1
|
Karambelas A, Miller PJ, Underhill J, Pleim J, Zalewsky E, Jakuta J. Ozone sensitivity to high energy demand day electricity and onroad emissions during LISTOS. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2024; 74:804-819. [PMID: 39186664 DOI: 10.1080/10962247.2024.2396400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Using a high-resolution, 1.33 km by 1.33 km coupled Weather Research and Forecasting-Community Multi-scale Air Quality Model (WRF-CMAQ), we quantify the impact of emissions of nitrogen oxides (NOx) from high energy demand day (HEDD) electricity generating units (EGU) and onroad vehicles on ambient ozone air quality in the Long Island Sound Tropospheric Ozone Study (LISTOS) region covering New York City (NYC); Long Island, NY; coastal Connecticut; and neighboring areas. We test sensitivity scenarios to quantify HEDD EGU NOx contributions to ozone: (1) zero out HEDD EGU emissions, (2) dispatch HEDD EGUs starting with the lowest NOx emitting units first, (3) reduce onroad emissions by 90%, (4) combine zero out HEDD EGU emissions and reducing onroad emissions by 90%, and (5) dispatch HEDD EGUs starting with the lowest emitting units coupled with a reduction in onroad emissions by 90%. Results determine that HEDD EGUs lead to highly localized impacts on ambient concentrations of ozone while onroad emission reductions lead to large-scale regional concentration impacts. Further, reducing onroad emissions by 90% leads to spatially smaller VOC-limited regions and spatially larger transitional and NOX-limited regions around NYC. Despite the limited scale at which the EGU emission reductions occur, modifying HEDD EGU NOX emissions still provides substantial benefits in reducing ozone concentrations in the region, particularly at elevated ozone concentrations above 70 ppb.Implications: High-resolution coupled meteorology-chemistry modeling was used to quantify the impacts of high energy demand day (HEDD) electricity generating units (EGUs) and onroad transportation emissions changes on ozone air quality in the LISTOS region. Despite being highly localized and variable, HEDD EGUs NOX emissions sensitivity tests led to quantifiable changes in ozone. Further, reducing onroad emissions by 90% produced large decreases in ozone concentrations and led to a more NOX-sensitive ozone photochemical regime. With a transition to greater NOX-sensitivity, urban NOX-titration weakens and ozone is more likely to decline with the removal of additional NOX from sources like HEDD EGUs.
Collapse
Affiliation(s)
| | - Paul J Miller
- Northeast States for Coordinated Air Use Management, Boston, MA, USA
| | - Jeffrey Underhill
- Air Resources Division, New Hampshire Department of Environmental Services, Concord, NH, USA
| | - Jonathan Pleim
- Center for Environmental Measurement and Modeling, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Eric Zalewsky
- Bureau of Air Quality Analysis and Research, New York State Department of Environmental Conservation, Albany, NY, USA
| | - Joseph Jakuta
- Air Quality Division, District of Columbia Department of Energy and Environment, Washington, DC, USA
| |
Collapse
|
2
|
Hilario MRA, Crosbie E, Bañaga PA, Betito G, Braun RA, Cambaliza MO, Corral AF, Cruz MT, Dibb JE, Lorenzo GR, MacDonald AB, Robinson CE, Shook MA, Simpas JB, Stahl C, Winstead E, Ziemba LD, Sorooshian A. Particulate Oxalate-To-Sulfate Ratio as an Aqueous Processing Marker: Similarity Across Field Campaigns and Limitations. GEOPHYSICAL RESEARCH LETTERS 2021; 48:e2021GL096520. [PMID: 35136274 PMCID: PMC8819676 DOI: 10.1029/2021gl096520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/20/2021] [Indexed: 06/14/2023]
Abstract
Leveraging aerosol data from multiple airborne and surface-based field campaigns encompassing diverse environmental conditions, we calculate statistics of the oxalate-sulfate mass ratio (median: 0.0217; 95% confidence interval: 0.0154-0.0296; R = 0.76; N = 2,948). Ground-based measurements of the oxalate-sulfate ratio fall within our 95% confidence interval, suggesting the range is robust within the mixed layer for the submicrometer particle size range. We demonstrate that dust and biomass burning emissions can separately bias this ratio toward higher values by at least one order of magnitude. In the absence of these confounding factors, the 95% confidence interval of the ratio may be used to estimate the relative extent of aqueous processing by comparing inferred oxalate concentrations between air masses, with the assumption that sulfate primarily originates from aqueous processing.
