1
|
Danovaro R, Levin LA, Fanelli G, Scenna L, Corinaldesi C. Microbes as marine habitat formers and ecosystem engineers. Nat Ecol Evol 2024; 8:1407-1419. [PMID: 38844822 DOI: 10.1038/s41559-024-02407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/12/2024] [Indexed: 08/10/2024]
Abstract
Despite their small individual size, marine prokaryotic and eukaryotic microbes can form large 3D structures and complex habitats. These habitats contribute to seafloor heterogeneity, facilitating colonization by animals and protists. They also provide food and refuge for a variety of species and promote novel ecological interactions. Here we illustrate the role of microbes as ecosystem engineers and propose a classification based on five types of habitat: microbial mats, microbial forests, microbial-mineralized habitats, microbial outcrops and microbial nodules. We also describe the metabolic processes of microbial habitat formers and their ecological roles, highlighting current gaps in knowledge. Their biogeography indicates that these habitats are widespread in all oceans and are continuously being discovered across latitudes and depths. These habitats are also expected to expand under future global change owing to their ability to exploit extreme environmental conditions. Given their high ecological relevance and their role in supporting endemic species and high biodiversity levels, microbial habitats should be included in future spatial planning, conservation and management measures.
Collapse
Affiliation(s)
- Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy.
- National Biodiversity Future Center, Palermo, Italy.
| | - Lisa A Levin
- Integrative Oceanography Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA
| | - Ginevra Fanelli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Lorenzo Scenna
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Cinzia Corinaldesi
- National Biodiversity Future Center, Palermo, Italy.
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Ancona, Italy.
| |
Collapse
|
2
|
DePoy AN, King GM. Distribution and diversity of anaerobic thermophiles and putative anaerobic nickel-dependent carbon monoxide-oxidizing thermophiles in mesothermal soils and sediments. Front Microbiol 2023; 13:1096186. [PMID: 36699584 PMCID: PMC9868602 DOI: 10.3389/fmicb.2022.1096186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Even though thermophiles are best known from geothermal and other heated systems, numerous studies have demonstrated that they occur ubiquitously in mesothermal and permanently cold soils and sediments. Cultivation based studies of the latter have revealed that the thermophiles within them are mostly spore-forming members of the Firmicutes. Since the geographic distribution of spores is presumably unconstrained by transport through the atmosphere, similar communities (composition and diversity) of thermophiles might be expected to emerge in mesothermal habitats after they are heated. Alternatively, thermophiles might experience environmental selection before or after heating leading to divergent communities. After demonstrating the ubiquity of anaerobic thermophiles and CO uptake in a variety of mesothermal habitats and two hot springs, we used high throughput sequencing of 16S rRNA genes to assess the composition and diversity of populations that emerged after incubation at 60°C with or without headspace CO concentrations of 25%. Anaerobic Firmicutes dominated relative abundances at most sites but anaerobic thermophilic members of the Acidobacteria and Proteobacteria were also common. Nonetheless, compositions at the amplicon sequence variant (ASV) level varied among the sites with no convergence resulting from heating or CO addition as indicated by beta diversity analyses. The distinctions among thermophilic communities paralleled patterns observed for unheated "time zero" mesothermal soils and sediments. Occupancy analyses showed that the number of ASVs occupying each of n sites decreased unimodally with increasing n; no ASV occupied all 14 sites and only one each occupied 11 and 12 sites, while 69.3% of 1873 ASVs occupied just one site. Nonetheless, considerations of distances among the sites occupied by individual ASVs along with details of their distributions indicated that taxa were not dispersal limited but rather were constrained by environmental selection. This conclusion was supported by βMNTD and βNTI analyses, which showed dispersal limitation was only a minor contributor to taxon distributions.
