 15%). Yet Bagnold and Rocknest bulk chemistry differ. Bagnold sands are Si enriched relative to other soils at Gale crater, and H2O, S, and Cl are lower relative to all previously measured Martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse-sieved fraction of Bagnold sands, corroborated by visible/near-infrared spectra that suggest enrichment of olivine. Collectively, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in Martian soils: (1) amorphous components in the sand-sized fraction (represented by Bagnold) that are Si-enriched, hydroxylated alteration products and/or H2O- or OH-bearing impact or volcanic glasses and (2) amorphous components in the fine fraction (<40 μm; represented by Rocknest and other bright soils) that are Fe, S, and Cl enriched with low Si and adsorbed and structural H2O.
Collapse
|
6
|
Gao P, Hu R, Robinson TD, Li C, Yung YL. STABILITY OF CO2ATMOSPHERES ON DESICCATED M DWARF EXOPLANETS. ACTA ACUST UNITED AC 2015. [DOI: 10.1088/0004-637x/806/2/249] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
7
|
Kinch KM, Bell JF, Goetz W, Johnson JR, Joseph J, Madsen MB, Sohl-Dickstein J. Dust deposition on the decks of the Mars Exploration Rovers: 10 years of dust dynamics on the Panoramic Camera calibration targets. EARTH AND SPACE SCIENCE (HOBOKEN, N.J.) 2015; 2:144-172. [PMID: 27981072 PMCID: PMC5125412 DOI: 10.1002/2014ea000073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/09/2015] [Accepted: 03/26/2015] [Indexed: 05/13/2023]
Abstract
The Panoramic Cameras on NASA's Mars Exploration Rovers have each returned more than 17,000 images of their calibration targets. In order to make optimal use of this data set for reflectance calibration, a correction must be made for the presence of air fall dust. Here we present an improved dust correction procedure based on a two-layer scattering model, and we present a dust reflectance spectrum derived from long-term trends in the data set. The dust on the calibration targets appears brighter than dusty areas of the Martian surface. We derive detailed histories of dust deposition and removal revealing two distinct environments: At the Spirit landing site, half the year is dominated by dust deposition, the other half by dust removal, usually in brief, sharp events. At the Opportunity landing site the Martian year has a semiannual dust cycle with dust removal happening gradually throughout two removal seasons each year. The highest observed optical depth of settled dust on the calibration target is 1.5 on Spirit and 1.1 on Opportunity (at 601 nm). We derive a general prediction for dust deposition rates of 0.004 ± 0.001 in units of surface optical depth deposited per sol (Martian solar day) per unit atmospheric optical depth. We expect this procedure to lead to improved reflectance-calibration of the Panoramic Camera data set. In addition, it is easily adapted to similar data sets from other missions in order to deliver improved reflectance calibration as well as data on dust reflectance properties and deposition and removal history.
Collapse
Affiliation(s)
- Kjartan M Kinch
- Niels Bohr Institute University of Copenhagen Copenhagen Denmark
| | - James F Bell
- School of Earth and Space Exploration Arizona State University Phoenix Arizona USA
| | - Walter Goetz
- Max Planck Institute for Solar System Research Göttingen Germany
| | - Jeffrey R Johnson
- Applied Physics Laboratory Johns Hopkins University Laurel Maryland USA
| | - Jonathan Joseph
- Department of Astronomy Cornell University Ithaca New York USA
| | - Morten Bo Madsen
- Niels Bohr Institute University of Copenhagen Copenhagen Denmark
| | - Jascha Sohl-Dickstein
- Neural Dynamics and Computation Laboratory Stanford University Stanford California USA
| |
Collapse
|
8
|
Ehlers K, Chakrabarty R, Moosmüller H. Blue moons and Martian sunsets. APPLIED OPTICS 2014; 53:1808-1819. [PMID: 24663457 DOI: 10.1364/ao.53.001808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/10/2014] [Indexed: 06/03/2023]
Abstract
The familiar yellow or orange disks of the moon and sun, especially when they are low in the sky, and brilliant red sunsets are a result of the selective extinction (scattering plus absorption) of blue light by atmospheric gas molecules and small aerosols, a phenomenon explainable using the Rayleigh scattering approximation. On rare occasions, dust or smoke aerosols can cause the extinction of red light to exceed that for blue, resulting in the disks of the sun and moon to appear as blue. Unlike Earth, the atmosphere of Mars is dominated by micron-size dust aerosols, and the sky during sunset takes on a bluish glow. Here we investigate the role of dust aerosols in the blue Martian sunsets and the occasional blue moons and suns on Earth. We use the Mie theory and the Debye series to calculate the wavelength-dependent optical properties of dust aerosols most commonly found on Mars. Our findings show that while wavelength selective extinction can cause the sun's disk to appear blue, the color of the glow surrounding the sun as observed from Mars is due to the dominance of near-forward scattering of blue light by dust particles and cannot be explained by a simple, Rayleigh-like selective extinction explanation.