Collapse
Affiliation(s)
| | - Ewan Crosbie
- NASA Langley Research Center, Hampton, VA, USA
- Science Systems and Applications, Inc., Hampton, VA, USA
| | - Paola Angela Bañaga
- Manila Observatory, Quezon City, Philippines
- Department of Physics, School of Science and Engineering, Ateneo de Manila University, Quezon City, Philippines
| | - Grace Betito
- Manila Observatory, Quezon City, Philippines
- Department of Physics, School of Science and Engineering, Ateneo de Manila University, Quezon City, Philippines
| | - Rachel A Braun
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
- Now at: Healthy Urban Environments Initiative, Global Institute of Sustainability and Innovation, Arizona State University, Tempe, AZ, USA
| | - Maria Obiminda Cambaliza
- Manila Observatory, Quezon City, Philippines
- Department of Physics, School of Science and Engineering, Ateneo de Manila University, Quezon City, Philippines
| | - Andrea F Corral
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Melliza Templonuevo Cruz
- Manila Observatory, Quezon City, Philippines
- Institute of Environmental Science and Meteorology, University of the Philippines, Diliman, Quezon City, Philippines
| | - Jack E Dibb
- Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, USA
| | - Genevieve Rose Lorenzo
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
| | - Alexander B MacDonald
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Claire E Robinson
- NASA Langley Research Center, Hampton, VA, USA
- Science Systems and Applications, Inc., Hampton, VA, USA
| | | | - James Bernard Simpas
- Manila Observatory, Quezon City, Philippines
- Department of Physics, School of Science and Engineering, Ateneo de Manila University, Quezon City, Philippines
| | - Connor Stahl
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Edward Winstead
- NASA Langley Research Center, Hampton, VA, USA
- Science Systems and Applications, Inc., Hampton, VA, USA
| | | | - Armin Sorooshian
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
3
|
Mardi AH, Dadashazar H, Painemal D, Shingler T, Seaman ST, Fenn MA, Hostetler CA, Sorooshian A. Biomass Burning Over the United States East Coast and Western North Atlantic Ocean: Implications for Clouds and Air Quality. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2021; 126:e2021JD034916. [PMID: 34777928 PMCID: PMC8587641 DOI: 10.1029/2021jd034916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Biomass burning (BB) aerosol events were characterized over the U.S. East Coast and Bermuda over the western North Atlantic Ocean (WNAO) between 2005 and 2018 using a combination of ground-based observations, satellite data, and model outputs. Days with BB influence in an atmospheric column (BB days) were identified using criteria biased toward larger fire events based on anomalously high AERONET aerosol optical depth (AOD) and MERRA-2 black carbon (BC) column density. BB days are present year-round with more in June-August (JJA) over the northern part of the East Coast, in contrast to more frequent events in March-May (MAM) over the southeast U.S. and Bermuda. BB source regions in MAM are southern Mexico and by the Yucatan, Central America, and the southeast U.S. JJA source regions are western parts of North America. Less than half of the BB days coincide with anomalously high PM2.5 levels in the surface layer, according to data from 14 IMPROVE sites over the East Coast. Profiles of aerosol extinction suggest that BB particles can be found in the boundary layer and into the upper troposphere with the potential to interact with clouds. Higher cloud drop number concentration and lower drop effective radius are observed during BB days. In addition, lower liquid water path is found during these days, especially when BB particles are present in the boundary layer. While patterns are suggestive of cloud-BB aerosol interactions over the East Coast and the WNAO, additional studies are needed for confirmation.
Collapse
Affiliation(s)
- Ali Hossein Mardi
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Hossein Dadashazar
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - David Painemal
- Science Systems and Applications, Inc., Hampton, VA, USA
- NASA Langley Research Center, Hampton, VA, USA
| | | | | | - Marta A Fenn
- Science Systems and Applications, Inc., Hampton, VA, USA
- NASA Langley Research Center, Hampton, VA, USA
| | | | - Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
4
|
Braun RA, McComiskey A, Tselioudis G, Tropf D, Sorooshian A. Cloud, Aerosol, and Radiative Properties Over the Western North Atlantic Ocean. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2021; 126:e2020JD034113. [PMID: 34377622 PMCID: PMC8350933 DOI: 10.1029/2020jd034113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
This study examines the atmospheric properties of weather states (WSs) derived from the International Satellite Cloud Climatology Project over the Western North Atlantic Ocean. In particular, radiation and aerosol data corresponding to two sites in the study domain, Pennsylvania State University and Bermuda, were examined to characterize the atmospheric properties of the various satellite-derived WSs. At both sites, the fair weather WS was most prevalent, followed by the cirrus WS. Differences in the seasonality of the various WSs were observed at the two sites. Fractional sky cover and effective shortwave cloud transmissivity derived from ground-based radiation measurements were able to capture differences among the satellite-derived WSs. Speciated aerosol optical thicknesses (AOT) from the Modern-Era Retrospective Analysis for Research and Applications, version 2 were used to investigate potential differences in aerosol properties among the WSs. The clear sky WS exhibited below-average seasonal values of AOT at both sites year-round, as well as relatively high rates of occurrence with low AOT events. In addition, the clear sky WS showed above-average contributions from dust and black carbon to the total AOT year-round. Finally, transitions between various WSs were examined under low, high, and midrange AOT conditions. The most common pathway was for the WSs to remain in the same state after a 3 h interval. Some WSs, such as mid latitude storms, deep convection, middle top, and shallow cumulus, were more prevalent as ending states under high AOT conditions. This work motivates examining differences in aerosol properties between WSs in other regions.