Collapse
|
3
|
Coskun ÖK, Gomez-Saez GV, Beren M, Ozcan D, Hosgormez H, Einsiedl F, Orsi WD. Carbon metabolism and biogeography of candidate phylum " Candidatus Bipolaricaulota" in geothermal environments of Biga Peninsula, Turkey. Front Microbiol 2023; 14:1063139. [PMID: 36910224 PMCID: PMC9992828 DOI: 10.3389/fmicb.2023.1063139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/17/2023] [Indexed: 02/25/2023] Open
Abstract
Terrestrial hydrothermal springs and aquifers are excellent sites to study microbial biogeography because of their high physicochemical heterogeneity across relatively limited geographic regions. In this study, we performed 16S rRNA gene sequencing and metagenomic analyses of the microbial diversity of 11 different geothermal aquifers and springs across the tectonically active Biga Peninsula (Turkey). Across geothermal settings ranging in temperature from 43 to 79°C, one of the most highly represented groups in both 16S rRNA gene and metagenomic datasets was affiliated with the uncultivated phylum "Candidatus Bipolaricaulota" (former "Ca. Acetothermia" and OP1 division). The highest relative abundance of "Ca. Bipolaricaulota" was observed in a 68°C geothermal brine sediment, where it dominated the microbial community, representing 91% of all detectable 16S rRNA genes. Correlation analysis of "Ca. Bipolaricaulota" operational taxonomic units (OTUs) with physicochemical parameters indicated that salinity was the strongest environmental factor measured associated with the distribution of this novel group in geothermal fluids. Correspondingly, analysis of 23 metagenome-assembled genomes (MAGs) revealed two distinct groups of "Ca. Bipolaricaulota" MAGs based on the differences in carbon metabolism: one group encoding the bacterial Wood-Ljungdahl pathway (WLP) for H2 dependent CO2 fixation is selected for at lower salinities, and a second heterotrophic clade that lacks the WLP that was selected for under hypersaline conditions in the geothermal brine sediment. In conclusion, our results highlight that the biogeography of "Ca. Bipolaricaulota" taxa is strongly correlated with salinity in hydrothermal ecosystems, which coincides with key differences in carbon acquisition strategies. The exceptionally high relative abundance of apparently heterotrophic representatives of this novel candidate Phylum in geothermal brine sediment observed here may help to guide future enrichment experiments to obtain representatives in pure culture.
Collapse
Affiliation(s)
- Ömer K Coskun
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gonzalo V Gomez-Saez
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany.,GeoBio-CenterLMU, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Murat Beren
- Department of Geological Engineering, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Dogacan Ozcan
- Department of Geological Engineering, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Hakan Hosgormez
- Department of Geological Engineering, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Florian Einsiedl
- Chair of Hydrogeology, TUM School of Engineering and Design, Technical University of Munich, Munich, Germany
| | - William D Orsi
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany.,GeoBio-CenterLMU, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
4
|
Complex subsurface hydrothermal fluid mixing at a submarine arc volcano supports distinct and highly diverse microbial communities. Proc Natl Acad Sci U S A 2020; 117:32627-32638. [PMID: 33277434 PMCID: PMC7768687 DOI: 10.1073/pnas.2019021117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hydrothermally active submarine volcanoes are mineral-rich biological oases contributing significantly to chemical fluxes in the deep sea, yet little is known about the microbial communities inhabiting these systems. Here we investigate the diversity of microbial life in hydrothermal deposits and their metagenomics-inferred physiology in light of the geological history and resulting hydrothermal fluid paths in the subsurface of Brothers submarine volcano north of New Zealand on the southern Kermadec arc. From metagenome-assembled genomes we identified over 90 putative bacterial and archaeal genomic families and nearly 300 previously unknown genera, many potentially endemic to this submarine volcanic environment. While magmatically influenced hydrothermal systems on the volcanic resurgent cones of Brothers volcano harbor communities of thermoacidophiles and diverse members of the superphylum "DPANN," two distinct communities are associated with the caldera wall, likely shaped by two different types of hydrothermal circulation. The communities whose phylogenetic diversity primarily aligns with that of the cone sites and magmatically influenced hydrothermal systems elsewhere are characterized predominately by anaerobic metabolisms. These populations are probably maintained by fluids with greater magmatic inputs that have interacted with different (deeper) previously altered mineral assemblages. However, proximal (a few meters distant) communities with gene-inferred aerobic, microaerophilic, and anaerobic metabolisms are likely supported by shallower seawater-dominated circulation. Furthermore, mixing of fluids from these two distinct hydrothermal circulation systems may have an underlying imprint on the high microbial phylogenomic diversity. Collectively our results highlight the importance of considering geologic evolution and history of subsurface processes in studying microbial colonization and community dynamics in volcanic environments.