Collapse
|
9
|
Kok JF, Parteli EJR, Michaels TI, Karam DB. The physics of wind-blown sand and dust. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2012; 75:106901. [PMID: 22982806 DOI: 10.1088/0034-4885/75/10/106901] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols. This paper presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars. Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus and Titan.
Collapse
Affiliation(s)
- Jasper F Kok
- Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA.
| | | | | | | |
Collapse
|
10
|
Ody A, Poulet F, Langevin Y, Bibring JP, Bellucci G, Altieri F, Gondet B, Vincendon M, Carter J, Manaud N. Global maps of anhydrous minerals at the surface of Mars from OMEGA/MEx. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012je004117] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
McGlynn IO, Fedo CM, McSween HY. Soil mineralogy at the Mars Exploration Rover landing sites: An assessment of the competing roles of physical sorting and chemical weathering. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011je003861] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Phebus BD, Johnson AV, Mar B, Stone BM, Colaprete A, Iraci LT. Water ice nucleation characteristics of JSC Mars-1 regolith simulant under simulated Martian atmospheric conditions. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010je003699] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
McSween HY, McGlynn IO, Rogers AD. Determining the modal mineralogy of Martian soils. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010je003582] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Milam KA, McSween HY, Moersch J, Christensen PR. Distribution and variation of plagioclase compositions on Mars. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009je003495] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Morris RV, Ruff SW, Gellert R, Ming DW, Arvidson RE, Clark BC, Golden DC, Siebach K, Klingelhöfer G, Schröder C, Fleischer I, Yen AS, Squyres SW. Identification of carbonate-rich outcrops on Mars by the Spirit rover. Science 2010; 329:421-4. [PMID: 20522738 DOI: 10.1126/science.1189667] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Decades of speculation about a warmer, wetter Mars climate in the planet's first billion years postulate a denser CO2-rich atmosphere than at present. Such an atmosphere should have led to the formation of outcrops rich in carbonate minerals, for which evidence has been sparse. Using the Mars Exploration Rover Spirit, we have now identified outcrops rich in magnesium-iron carbonate (16 to 34 weight percent) in the Columbia Hills of Gusev crater. Its composition approximates the average composition of the carbonate globules in martian meteorite ALH 84001. The Gusev carbonate probably precipitated from carbonate-bearing solutions under hydrothermal conditions at near-neutral pH in association with volcanic activity during the Noachian era.
Collapse
|
16
|
Cockell CS. Geomicrobiology beyond Earth: microbe-mineral interactions in space exploration and settlement. Trends Microbiol 2010; 18:308-14. [PMID: 20381355 DOI: 10.1016/j.tim.2010.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 03/04/2010] [Accepted: 03/12/2010] [Indexed: 10/19/2022]
Abstract
Geomicrobiology investigates the interactions of microorganisms with geological substrates, and this branch of microbiology has enormous potential in the exploration and settlement of space. Microorganisms can be used to extract useful elements from extraterrestrial materials for industrial processes or for use as nutrients in life support systems. In addition, microorganisms could be used to create soil from lunar and Martian rocks. Furthermore, understanding the interactions of microorganisms with rocks is essential for identifying mineral biomarkers to be used in the search for life on other planetary bodies. Increasing space exploration activities make geomicrobiology an important applied science beyond Earth.
