1
|
Fauré N, Chen J, Artiglia L, Ammann M, Bartels-Rausch T, Kanji ZA, Wang S, Pettersson JBC, Thomson ES, Gladich I, Kong X. Formation of Sodium Chloride on the Surface of Sulfate-Rich Gobi Desert Salt in Response to Water Adsorption. ACS ES&T AIR 2024; 1:1373-1382. [PMID: 39539464 PMCID: PMC11555638 DOI: 10.1021/acsestair.4c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Dust storms in arid regions transport desert salts and dust, affecting geochemical processes, atmospheric chemistry, climate, and human health. This study examines how the gas-salt interface composition of desert salt changes with varying relative humidity (RH), using ambient pressure X-ray photoelectron spectroscopy (APXPS), near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, and molecular dynamics (MD) simulations. Ion chromatography analysis of desert salt indicates it is predominantly composed of sulfate, sodium, and magnesium ions, with traces of calcium, chloride, nitrate, and potassium ions. APXPS and NEXAFS surface analyses show that, at 0% RH, the gas-salt interface primarily features Na2SO4, with smaller amounts of MgSO4 and a trace of NaCl on the top layers. As humidity increases, the composition at the gas-salt interface changes, notably with Mg2+ binding to SO4 2- ions and a dominant NaCl formation throughout the studied surface depth. This shift indicates a transition from a sulfate- to a chloride-rich surface as humidity increases, contradicting MD simulations that predicted that on salt crystals covered by a submonolayer of water with electrolytes, chloride ions migrate toward the liquid-solid interface. This discrepancy indicates that other factors, like enhanced ionic mobility at grain boundaries, might drive the accumulation of chloride ions at the gas interface. The study emphasizes the crucial role of adsorbed water in ion migration and surface composition transformation of desert salts, affecting geochemical processes in arid regions.
Collapse
Affiliation(s)
- Nicolas Fauré
- Department
of Chemistry and Molecular Biology, Atmospheric Science, University of Gothenburg, SE-41390 Gothenburg, Sweden
| | - Jie Chen
- Department
of Environmental Systems Science, ETH Zürich, Zürich, 8092, Switzerland
| | - Luca Artiglia
- Laboratory
of Atmospheric Chemistry, Paul Scherrer
Institute, CH-5232 Villigen PSI, Switzerland
| | - Markus Ammann
- Laboratory
of Atmospheric Chemistry, Paul Scherrer
Institute, CH-5232 Villigen PSI, Switzerland
| | - Thorsten Bartels-Rausch
- Laboratory
of Atmospheric Chemistry, Paul Scherrer
Institute, CH-5232 Villigen PSI, Switzerland
| | - Zamin A. Kanji
- Department
of Environmental Systems Science, ETH Zürich, Zürich, 8092, Switzerland
| | - Sen Wang
- Shaanxi
Key Laboratory of Earth Surface System and Environmental Carrying
Capacity, Northwest University, Xi’an 710127, China
| | - Jan B. C. Pettersson
- Department
of Chemistry and Molecular Biology, Atmospheric Science, University of Gothenburg, SE-41390 Gothenburg, Sweden
| | - Erik S. Thomson
- Department
of Chemistry and Molecular Biology, Atmospheric Science, University of Gothenburg, SE-41390 Gothenburg, Sweden
| | - Ivan Gladich
- European
Centre for Living Technology (ECLT), Dorsoduro, Calle Crosera, 30124 Venice, Italy
- Qatar Environment
and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 31110, Doha, Qatar
| | - Xiangrui Kong
- Department
of Chemistry and Molecular Biology, Atmospheric Science, University of Gothenburg, SE-41390 Gothenburg, Sweden
| |
Collapse
|
2
|
Liu X, Turner JR, Hand JL, Schichtel BA, Martin RV. A Global-Scale Mineral Dust Equation. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2022; 127:e2022JD036937. [PMID: 36591339 PMCID: PMC9787586 DOI: 10.1029/2022jd036937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/11/2022] [Accepted: 09/03/2022] [Indexed: 06/17/2023]
Abstract