Collapse
|
5
|
Hou J, Sievert SM, Wang Y, Seewald JS, Natarajan VP, Wang F, Xiao X. Microbial succession during the transition from active to inactive stages of deep-sea hydrothermal vent sulfide chimneys. MICROBIOME 2020; 8:102. [PMID: 32605604 PMCID: PMC7329443 DOI: 10.1186/s40168-020-00851-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/28/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Deep-sea hydrothermal vents are highly productive biodiversity hotspots in the deep ocean supported by chemosynthetic microorganisms. Prominent features of these systems are sulfide chimneys emanating high-temperature hydrothermal fluids. While several studies have investigated the microbial diversity in both active and inactive sulfide chimneys that have been extinct for up to thousands of years, little is known about chimneys that have ceased activity more recently, as well as the microbial succession occurring during the transition from active to inactive chimneys. RESULTS Genome-resolved metagenomics was applied to an active and a recently extinct (~ 7 years) sulfide chimney from the 9-10° N hydrothermal vent field on the East Pacific Rise. Full-length 16S rRNA gene and a total of 173 high-quality metagenome assembled genomes (MAGs) were retrieved for comparative analysis. In the active chimney (L-vent), sulfide- and/or hydrogen-oxidizing Campylobacteria and Aquificae with the potential for denitrification were identified as the dominant community members and primary producers, fixing carbon through the reductive tricarboxylic acid (rTCA) cycle. In contrast, the microbiome of the recently extinct chimney (M-vent) was largely composed of heterotrophs from various bacterial phyla, including Delta-/Beta-/Alphaproteobacteria and Bacteroidetes. Gammaproteobacteria were identified as the main primary producers, using the oxidation of metal sulfides and/or iron oxidation coupled to nitrate reduction to fix carbon through the Calvin-Benson-Bassham (CBB) cycle. Further analysis revealed a phylogenetically distinct Nitrospirae cluster that has the potential to oxidize sulfide minerals coupled to oxygen and/or nitrite reduction, as well as for sulfate reduction, and that might serve as an indicator for the early stages of chimneys after venting has ceased. CONCLUSIONS This study sheds light on the composition, metabolic functions, and succession of microbial communities inhabiting deep-sea hydrothermal vent sulfide chimneys. Collectively, microbial succession during the life span of a chimney could be described to proceed from a "fluid-shaped" microbial community in newly formed and actively venting chimneys supported by the oxidation of reductants in the hydrothermal fluid to a "mineral-shaped" community supported by the oxidation of minerals after hydrothermal activity has ceased. Remarkably, the transition appears to occur within the first few years, after which the communities stay stable for thousands of years. Video Abstract.
Collapse
Affiliation(s)
- Jialin Hou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Stefan M Sievert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jeffrey S Seewald
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Vengadesh Perumal Natarajan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China.
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China.
| |
Collapse
|
6
|
Böhnke S, Sass K, Gonnella G, Diehl A, Kleint C, Bach W, Zitoun R, Koschinsky A, Indenbirken D, Sander SG, Kurtz S, Perner M. Parameters Governing the Community Structure and Element Turnover in Kermadec Volcanic Ash and Hydrothermal Fluids as Monitored by Inorganic Electron Donor Consumption, Autotrophic CO 2 Fixation and 16S Tags of the Transcriptome in Incubation Experiments. Front Microbiol 2019; 10:2296. [PMID: 31649639 PMCID: PMC6794353 DOI: 10.3389/fmicb.2019.02296] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/20/2019] [Indexed: 12/01/2022] Open
Abstract
The microbial community composition and its functionality was assessed for hydrothermal fluids and volcanic ash sediments from Haungaroa and hydrothermal fluids from the Brothers volcano in the Kermadec island arc (New Zealand). The Haungaroa volcanic ash sediments were dominated by epsilonproteobacterial Sulfurovum sp. Ratios of electron donor consumption to CO2 fixation from respective sediment incubations indicated that sulfide oxidation appeared to fuel autotrophic CO2 fixation, coinciding with thermodynamic estimates predicting sulfide oxidation as the major energy source in the environment. Transcript analyses with the sulfide-supplemented sediment slurries demonstrated that Sulfurovum prevailed in the experiments as well. Hence, our sediment incubations appeared to simulate environmental conditions well suggesting that sulfide oxidation catalyzed by Sulfurovum members drive biomass synthesis in the volcanic ash sediments. For the Haungaroa fluids no inorganic electron donor and responsible microorganisms could be identified that clearly stimulated autotrophic CO2 fixation. In the Brothers hydrothermal fluids Sulfurimonas (49%) and Hydrogenovibrio/Thiomicrospira (15%) species prevailed. Respective fluid incubations exhibited highest autotrophic CO2 fixation if supplemented with iron(II) or hydrogen. Likewise catabolic energy calculations predicted primarily iron(II) but also hydrogen oxidation as major energy sources in the natural fluids. According to transcript analyses with material from the incubation experiments Thiomicrospira/Hydrogenovibrio species dominated, outcompeting Sulfurimonas. Given that experimental conditions likely only simulated environmental conditions that cause Thiomicrospira/Hydrogenovibrio but not Sulfurimonas to thrive, it remains unclear which environmental parameters determine Sulfurimonas’ dominance in the Brothers natural hydrothermal fluids.