Collapse
Affiliation(s)
- Rachel A Braun
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
- Now at Global Institute of Sustainability and Innovation, Arizona State University, Tempe, AZ, USA
| | | | | | - Derek Tropf
- NASA Goddard Institute for Space Studies, New York, NY, USA
| | - Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
5
|
Corral AF, Braun RA, Cairns B, Gorooh VA, Liu H, Ma L, Mardi AH, Painemal D, Stamnes S, van Diedenhoven B, Wang H, Yang Y, Zhang B, Sorooshian A. An Overview of Atmospheric Features Over the Western North Atlantic Ocean and North American East Coast - Part 1: Analysis of Aerosols, Gases, and Wet Deposition Chemistry. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2021; 126:e2020JD032592. [PMID: 34211820 PMCID: PMC8243758 DOI: 10.1029/2020jd032592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 11/04/2020] [Indexed: 06/13/2023]
Abstract
The Western North Atlantic Ocean (WNAO) and adjoining East Coast of North America are of great importance for atmospheric research and have been extensively studied for several decades. This broad region exhibits complex meteorological features and a wide range of conditions associated with gas and particulate species from many sources regionally and other continents. As Part 1 of a 2-part paper series, this work characterizes quantities associated with atmospheric chemistry, including gases, aerosols, and wet deposition, by analyzing available satellite observations, ground-based data, model simulations, and reanalysis products. Part 2 provides insight into the atmospheric circulation, boundary layer variability, three-dimensional cloud structure, properties, and precipitation over the WNAO domain. Key results include spatial and seasonal differences in composition along the North American East Coast and over the WNAO associated with varying sources of smoke and dust and meteorological drivers such as temperature, moisture, and precipitation. Spatial and seasonal variations of tropospheric carbon monoxide and ozone highlight different pathways toward the accumulation of these species in the troposphere. Spatial distributions of speciated aerosol optical depth and vertical profiles of aerosol mass mixing ratios show a clear seasonal cycle highlighting the influence of different sources in addition to the impact of intercontinental transport. Analysis of long-term climate model simulations of aerosol species and satellite observations of carbon monoxide confirm that there has been a significant decline in recent decades among anthropogenic constituents owing to regulatory activities.
Collapse
Affiliation(s)
- Andrea F Corral
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Rachel A Braun
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Brian Cairns
- NASA Goddard Institute for Space Studies, New York, NY, USA
| | - Vesta Afzali Gorooh
- Center for Hydrometeorology and Remote Sensing (CHRS), Department of Civil and Environmental Engineering, The Henry Samueli School of Engineering, University of California, Irvine, CA, USA
| | - Hongyu Liu
- National Institute of Aerospace, Hampton, VA, USA
| | - Lin Ma
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Ali Hossein Mardi
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - David Painemal
- NASA Langley Research Center, Hampton, VA, USA
- Science Systems and Applications, Inc., Hampton, VA, USA
| | | | - Bastiaan van Diedenhoven
- NASA Goddard Institute for Space Studies, New York, NY, USA
- Columbia University Center for Climate System Research, New York, NY, USA
| | - Hailong Wang
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yang Yang
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Bo Zhang
- National Institute of Aerospace, Hampton, VA, USA
| | - Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
6
|
Sorooshian A, Corral AF, Braun RA, Cairns B, Crosbie E, Ferrare R, Hair J, Kleb MM, Mardi AH, Maring H, McComiskey A, Moore R, Painemal D, Jo Scarino A, Schlosser J, Shingler T, Shook M, Wang H, Zeng X, Ziemba L, Zuidema P. Atmospheric Research Over the Western North Atlantic Ocean Region and North American East Coast: A Review of Past Work and Challenges Ahead. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2020; 125:10.1029/2019jd031626. [PMID: 32699733 PMCID: PMC7375207 DOI: 10.1029/2019jd031626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/21/2020] [Indexed: 05/26/2023]
Abstract
Decades of atmospheric research have focused on the Western North Atlantic Ocean (WNAO) region because of its unique location that offers accessibility for airborne and ship measurements, gradients in important atmospheric parameters, and a range of meteorological regimes leading to diverse conditions that are poorly understood. This work reviews these scientific investigations for the WNAO region, including the East Coast of North America and the island of Bermuda. Over 50 field campaigns and long-term monitoring programs, in addition to 715 peer-reviewed publications between 1946 and 2019 have provided a firm foundation of knowledge for these areas. Of particular importance in this region has been extensive work at the island of Bermuda that is host to important time series records of oceanic and atmospheric variables. Our review categorizes WNAO atmospheric research into eight major categories, with some studies fitting into multiple categories (relative %): Aerosols (25%), Gases (24%), Development/Validation of Techniques, Models, and Retrievals (18%), Meteorology and Transport (9%), Air-Sea Interactions (8%), Clouds/Storms (8%), Atmospheric Deposition (7%), and Aerosol-Cloud Interactions (2%). Recommendations for future research are provided in the categories highlighted above.