A robust method to estimate mineral dust mass in ambient particulate matter (PM) is essential, as the dust fraction cannot be directly measured but is needed to understand dust impacts on the environment and human health. In this study, a global-scale dust equation is developed that builds on the widely used Interagency Monitoring of Protected Visual Environments (IMPROVE) network's "soil" formula that is based on five measured elements (Al, Si, Ca, Fe, and Ti). We incorporate K, Mg, and Na into the equation using the mineral-to-aluminum (MAL) mass ratio of (K2O + MgO + Na2O)/Al2O3 and apply a correction factor (CF) to account for other missing compounds. We obtain region-specific MAL ratios and CFs by investigating the variation in dust composition across desert regions. To calculate reference dust mass for equation evaluation, we use total-mineral-mass (summing all oxides of crustal elements) and residual-mass (subtracting non-dust species from total PM) approaches. For desert dust in source regions, the normalized mean bias (NMB) of the global equation (within ±1%) is significantly smaller than the NMB of the IMPROVE equation (-6% to 10%). For PM2.5 with high dust content measured by the IMPROVE network, the global equation estimates dust mass well (NMB within ±5%) at most sites. For desert dust transported to non-source regions, the global equation still performs well (NMB within ±2%). The global equation can also represent paved road, unpaved road, and agricultural soil dust (NMB within ±5%). This global equation provides a promising approach for calculating dust mass based on elemental analysis of dust.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Energy, Environmental and Chemical EngineeringWashington University in St. LouisSt. LouisMOUSA
| | - Jay R. Turner
- Department of Energy, Environmental and Chemical EngineeringWashington University in St. LouisSt. LouisMOUSA
| | - Jenny L. Hand
- Cooperative Institute for Research in the AtmosphereColorado State UniversityFort CollinsCOUSA
| | | | - Randall V. Martin
- Department of Energy, Environmental and Chemical EngineeringWashington University in St. LouisSt. LouisMOUSA
| |
Collapse
|
3
|
Kong X, Zhu S, Shavorskiy A, Li J, Liu W, Corral Arroyo P, Signorell R, Wang S, Pettersson JBC. Surface solvation of Martian salt analogues at low relative humidities. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2022; 2:137-145. [PMID: 35419521 PMCID: PMC8929290 DOI: 10.1039/d1ea00092f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/24/2022] [Indexed: 11/21/2022]
Abstract
Salt aerosols play important roles in many processes related to atmospheric chemistry and the climate systems on both Earth and Mars. Complicated and still poorly understood processes occur on the salt surfaces when interacting with water vapor. In this study, ambient pressure X-ray photoelectron spectroscopy (APXPS) is used to characterize the surface chemical environment of Martian salt analogues originating from saline lakes and playas, as well as their responses to varying relative humidities. Generally, APXPS shows similar ionic compositions to those observed by ion chromatography (IC). However, XPS is a surface-sensitive method while IC is bulk-sensitive and differences are observed for species that preferentially partition to the surface or the bulk. Element-selective surface enhancement of Cl- is observed, likely caused by the presence of SO4 2-. In addition, Mg2+ is concentrated on the surface while Na+ is relatively depleted in the surface layer. Hence, the cations (Na+ and Mg2+) and the anions (Cl- and SO4 2-) show competitive correlations. At elevated relative humidity (RH), no major spectral changes were observed in the XPS results, except for the growth of an oxygen component originating from condensed H2O. Near-edge X-ray absorption fine structure (NEXAFS) measurements show that the magnesium and sodium spectra are sensitive to the presence of water, and the results imply that the surface is fully solvated already at RH = 5%. The surface solvation is also fully reversible as the RH is reduced. No major differences are observed between sample types and sample locations, indicating that the salts originated from saline lakes commonly have solvated surfaces under the environmental conditions on Earth.