Collapse
Affiliation(s)
- Stefanie Böhnke
- Molecular Biology of Microbial Consortia, Institute of Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| | - Katharina Sass
- Molecular Biology of Microbial Consortia, Institute of Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| | - Giorgio Gonnella
- Center for Bioinformatics (ZBH), Universität Hamburg, Hamburg, Germany
| | - Alexander Diehl
- Department of Geosciences, MARUM - Centre for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Charlotte Kleint
- Department of Physics and Earth Sciences, Jacobs University Bremen, Bremen, Germany
| | - Wolfgang Bach
- Department of Geosciences, MARUM - Centre for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Rebecca Zitoun
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Andrea Koschinsky
- Department of Physics and Earth Sciences, Jacobs University Bremen, Bremen, Germany
| | - Daniela Indenbirken
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Sylvia G Sander
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Stefan Kurtz
- Center for Bioinformatics (ZBH), Universität Hamburg, Hamburg, Germany
| | - Mirjam Perner
- Molecular Biology of Microbial Consortia, Institute of Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
7
|
Changes in the Substrate Source Reveal Novel Interactions in the Sediment-Derived Methanogenic Microbial Community. Int J Mol Sci 2019; 20:ijms20184415. [PMID: 31500341 PMCID: PMC6770359 DOI: 10.3390/ijms20184415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/23/2022] Open
Abstract
Methanogenesis occurs in many natural environments and is used in biotechnology for biogas production. The efficiency of methane production depends on the microbiome structure that determines interspecies electron transfer. In this research, the microbial community retrieved from mining subsidence reservoir sediment was used to establish enrichment cultures on media containing different carbon sources (tryptone, yeast extract, acetate, CO2/H2). The microbiome composition and methane production rate of the cultures were screened as a function of the substrate and transition stage. The relationships between the microorganisms involved in methane formation were the major focus of this study. Methanogenic consortia were identified by next generation sequencing (NGS) and functional genes connected with organic matter transformation were predicted using the PICRUSt approach and annotated in the KEGG. The methane production rate (exceeding 12.8 mg CH4 L−1 d−1) was highest in the culture grown with tryptone, yeast extract, and CO2/H2. The analysis of communities that developed on various carbon sources casts new light on the ecophysiology of the recently described bacterial phylum Caldiserica and methanogenic Archaea representing the genera Methanomassiliicoccus and Methanothrix. Furthermore, it is hypothesized that representatives of Caldiserica may support hydrogenotrophic methanogenesis.