Collapse
Affiliation(s)
- Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ
| | - Andrea F. Corral
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ
| | - Rachel A. Braun
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ
| | - Brian Cairns
- NASA Goddard Institute for Space Studies, New York, NY
| | - Ewan Crosbie
- NASA Langley Research Center, Hampton, VA
- Science Systems and Applications, Inc., Hampton, VA
| | | | | | | | - Ali Hossein Mardi
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ
| | | | | | | | - David Painemal
- NASA Langley Research Center, Hampton, VA
- Science Systems and Applications, Inc., Hampton, VA
| | - Amy Jo Scarino
- NASA Langley Research Center, Hampton, VA
- Science Systems and Applications, Inc., Hampton, VA
| | - Joseph Schlosser
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ
| | | | | | - Hailong Wang
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA
| | - Xubin Zeng
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ
| | | | - Paquita Zuidema
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL
| |
Collapse
|
7
|
Burgos MA, Andrews E, Titos G, Alados-Arboledas L, Baltensperger U, Day D, Jefferson A, Kalivitis N, Mihalopoulos N, Sherman J, Sun J, Weingartner E, Zieger P. A global view on the effect of water uptake on aerosol particle light scattering. Sci Data 2019; 6:157. [PMID: 31439840 PMCID: PMC6706437 DOI: 10.1038/s41597-019-0158-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/18/2019] [Indexed: 11/17/2022] Open
Abstract
A reference dataset of multi-wavelength particle light scattering and hemispheric backscattering coefficients for different relative humidities (RH) between RH = 30 and 95% and wavelengths between λ = 450 nm and 700 nm is described in this work. Tandem-humidified nephelometer measurements from 26 ground-based sites around the globe, covering multiple aerosol types, have been re-analysed and harmonized into a single dataset. The dataset includes multi-annual measurements from long-term monitoring sites as well as short-term field campaign data. The result is a unique collection of RH-dependent aerosol light scattering properties, presented as a function of size cut. This dataset is important for climate and atmospheric model-measurement inter-comparisons, as a means to improve model performance, and may be useful for satellite and remote sensing evaluation using surface-based, in-situ measurements. Design Type(s) | spectral data collection and processing objective • data integration objective • time series design | Measurement Type(s) | light scattering | Technology Type(s) | Nephelometry | Factor Type(s) | geographic location • instrument • Environment • temporal_interval | Sample Characteristic(s) | United States of America • climate system • Canada • The Netherlands • Greece • Germany • Portuguese Republic • South Korea • China • United Kingdom • Finland • Switzerland • Maldives Archipelago • Brazil • Republic of Ireland • Niger • India • Kingdom of Spain • Kingdom of Norway |
Machine-accessible metadata file describing the reported data (ISA-Tab format)
Collapse
Affiliation(s)
- María A Burgos
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691, Stockholm, Sweden. .,Bolin Centre for Climate Research, SE-10691, Stockholm, Sweden.
| | - Elisabeth Andrews
- Cooperative Institute for Research in Environmental Studies, University of Colorado, Boulder, USA
| | - Gloria Titos
- Andalusian Institute for Earth System Research, University of Granada, Granada, Spain
| | | | - Urs Baltensperger
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Derek Day
- Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, USA
| | - Anne Jefferson
- Cooperative Institute for Research in Environmental Studies, University of Colorado, Boulder, USA.,Earth Systems Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado, USA
| | - Nikos Kalivitis
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, Greece
| | - Nikos Mihalopoulos
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, Greece
| | - James Sherman
- Department of Physics and Astronomy, Appalachian State University, Boone, USA
| | - Junying Sun
- Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing, China
| | - Ernest Weingartner
- Institute for Sensing and Electronics, University of Applied Sciences, Windisch, Switzerland
| | - Paul Zieger
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691, Stockholm, Sweden. .,Bolin Centre for Climate Research, SE-10691, Stockholm, Sweden.
| |
Collapse
|
8
|
Composition of Clean Marine Air and Biogenic Influences on VOCs during the MUMBA Campaign. ATMOSPHERE 2019. [DOI: 10.3390/atmos10070383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Volatile organic compounds (VOCs) are important precursors to the formation of ozone and fine particulate matter, the two pollutants of most concern in Sydney, Australia. Despite this importance, there are very few published measurements of ambient VOC concentrations in Australia. In this paper, we present mole fractions of several important VOCs measured during the campaign known as MUMBA (Measurements of Urban, Marine and Biogenic Air) in the Australian city of Wollongong (34°S). We particularly focus on measurements made during periods when clean marine air impacted the measurement site and on VOCs of biogenic origin. Typical unpolluted marine air mole fractions during austral summer 2012-2013 at latitude 34°S were established for CO2 (391.0 ± 0.6 ppm), CH4 (1760.1 ± 0.4 ppb), N2O (325.04 ± 0.08 ppb), CO (52.4 ± 1.7 ppb), O3 (20.5 ± 1.1 ppb), acetaldehyde (190 ± 40 ppt), acetone (260 ± 30 ppt), dimethyl sulphide (50 ± 10 ppt), benzene (20 ± 10 ppt), toluene (30 ± 20 ppt), C8H10 aromatics (23 ± 6 ppt) and C9H12 aromatics (36 ± 7 ppt). The MUMBA site was frequently influenced by VOCs of biogenic origin from a nearby strip of forested parkland to the east due to the dominant north-easterly afternoon sea breeze. VOCs from the more distant densely forested escarpment to the west also impacted the site, especially during two days of extreme heat and strong westerly winds. The relative amounts of different biogenic VOCs observed for these two biomes differed, with much larger increases of isoprene than of monoterpenes or methanol during the hot westerly winds from the escarpment than with cooler winds from the east. However, whether this was due to different vegetation types or was solely the result of the extreme temperatures is not entirely clear. We conclude that the clean marine air and biogenic signatures measured during the MUMBA campaign provide useful information about the typical abundance of several key VOCs and can be used to constrain chemical transport model simulations of the atmosphere in this poorly sampled region of the world.