Collapse
|
17
|
Knoll AH, Jolliff BL, Farrand WH, Bell III JF, Clark BC, Gellert R, Golombek MP, Grotzinger JP, Herkenhoff KE, Johnson JR, McLennan SM, Morris R, Squyres SW, Sullivan R, Tosca NJ, Yen A, Learner Z. Veneers, rinds, and fracture fills: Relatively late alteration of sedimentary rocks at Meridiani Planum, Mars. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je002949] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Liu Y, Cockell CS, Wang G, Hu C, Chen L, De Philippis R. Control of Lunar and Martian dust--experimental insights from artificial and natural cyanobacterial and algal crusts in the desert of Inner Mongolia, China. ASTROBIOLOGY 2008; 8:75-86. [PMID: 18240967 DOI: 10.1089/ast.2007.0122] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Studies on the colonization of environmentally extreme ground surfaces were conducted in a Mars-like desert area of Inner Mongolia, People's Republic of China, with microalgae and cyanobacteria. We collected and mass-cultured cyanobacterial strains from these regions and investigated their ability to form desert crusts artificially. These crusts had the capacity to resist sand wind erosion after just 15 days of growth. Similar to the surface of some Chinese deserts, the surface of Mars is characterized by a layer of fine dust, which will challenge future human exploration activities, particularly in confined spaces that will include greenhouses and habitats. We discuss the use of such crusts for the local control of desert sands in enclosed spaces on Mars. These experiments suggest innovative new directions in the applied use of microbe-mineral interactions to advance the human exploration and settlement of space.
Collapse
Affiliation(s)
- Yongding Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, China
| | | | | | | | | | | |
Collapse
|
19
|
Fishbaugh KE, Poulet F, Chevrier V, Langevin Y, Bibring JP. On the origin of gypsum in the Mars north polar region. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002862] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Rogers AD, Christensen PR. Surface mineralogy of Martian low-albedo regions from MGS-TES data: Implications for upper crustal evolution and surface alteration. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002727] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Wolff MJ, Smith MD, Clancy RT, Spanovich N, Whitney BA, Lemmon MT, Bandfield JL, Banfield D, Ghosh A, Landis G, Christensen PR, Bell JF, Squyres SW. Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006je002786] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- M. J. Wolff
- Space Science Institute; Boulder Colorado USA
| | - M. D. Smith
- Goddard Space Flight Center; Greenbelt Maryland USA
| | | | - N. Spanovich
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | | | - M. T. Lemmon
- Department of Atmospheric Sciences; Texas A&M University; College Station Texas USA
| | - J. L. Bandfield
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | - D. Banfield
- Department of Astronomy; Cornell University; Ithaca New York USA
| | - A. Ghosh
- Department of Earth and Planetary Sciences; University of Tennessee; Knoxville Tennessee USA
| | - G. Landis
- Photovoltaics and Space Environment Branch; NASA John Glenn Research Center; Cleveland Ohio USA
| | - P. R. Christensen
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | - J. F. Bell
- Department of Astronomy; Cornell University; Ithaca New York USA
| | - S. W. Squyres
- Department of Astronomy; Cornell University; Ithaca New York USA
| |
Collapse
|
22
|
Glotch TD, Bandfield JL, Christensen PR, Calvin WM, McLennan SM, Clark BC, Rogers AD, Squyres SW. Mineralogy of the light-toned outcrop at Meridiani Planum as seen by the Miniature Thermal Emission Spectrometer and implications for its formation. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005je002672] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Timothy D. Glotch
- Division of Geological and Planetary Sciences; California Institute of Technology; Pasadena California USA
| | - Joshua L. Bandfield
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | | | - Wendy M. Calvin
- Department of Geological Sciences; University of Nevada; Reno Nevada USA
| | - Scott M. McLennan
- Department of Geosciences; State University of New York; Stony Brook New York USA
| | | | - A. Deanne Rogers
- Division of Geological and Planetary Sciences; California Institute of Technology; Pasadena California USA
| | | |
Collapse
|