Collapse
|
8
|
Kadnikov VV, Mardanov AV, Beletsky AV, Frank YA, Karnachuk OV, Ravin NV. Complete Genome Sequence of an Uncultured Bacterium of the Candidate Phylum Bipolaricaulota. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719040064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
Pisapia C, Gérard E, Gérard M, Lecourt L, Lang SQ, Pelletier B, Payri CE, Monnin C, Guentas L, Postec A, Quéméneur M, Erauso G, Ménez B. Mineralizing Filamentous Bacteria from the Prony Bay Hydrothermal Field Give New Insights into the Functioning of Serpentinization-Based Subseafloor Ecosystems. Front Microbiol 2017; 8:57. [PMID: 28197130 PMCID: PMC5281578 DOI: 10.3389/fmicb.2017.00057] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/09/2017] [Indexed: 11/13/2022] Open
Abstract
Despite their potential importance as analogs of primitive microbial metabolisms, the knowledge of the structure and functioning of the deep ecosystems associated with serpentinizing environments is hampered by the lack of accessibility to relevant systems. These hyperalkaline environments are depleted in dissolved inorganic carbon (DIC), making the carbon sources and assimilation pathways in the associated ecosystems highly enigmatic. The Prony Bay Hydrothermal Field (PHF) is an active serpentinization site where, similar to Lost City (Mid-Atlantic Ridge), high-pH fluids rich in H2 and CH4 are discharged from carbonate chimneys at the seafloor, but in a shallower lagoonal environment. This study aimed to characterize the subsurface microbial ecology of this environment by focusing on the earliest stages of chimney construction, dominated by the discharge of hydrothermal fluids of subseafloor origin. By jointly examining the mineralogy and the microbial diversity of the conduits of juvenile edifices at the micrometric scale, we find a central role of uncultivated bacteria belonging to the Firmicutes in the ecology of the PHF. These bacteria, along with members of the phyla Acetothermia and Omnitrophica, are identified as the first chimneys inhabitants before archaeal Methanosarcinales. They are involved in the construction and early consolidation of the carbonate structures via organomineralization processes. Their predominance in the most juvenile and nascent hydrothermal chimneys, and their affiliation with environmental subsurface microorganisms, indicate that they are likely discharged with hydrothermal fluids from the subseafloor. They may thus be representative of endolithic serpentinization-based ecosystems, in an environment where DIC is limited. In contrast, heterotrophic and fermentative microorganisms may consume organic compounds from the abiotic by-products of serpentinization processes and/or from life in the deeper subsurface. We thus propose that the Firmicutes identified at PHF may have a versatile metabolism with the capability to use diverse organic compounds from biological or abiotic origin. From that perspective, this study sheds new light on the structure of deep microbial communities living at the energetic edge in serpentinites and may provide an alternative model of the earliest metabolisms.
Collapse
Affiliation(s)
- Céline Pisapia
- Geomicrobiology Group, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche ScientifiqueParis, France
- DISCO beamline, Synchrotron SOLEILSaint Aubin, France
| | - Emmanuelle Gérard
- Geomicrobiology Group, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche ScientifiqueParis, France
| | - Martine Gérard
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Institut de Recherche pour le Développement, Université Pierre et Marie CurieParis, France
| | - Léna Lecourt
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Institut de Recherche pour le Développement, Université Pierre et Marie CurieParis, France
| | - Susan Q. Lang
- Department of Earth and Ocean Sciences, School of the Earth, Ocean and Environment, University of South Carolina, ColumbiaSC, USA
| | - Bernard Pelletier
- GIS Grand Observatoire de l’environnement et de la biodiversité terrestre et marine dans le Pacifique Sud, Centre IRD de NouméaNouméa, New Caledonia
| | | | - Christophe Monnin
- Géosciences Environnement Toulouse, Université Paul Sabatier, Centre National de la Recherche Scientifique, Institut de Recherche pour le DéveloppementToulouse, France
| | - Linda Guentas
- UR227 COREUS, Centre IRD de NouméaNouméa, New Caledonia
- Laboratoire Matériaux Polymères Interfaces Environnement Marin EA 4323, Université de ToulonLa Garde, France
- Mediterranean Institute of Oceanography, Centre IRD de NouméaNouméa, New Caledonia
- Laboratoire Insulaire du Vivant et de l’Environnement, Université de la Nouvelle-CalédonieNouméa, New Caledonia
| | - Anne Postec
- Aix Marseille Université, Centre National de la Recherche Scientifique – Institut National des Sciences de L’Univers, Université de Toulon, Institut de Recherche pour le Développement, Mediterranean Institute of OceanographyMarseille, France
| | - Marianne Quéméneur
- Aix Marseille Université, Centre National de la Recherche Scientifique – Institut National des Sciences de L’Univers, Université de Toulon, Institut de Recherche pour le Développement, Mediterranean Institute of OceanographyMarseille, France
| | - Gaël Erauso
- Aix Marseille Université, Centre National de la Recherche Scientifique – Institut National des Sciences de L’Univers, Université de Toulon, Institut de Recherche pour le Développement, Mediterranean Institute of OceanographyMarseille, France