Collapse
|
9
|
Kulkarni PS, Bortoli D, Silva AM, Reeves CE. Enhancements in nocturnal surface ozone at urban sites in the UK. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:20295-20305. [PMID: 26304813 DOI: 10.1007/s11356-015-5259-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/14/2015] [Indexed: 06/04/2023]
Abstract
Analysis of diurnal patterns of surface ozone (O3) at multiple urban sites in the UK shows the occurrence of prominent nocturnal enhancements during the winter months (November-March). Whilst nocturnal surface ozone (NSO) enhancement events have been observed at other locations, this is the first time that such features have been demonstrated to occur in the UK and the second location globally. The observed NSO enhancement events in the UK were found to be so prevalent that they are clearly discernible in monthly diurnal cycles averaged over several years of data. Long-term (2000-2010) analysis of hourly surface ozone data from 18 urban background stations shows a bimodal diurnal variation during the winter months with a secondary nighttime peak around 0300 hours along with the primary daytime peak. For all but one site, the daily maxima NSO concentrations during the winter months exceeded 60 μg/m(3) on >20 % of the nights. The highest NSO value recorded was 118 μg/m(3). During the months of November, December, and January, the monthly averaged O3 concentrations observed at night (0300 h) even exceeded those observed in the daytime (1300 h). The analysis also shows that these NSO enhancements can last for several hours and were regional in scale, extending across several stations simultaneously. Interestingly, the urban sites in the north of the UK exhibited higher NSO than the sites in the south of the UK, despite their daily maxima being similar. In part, this seems to be related to the sites in the north typically having lower concentrations of nitrogen oxides.
Collapse
Affiliation(s)
- Pavan S Kulkarni
- Instituto de Ciências da Terra (ICT), University of Évora, Évora, Portugal.
| | - D Bortoli
- Instituto de Ciências da Terra (ICT), University of Évora, Évora, Portugal
- Institute for Atmospheric Science and Climate (ISAC-CNR), Bologna, Italy
| | - A M Silva
- Instituto de Ciências da Terra (ICT), University of Évora, Évora, Portugal
- Department of Physics, University of Évora, Évora, Portugal
| | - C E Reeves
- Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
10
|
Meteorological Influences on Trace Gas Transport along the North Atlantic Coast during ICARTT 2004. ATMOSPHERE 2014. [DOI: 10.3390/atmos5040973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Wells KC, Millet DB, Cady-Pereira KE, Shephard MW, Henze DK, Bousserez N, Apel EC, de Gouw J, Warneke C, Singh HB. Quantifying global terrestrial methanol emissions using observations from the TES satellite sensor. ATMOSPHERIC CHEMISTRY AND PHYSICS 2014; 14:2555-2570. [PMID: 33758587 PMCID: PMC7983851 DOI: 10.5194/acp-14-2555-2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We employ new global space-based measurements of atmospheric methanol from the Tropospheric Emission Spectrometer (TES) with the adjoint of the GEOS-Chem chemical transport model to quantify terrestrial emissions of methanol to the atmosphere. Biogenic methanol emissions in the model are based on version 2.1 of the Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1), using leaf area data from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) and GEOS-5 assimilated meteorological fields. We first carry out a pseudo observation test to validate the overall approach, and find that the TES sampling density is sufficient to accurately quantify regional- to continental-scale methanol emissions using this method. A global inversion of two years of TES data yields an optimized annual global surface flux of 122 Tg yr-1 (including biogenic, pyrogenic, and anthropogenic sources), an increase of 60 % from the a priori global flux of 76 Tg yr-1. Global terrestrial methanol emissions are thus nearly 25 % those of isoprene (~540 Tg yr-1), and are comparable to the combined emissions of all anthropogenic volatile organic compounds (~100-200 Tg yr-1). Our a posteriori terrestrial methanol source leads to a strong improvement of the simulation relative to an ensemble of airborne observations, and corroborates two other recent top-down estimates (114-120 Tg yr-1) derived using in situ and space-based measurements. Inversions testing the sensitivity of optimized fluxes to model errors in OH, dry deposition, and oceanic uptake of methanol, as well as to the assumed a priori constraint, lead to global fluxes ranging from 118 to 126 Tg yr-1. The TES data imply a relatively modest revision of model emissions over most of the tropics, but a significant upward revision in midlatitudes, particularly over Europe and North America. We interpret the inversion results in terms of specific source types using the methanol : CO correlations measured by TES, and find that biogenic emissions are overestimated relative to biomass burning and anthropogenic emissions in central Africa and southeastern China, while they are underestimated in regions such as Brazil and the US. Based on our optimized emissions, methanol accounts for > 25 % of the photochemical source of CO and HCHO over many parts of the northern extratropics during springtime, and contributes ~6 % of the global secondary source of those compounds annually.