Collapse
Affiliation(s)
- Xiangrui Kong
- Department of Chemistry and Molecular Biology, Atmospheric Science, University of Gothenburg SE-41296 Gothenburg Sweden
| | - Suyun Zhu
- MAX IV Laboratory, Lund University SE221-00 Lund Sweden
| | | | - Jun Li
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University Xi'an 710127 China
| | - Wanyu Liu
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University Xi'an 710127 China
| | - Pablo Corral Arroyo
- Department of Chemistry and Applied Biosciences, ETH Zurich Zurich Switzerland
| | - Ruth Signorell
- Department of Chemistry and Applied Biosciences, ETH Zurich Zurich Switzerland
| | - Sen Wang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University Xi'an 710127 China
| | - Jan B C Pettersson
- Department of Chemistry and Molecular Biology, Atmospheric Science, University of Gothenburg SE-41296 Gothenburg Sweden
| |
Collapse
|
4
|
Ramasubramanian M, Gurung I, Khan T, Kaulfus A, Maskey M, Ramachandran R, Elmer N, Berndt E. Day time and Nighttime Dust Event Segmentation using Deep Convolutional Neural Networks. SOUTHEASTCON 2021 2021. [DOI: 10.1109/southeastcon45413.2021.9401859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
5
|
Zhang H, Gu W, Li YJ, Tang M. Hygroscopic properties of sodium and potassium salts as related to saline mineral dusts and sea salt aerosols. J Environ Sci (China) 2020; 95:65-72. [PMID: 32653194 DOI: 10.1016/j.jes.2020.03.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/08/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Mineral dust, soil, and sea salt aerosols are among the most abundant primary inorganic aerosols in the atmosphere, and their hygroscopicity affects the hydrological cycle and global climate. We investigated the hygroscopic behaviors of six Na- and K-containing salts commonly found in those primary organic aerosols. Their hygroscopic growths as a function of relative humidity (RH) agree well with thermodynamic model prediction. Temperature dependence of deliquescence RH (DRH) values for five of those salts was also investigated, which are comparable to those in literature within 1%-2% RH, most showing negative dependence on temperature. Hygroscopic growth curves of real-world soil and sea salt samples were also measured. The hygroscopic growths of two more-hydroscopic saline soil samples and of sea salt can be predicted by the thermodynamic model based on the measured water-soluble ionic composition. The substantial amounts of water-soluble ions, including Na+ and K+, in saline soil samples imply that even nascent saline soil samples are quite hygroscopic at high-RH (>80%) conditions. For three less-hygroscopic dust samples, however, measurements showed higher water uptake ability than that predicted by the thermodynamic model. The small amount of water taken up by less-hygroscopic dust samples suggests that dust particles might contain thin layers of water even to very low RH. The results of this study provide a comprehensive characterization of the hygroscopicity of Na- and K-containing salts as related to their roles in the hygroscopic behaviors of saline mineral dusts and sea salt aerosols.
Collapse
Affiliation(s)
- Huanhuan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Gu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Jie Li
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau, China.