| | - Bénédicte Ménez
- Geomicrobiology Group, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche ScientifiqueParis, France
| |
Collapse
|
10
|
Gulmann LK, Beaulieu SE, Shank TM, Ding K, Seyfried WE, Sievert SM. Bacterial diversity and successional patterns during biofilm formation on freshly exposed basalt surfaces at diffuse-flow deep-sea vents. Front Microbiol 2015; 6:901. [PMID: 26441852 PMCID: PMC4564720 DOI: 10.3389/fmicb.2015.00901] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/17/2015] [Indexed: 11/13/2022] Open
Abstract
Many deep-sea hydrothermal vent systems are regularly impacted by volcanic eruptions, leaving fresh basalt where abundant animal and microbial communities once thrived. After an eruption, microbial biofilms are often the first visible evidence of biotic re-colonization. The present study is the first to investigate microbial colonization of newly exposed basalt surfaces in the context of vent fluid chemistry over an extended period of time (4-293 days) by deploying basalt blocks within an established diffuse-flow vent at the 9°50' N vent field on the East Pacific Rise. Additionally, samples obtained after a recent eruption at the same vent field allowed for comparison between experimental results and those from natural microbial re-colonization. Over 9 months, the community changed from being composed almost exclusively of Epsilonproteobacteria to a more diverse assemblage, corresponding with a potential expansion of metabolic capabilities. The process of biofilm formation appears to generate similar surface-associated communities within and across sites by selecting for a subset of fluid-associated microbes, via species sorting. Furthermore, the high incidence of shared operational taxonomic units over time and across different vent sites suggests that the microbial communities colonizing new surfaces at diffuse-flow vent sites might follow a predictable successional pattern.
Collapse
Affiliation(s)
- Lara K Gulmann
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA, USA
| | - Stace E Beaulieu
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA, USA
| | - Timothy M Shank
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA, USA
| | - Kang Ding
- Department of Earth Sciences, University of Minnesota, Minneapolis MN, USA
| | - William E Seyfried
- Department of Earth Sciences, University of Minnesota, Minneapolis MN, USA
| | - Stefan M Sievert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA, USA
| |
Collapse
|
11
|
Reysenbach AL, Liu Y, Lindgren AR, Wagner ID, Sislak CD, Mets A, Schouten S. Mesoaciditoga lauensis gen. nov., sp. nov., a moderately thermoacidophilic member of the order Thermotogales from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 2013; 63:4724-4729. [PMID: 23959829 DOI: 10.1099/ijs.0.050518-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel moderately thermophilic, heterotrophic bacterium was isolated from a deep-sea hydrothermal vent deposit from the Mariner field along the Eastern Lau Spreading Center of the south-western Pacific Ocean. Cells were short motile rods (about 0.4×0.8 µm) that occurred singly or in pairs and were surrounded by a sheath-like membrane or 'toga'. The cells grew between 45 and 65 °C (optimum 57-60 °C) and at pH 4.1-6.0 (optimum pH 5.5-5.7) and grew optimally at 3 % (w/v) NaCl. The isolate grew on a range of carbon and proteinaceous substrates and reduced sulfur. The G+C content of the DNA was about 45 mol%. Phylogenetic analysis of the 16S rRNA gene sequence placed the new isolate as a deeply diverging lineage within the order Thermotogales. Based on the physiological, morphological and phylogenetic data, the isolate represents a novel species of a new genus with the proposed name Mesoaciditoga lauensis gen. nov., sp. nov. The type strain of Mesoaciditoga lauensis is cd-1655R(T) ( = DSM 25116(T) = OCM 1212(T)).
Collapse
Affiliation(s)
- Anna-Louise Reysenbach
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR 97201, USA
| | - Yitai Liu
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR 97201, USA
| | - Annie R Lindgren
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR 97201, USA
| | - Isaac D Wagner
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR 97201, USA
| | - Christine D Sislak
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR 97201, USA
| | - Anchelique Mets
- Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, 1790 AB Den Burg, Texel, The Netherlands
| | - Stefan Schouten
- Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, 1790 AB Den Burg, Texel, The Netherlands
| |
Collapse
|
12
|
Candidate OP Phyla: Importance, Ecology and Cultivation Prospects. Indian J Microbiol 2011; 50:474-7. [PMID: 22282618 DOI: 10.1007/s12088-011-0144-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 12/22/2010] [Indexed: 10/18/2022] Open
Abstract
OP phyla were created in the domain bacteria, based on the group of 16S rRNA gene sequences recovered from the Obsidian Pool. However, due to the lack of cultured representative it is referred to as candidate phyla. Wider ecological occurrence was predicted for the OP phyla, especially OP3, OP10 and OP11. Recently, members of phylum OP5 and OP10 were cultured, providing clues to their cultivation prospects. At last the bioprospecting potentials of the OP members are discussed herein.