Collapse
Affiliation(s)
- K. C. Wells
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota, USA
| | - D. B. Millet
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota, USA
| | - K. E. Cady-Pereira
- Atmospheric and Environmental Research, Inc., Lexington, Massachusetts, USA
| | | | - D. K. Henze
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado, USA
| | - N. Bousserez
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado, USA
| | - E. C. Apel
- Atmospheric Chemistry Division, NCAR, Boulder, Colorado, USA
| | - J. de Gouw
- Earth System Research Laboratory, NOAA, Boulder, Colorado, USA
- CIRES, University of Colorado, Boulder, Colorado, USA
| | - C. Warneke
- Earth System Research Laboratory, NOAA, Boulder, Colorado, USA
- CIRES, University of Colorado, Boulder, Colorado, USA
| | - H. B. Singh
- NASA Ames Research Center, Moffett Field, California, USA
| |
Collapse
|
12
|
Ford B, Heald CL. An A-train and model perspective on the vertical distribution of aerosols and CO in the Northern Hemisphere. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016977] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
|
14
|
|
15
|
|
16
|
Martini M, Allen DJ, Pickering KE, Stenchikov GL, Richter A, Hyer EJ, Loughner CP. The impact of North American anthropogenic emissions and lightning on long-range transport of trace gases and their export from the continent during summers 2002 and 2004. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd014305] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Paulot F, Wunch D, Crounse JD, Toon GC, Millet DB, DeCarlo PF, Vigouroux C, Deutscher NM, González Abad G, Notholt J, Warneke T, Hannigan JW, Warneke C, de Gouw JA, Dunlea EJ, De Mazière M, Griffith DWT, Bernath P, Jimenez JL, Wennberg PO. Importance of secondary sources in the atmospheric budgets of formic and acetic acids. ATMOSPHERIC CHEMISTRY AND PHYSICS 2011; 11:1989-2013. [PMID: 33758586 PMCID: PMC7983864 DOI: 10.5194/acp-11-1989-2011] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We present a detailed budget of formic and acetic acids, two of the most abundant trace gases in the atmosphere. Our bottom-up estimate of the global source of formic and acetic acids are ∼1200 and ∼1400Gmolyr-1, dominated by photochemical oxidation of biogenic volatile organic compounds, in particular isoprene. Their sinks are dominated by wet and dry deposition. We use the GEOS-Chem chemical transport model to evaluate this budget against an extensive suite of measurements from ground, ship and satellite-based Fourier transform spectrometers, as well as from several aircraft campaigns over North America. The model captures the seasonality of formic and acetic acids well but generally underestimates their concentration, particularly in the Northern midlatitudes. We infer that the source of both carboxylic acids may be up to 50% greater than our estimate and report evidence for a long-lived missing secondary source of carboxylic acids that may be associated with the aging of organic aerosols. Vertical profiles of formic acid in the upper troposphere support a negative temperature dependence of the reaction between formic acid and the hydroxyl radical as suggested by several theoretical studies.
Collapse
Affiliation(s)
- F. Paulot
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California, USA
| | - D. Wunch
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California, USA
| | - J. D. Crounse
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - G. C. Toon
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - D. B. Millet
- University of Minnesota, Department of Soil, Water and Climate, St. Paul, Minnesota, USA
| | - P. F. DeCarlo
- Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
| | - C. Vigouroux
- Belgian Institute for Space Aeronomy, Brussels, Belgium
| | - N. M. Deutscher
- School of Chemistry, University of Wollongong, Wollongong, Australia
| | | | - J. Notholt
- Institute of Environmental Physics, Bremen, Germany
| | - T. Warneke
- Institute of Environmental Physics, Bremen, Germany
| | - J. W. Hannigan
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - C. Warneke
- Earth System Research Laboratory, Chemical Sciences Division, NOAA, Boulder, Colorado, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
| | - J. A. de Gouw
- Earth System Research Laboratory, Chemical Sciences Division, NOAA, Boulder, Colorado, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
| | - E. J. Dunlea
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, USA
| | - M. De Mazière
- Belgian Institute for Space Aeronomy, Brussels, Belgium
| | - D. W. T. Griffith
- School of Chemistry, University of Wollongong, Wollongong, Australia
| | - P. Bernath
- Department of Chemistry, University of York, York, UK
| | - J. L. Jimenez
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, USA
| | - P. O. Wennberg
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
18
|
Nádasdi R, Zügner GL, Farkas M, Dóbé S, Maeda S, Morokuma K. Photochemistry of Methyl Ethyl Ketone: Quantum Yields and S
1
/S
0
‐Diradical Mechanism of Photodissociation. Chemphyschem 2010; 11:3883-95. [DOI: 10.1002/cphc.201000522] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rebeka Nádasdi
- Institute of Materials and Environmental Chemistry, Chemical Research Center of the Hungarian Academy of Sciences, Pusztaszeri út 59‐67, 1025 Budapest (Hungary), Fax: +36‐1‐438‐1147
| | - Gábor L. Zügner
- Institute of Materials and Environmental Chemistry, Chemical Research Center of the Hungarian Academy of Sciences, Pusztaszeri út 59‐67, 1025 Budapest (Hungary), Fax: +36‐1‐438‐1147
| | - Mária Farkas
- Institute of Materials and Environmental Chemistry, Chemical Research Center of the Hungarian Academy of Sciences, Pusztaszeri út 59‐67, 1025 Budapest (Hungary), Fax: +36‐1‐438‐1147
| | - Sándor Dóbé
- Institute of Materials and Environmental Chemistry, Chemical Research Center of the Hungarian Academy of Sciences, Pusztaszeri út 59‐67, 1025 Budapest (Hungary), Fax: +36‐1‐438‐1147
| | - Satoshi Maeda
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606‐8501 (Japan), Fax: +81‐75‐781‐4757
- The Hakubi Center, Kyoto University, Kyoto 606‐8501 (Japan)
| | - Keiji Morokuma
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606‐8501 (Japan), Fax: +81‐75‐781‐4757
- Department of Chemistry and Cherry L. Emerson Centre for Scientific Computation, Emory University, Atlanta, GA 30322 (USA)
| |
Collapse
|
19
|
Drury E, Jacob DJ, Spurr RJD, Wang J, Shinozuka Y, Anderson BE, Clarke AD, Dibb J, McNaughton C, Weber R. Synthesis of satellite (MODIS), aircraft (ICARTT), and surface (IMPROVE, EPA-AQS, AERONET) aerosol observations over eastern North America to improve MODIS aerosol retrievals and constrain surface aerosol concentrations and sources. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd012629] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Zaveri RA, Berkowitz CM, Brechtel FJ, Gilles MK, Hubbe JM, Jayne JT, Kleinman LI, Laskin A, Madronich S, Onasch TB, Pekour MS, Springston SR, Thornton JA, Tivanski AV, Worsnop DR. Nighttime chemical evolution of aerosol and trace gases in a power plant plume: Implications for secondary organic nitrate and organosulfate aerosol formation, NO3radical chemistry, and N2O5heterogeneous hydrolysis. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd013250] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Coddington OM, Pilewskie P, Redemann J, Platnick S, Russell PB, Schmidt KS, Gore WJ, Livingston J, Wind G, Vukicevic T. Examining the impact of overlying aerosols on the retrieval of cloud optical properties from passive remote sensing. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd012829] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Warneke C, de Gouw JA, Del Negro L, Brioude J, McKeen S, Stark H, Kuster WC, Goldan PD, Trainer M, Fehsenfeld FC, Wiedinmyer C, Guenther AB, Hansel A, Wisthaler A, Atlas E, Holloway JS, Ryerson TB, Peischl J, Huey LG, Hanks ATC. Biogenic emission measurement and inventories determination of biogenic emissions in the eastern United States and Texas and comparison with biogenic emission inventories. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd012445] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Pisso I, Real E, Law KS, Legras B, Bousserez N, Attié JL, Schlager H. Estimation of mixing in the troposphere from Lagrangian trace gas reconstructions during long-range pollution plume transport. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd011289] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Parrish DD, Allen DT, Bates TS, Estes M, Fehsenfeld FC, Feingold G, Ferrare R, Hardesty RM, Meagher JF, Nielsen-Gammon JW, Pierce RB, Ryerson TB, Seinfeld JH, Williams EJ. Overview of the Second Texas Air Quality Study (TexAQS II) and the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS). ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009jd011842] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
McKeen S, Grell G, Peckham S, Wilczak J, Djalalova I, Hsie EY, Frost G, Peischl J, Schwarz J, Spackman R, Holloway J, de Gouw J, Warneke C, Gong W, Bouchet V, Gaudreault S, Racine J, McHenry J, McQueen J, Lee P, Tang Y, Carmichael GR, Mathur R. An evaluation of real-time air quality forecasts and their urban emissions over eastern Texas during the summer of 2006 Second Texas Air Quality Study field study. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd011697] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Ito A, Sillman S, Penner JE. Global chemical transport model study of ozone response to changes in chemical kinetics and biogenic volatile organic compounds emissions due to increasing temperatures: Sensitivities to isoprene nitrate chemistry and grid resolution. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd011254] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Hudman RC, Murray LT, Jacob DJ, Turquety S, Wu S, Millet DB, Avery M, Goldstein AH, Holloway J. North American influence on tropospheric ozone and the effects of recent emission reductions: Constraints from ICARTT observations. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd010126] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Chang L, Schwartz SE, McGraw R, Lewis ER. Sensitivity of aerosol properties to new particle formation mechanism and to primary emissions in a continental‐scale chemical transport model. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd011019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Osthoff HD, Bates TS, Johnson JE, Kuster WC, Goldan P, Sommariva R, Williams EJ, Lerner BM, Warneke C, de Gouw JA, Pettersson A, Baynard T, Meagher JF, Fehsenfeld FC, Ravishankara AR, Brown SS. Regional variation of the dimethyl sulfide oxidation mechanism in the summertime marine boundary layer in the Gulf of Maine. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd010990] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Rinsland CP, Mahieu E, Chiou L, Herbin H. First ground-based infrared solar absorption measurements of free tropospheric methanol (CH3OH): Multidecade infrared time series from Kitt Peak (31.9°N 111.6°W): Trend, seasonal cycle, and comparison with previous measurements. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd011003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Millet DB, Atlas EL, Blake DR, Blake NJ, Diskin GS, Holloway JS, Hudman RC, Meinardi S, Ryerson TB, Sachse GW. Halocarbon emissions from the United States and Mexico and their global warming potential. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:1055-1060. [PMID: 19320157 DOI: 10.1021/es802146j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We use recent aircraft measurements of a comprehensive suite of anthropogenic halocarbons, carbon monoxide (CO), and related tracers to place new constraints on North American halocarbon emissions and quantify their global warming potential. Using a chemical transport model (GEOS-Chem) we find that the ensemble of observations are consistent with our prior best estimate of the U.S. anthropogenic CO source, but suggest a 30% underestimate of Mexican emissions. We develop an optimized CO emission inventory on this basis and quantify halocarbon emissions from their measured enhancements relative to CO. Emissions continue for many compounds restricted under the Montreal Protocol, and we show that halocarbons make up an important fraction of the total greenhouse gas source for both countries: our best estimate is 9% (uncertainty range 6-12%) and 32% (21-52%) of equivalent CO2 emissions for the U.S. and Mexico, respectively, on a 20 year time scale. Performance of bottom-up emission inventories is variable, with underestimates for some compounds and overestimates for others. Ongoing methylchloroform emissions are significant in the U.S. (2.8 Gg/y in 2004-2006), in contrast to bottom-up estimates (< 0.05 Gg), with implications for tropospheric OH calculations. Mexican methylchloroform emissions are minor.