Collapse
|
13
|
Auchtung TA, Shyndriayeva G, Cavanaugh CM. 16S rRNA phylogenetic analysis and quantification of Korarchaeota indigenous to the hot springs of Kamchatka, Russia. Extremophiles 2010; 15:105-16. [PMID: 21153671 DOI: 10.1007/s00792-010-0340-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 11/15/2010] [Indexed: 10/18/2022]
Abstract
The candidate archaeal division Korarchaeota is known primarily from deeply branching sequences of 16S rRNA genes PCR-amplified from hydrothermal springs. Parallels between the phylogeny of these genes and the geographic locations where they were identified suggested that Korarchaeota exhibit a high level of endemism. In this study, the influence of geographic isolation and select environmental factors on the diversification of the Korarchaeota was investigated. Fourteen hot springs from three different regions of Kamchatka, Russia were screened by PCR using Korarchaeota-specific and general Archaea 16S rRNA gene-targeting primers, cloning, and sequencing. Phylogenetic analyses of these sequences with Korarchaeota 16S rRNA sequences previously identified from around the world suggested that all Kamchatka sequences cluster together in a unique clade that subdivides by region within the peninsula. Consistent with endemism, 16S rRNA gene group-specific quantitative PCR of all Kamchatka samples detected only the single clade of Korarchaeota that was found by the non-quantitative PCR screening. In addition, their genes were measured in only low numbers; small Korarchaeota populations would present fewer chances for dispersal to and colonization of other sites. Across the entire division of Korarchaeota, common geographic locations, temperatures, or salinities of identification sites united sequence clusters at different phylogenetic levels, suggesting varied roles of these factors in the diversification of Korarchaeota.
Collapse
Affiliation(s)
- Thomas A Auchtung
- Department of Organismic and Evolutionary Biology, Harvard University, Biological Laboratories 4083, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
14
|
Forget NL, Murdock SA, Juniper SK. Bacterial diversity in Fe-rich hydrothermal sediments at two South Tonga Arc submarine volcanoes. GEOBIOLOGY 2010; 8:417-432. [PMID: 20533949 DOI: 10.1111/j.1472-4669.2010.00247.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Seafloor iron oxide deposits are a common feature of submarine hydrothermal systems. Morphological study of these deposits has led investigators to suggest a microbiological role in their formation, through the oxidation of reduced Fe in hydrothermal fluids. Fe-oxidizing bacteria, including the recently described Zetaproteobacteria, have been isolated from a few of these deposits but generally little is known about the microbial diversity associated with this habitat. In this study, we characterized bacterial diversity in two Fe oxide samples collected on the seafloor of Volcanoes 1 and 19 on the South Tonga Arc. We were particularly interested in confirming the presence of Zetaproteobacteria at these two sites and in documenting the diversity of groups other than Fe oxidizers. Our results (small subunit rRNA gene sequence data) showed a surprisingly high bacterial diversity, with 150 operational taxonomic units belonging to 19 distinct taxonomic groups. Both samples were dominated by Zetaproteobacteria Fe oxidizers. This group was most abundant at Volcano 1, where sediments were richer in Fe and contained more crystalline forms of Fe oxides. Other groups of bacteria found at these two sites include known S- and a few N-metabolizing bacteria, all ubiquitous in marine environments. The low similarity of our clones with the GenBank database suggests that new species and perhaps new families were recovered. The results of this study suggest that Fe-rich hydrothermal sediments, while dominated by Fe oxidizers, can be exploited by a variety of autotrophic and heterotrophic micro-organisms.
Collapse
Affiliation(s)
- N L Forget
- Department of Biology, University of Victoria, Petch Building 116, 3800 Finnerty Rd, Victoria, BC, Canada.
| | | | | |
Collapse
|