Collapse
Affiliation(s)
- Dylan B Millet
- University of Minnesota, St. Paul, Minnesota 55108, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Pfister GG, Emmons LK, Hess PG, Lamarque JF, Thompson AM, Yorks JE. Analysis of the Summer 2004 ozone budget over the United States using Intercontinental Transport Experiment Ozonesonde Network Study (IONS) observations and Model of Ozone and Related Tracers (MOZART-4) simulations. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2008jd010190] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Helmig D, Tanner DM, Honrath RE, Owen RC, Parrish DD. Nonmethane hydrocarbons at Pico Mountain, Azores: 1. Oxidation chemistry in the North Atlantic region. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd008930] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
McMillan WW, Warner JX, Comer MM, Maddy E, Chu A, Sparling L, Eloranta E, Hoff R, Sachse G, Barnet C, Razenkov I, Wolf W. AIRS views transport from 12 to 22 July 2004 Alaskan/Canadian fires: Correlation of AIRS CO and MODIS AOD with forward trajectories and comparison of AIRS CO retrievals with DC-8 in situ measurements during INTEX-A/ICARTT. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009711] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Hayden KL, Macdonald AM, Gong W, Toom-Sauntry D, Anlauf KG, Leithead A, Li SM, Leaitch WR, Noone K. Cloud processing of nitrate. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009732] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Li SM, Macdonald AM, Leithead A, Leaitch WR, Gong W, Anlauf KG, Toom-Sauntry D, Hayden K, Bottenheim J, Wang D. Investigation of carbonyls in cloudwater during ICARTT. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009364] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Mathur R. Estimating the impact of the 2004 Alaskan forest fires on episodic particulate matter pollution over the eastern United States through assimilation of satellite-derived aerosol optical depths in a regional air quality model. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009767] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Drury E, Jacob DJ, Wang J, Spurr RJD, Chance K. Improved algorithm for MODIS satellite retrievals of aerosol optical depths over western North America. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009573] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
Cottrell LD, Griffin RJ, Jimenez JL, Zhang Q, Ulbrich I, Ziemba LD, Beckman PJ, Sive BC, Talbot RW. Submicron particles at Thompson Farm during ICARTT measured using aerosol mass spectrometry. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009192] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
40
|
de Gouw JA, Brock CA, Atlas EL, Bates TS, Fehsenfeld FC, Goldan PD, Holloway JS, Kuster WC, Lerner BM, Matthew BM, Middlebrook AM, Onasch TB, Peltier RE, Quinn PK, Senff CJ, Stohl A, Sullivan AP, Trainer M, Warneke C, Weber RJ, Williams EJ. Sources of particulate matter in the northeastern United States in summer: 1. Direct emissions and secondary formation of organic matter in urban plumes. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009243] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
White ML, Russo RS, Zhou Y, Mao H, Varner RK, Ambrose J, Veres P, Wingenter OW, Haase K, Stutz J, Talbot R, Sive BC. Volatile organic compounds in northern New England marine and continental environments during the ICARTT 2004 campaign. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009161] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Thornhill KL, Chen G, Dibb J, Jordan CE, Omar A, Winstead EL, Schuster G, Clarke A, McNaughton C, Scheuer E, Blake D, Sachse G, Huey LG, Singh HB, Anderson BE. The impact of local sources and long-range transport on aerosol properties over the northeast U.S. region during INTEX-NA. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd008666] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
43
|
Solberg S, Hov Ø, Søvde A, Isaksen ISA, Coddeville P, De Backer H, Forster C, Orsolini Y, Uhse K. European surface ozone in the extreme summer 2003. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009098] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Yu S, Mathur R, Schere K, Kang D, Pleim J, Young J, Tong D, Pouliot G, McKeen SA, Rao ST. Evaluation of real-time PM2.5forecasts and process analysis for PM2.5formation over the eastern United States using the Eta-CMAQ forecast model during the 2004 ICARTT study. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009226] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Ito A, Sudo K, Akimoto H, Sillman S, Penner JE. Global modeling analysis of tropospheric ozone and its radiative forcing from biomass burning emissions in the twentieth century. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2007jd008745] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Patris N, Cliff SS, Quinn PK, Kasem M, Thiemens MH. Isotopic analysis of aerosol sulfate and nitrate during ITCT-2k2: Determination of different formation pathways as a function of particle size. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2005jd006214] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Brown SS, Dubé WP, Osthoff HD, Stutz J, Ryerson TB, Wollny AG, Brock CA, Warneke C, de Gouw JA, Atlas E, Neuman JA, Holloway JS, Lerner BM, Williams EJ, Kuster WC, Goldan PD, Angevine WM, Trainer M, Fehsenfeld FC, Ravishankara AR. Vertical profiles in NO3and N2O5measured from an aircraft: Results from the NOAA P-3 and surface platforms during the New England Air Quality Study 2004. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2007jd008883] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Ambrose JL, Mao H, Mayne HR, Stutz J, Talbot R, Sive BC. Nighttime nitrate radical chemistry at Appledore Island, Maine during the 2004 International Consortium for Atmospheric Research on Transport and Transformation. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2007jd008756] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Fairlie TD, Avery MA, Pierce RB, Al-Saadi J, Dibb J, Sachse G. Impact of multiscale dynamical processes and mixing on the chemical composition of the upper troposphere and lower stratosphere during the Intercontinental Chemical Transport Experiment–North America. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007923] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Pierce RB, Schaack T, Al-Saadi JA, Fairlie TD, Kittaka C, Lingenfelser G, Natarajan M, Olson J, Soja A, Zapotocny T, Lenzen A, Stobie J, Johnson D, Avery MA, Sachse GW, Thompson A, Cohen R, Dibb JE, Crawford J, Rault D, Martin R, Szykman J, Fishman J. Chemical data assimilation estimates of continental U.S. ozone and nitrogen budgets during the Intercontinental Chemical Transport Experiment–North America. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007722] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|