| | - Mingjin Tang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
6
|
Mitroo D, Gill TE, Haas S, Pratt KA, Gaston CJ. ClNO 2 Production from N 2O 5 Uptake on Saline Playa Dusts: New Insights into Potential Inland Sources of ClNO 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7442-7452. [PMID: 31117541 DOI: 10.1021/acs.est.9b01112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nitryl chloride (ClNO2), formed when dinitrogen pentoxide (N2O5) reacts with chloride-containing aerosol, photolyzes to produce chlorine radicals that facilitate the formation of tropospheric ozone. ClNO2 has been measured in continental areas; however, the sources of particulate chloride required to form ClNO2 in inland regions remain unclear. Dust emitted from saline playas (e.g., dried lakebeds) contains salts that can potentially form ClNO2 in inland regions. Here, we present the first laboratory measurements demonstrating the production of ClNO2 from playa dusts. N2O5 reactive uptake coefficients (γN2O5) ranged from ∼10-3 to 10-1 and ClNO2 yields (φClNO2) were >50% for all playas tested except one. In general, as the soluble ion fraction of playa dusts increases, γN2O5 decreases and φClNO2 increases. We attribute this finding to a transition from aerosol surfaces dominated by silicates that react efficiently with N2O5 and produce little ClNO2 to aerosols that behave like deliquesced chloride-containing salts that generate high yields of ClNO2. Molecular bromine (Br2) and nitryl bromide (BrNO2) were also detected, highlighting that playas facilitate the heterogeneous production of brominated compounds. Our results suggest that parameterizations and models should be updated to include playas as an inland source of aerosol chloride capable of efficiently generating ClNO2.
Collapse
Affiliation(s)
- Dhruv Mitroo
- Department of Atmospheric Sciences, Rosenstiel School of Marine & Atmospheric Sciences , University of Miami , Miami , Florida 33149 , United States
| | - Thomas E Gill
- Department of Geological Sciences, and Environmental Science and Engineering Program , University of Texas at El Paso , El Paso , Texas 79968 , United States
| | - Savannah Haas
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Kerri A Pratt
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Cassandra J Gaston
- Department of Atmospheric Sciences, Rosenstiel School of Marine & Atmospheric Sciences , University of Miami , Miami , Florida 33149 , United States
| |
Collapse
|
7
|
Frie AL, Dingle JH, Ying SC, Bahreini R. The Effect of a Receding Saline Lake (The Salton Sea) on Airborne Particulate Matter Composition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8283-8292. [PMID: 28697595 DOI: 10.1021/acs.est.7b01773] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The composition of ambient particulate matter (PM) and its sources were investigated at the Salton Sea, a shrinking saline lake in California. To investigate the influence of playa exposure on PM composition, PM samples were collected during two seasons and at two sites around the Salton Sea. To characterize source composition, soil samples were collected from local playa and desert surfaces. PM and soil samples were analyzed for 15 elements using mass spectrometry and X-ray diffraction. The contribution of sources to PM mass and composition was investigated using Al-referenced enrichment factors (EFs) and source factors resolved from positive matrix factorization (PMF). Playa soils were found to be significantly enriched in Ca, Na, and Se relative to desert soils. PMF analysis resolved the PM10 data with four source factors, identified as Playa-like, Desert-like, Ca-rich, and Se. Playa-like and desert-like sources were estimated to contribute to a daily average of 8.9% and 45% of PM10 mass, respectively. Additionally, playa sources were estimated to contribute to 38-68% of PM10 Na. PM10 Se concentrations showed strong seasonal variations, suggesting a seasonal cycle of Se volatilization and recondensation. These results support the importance of playas as a source of PM mass and a controlling factor of PM composition.
Collapse
Affiliation(s)
- Alexander L Frie
- Department of Environmental Sciences, University of California , Riverside, California 92521, United States
| | - Justin H Dingle
- Environmental Toxicology Graduate Program, University of California , Riverside, California 92521, United States
| | - Samantha C Ying
- Department of Environmental Sciences, University of California , Riverside, California 92521, United States
- Environmental Toxicology Graduate Program, University of California , Riverside, California 92521, United States
| | - Roya Bahreini
- Department of Environmental Sciences, University of California , Riverside, California 92521, United States
- Environmental Toxicology Graduate Program, University of California , Riverside, California 92521, United States
| |
Collapse
|
8
|
Gaston CJ, Pratt KA, Suski KJ, May NW, Gill TE, Prather KA. Laboratory Studies of the Cloud Droplet Activation Properties and Corresponding Chemistry of Saline Playa Dust. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:1348-1356. [PMID: 28005339 DOI: 10.1021/acs.est.6b04487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Playas emit large quantities of dust that can facilitate the activation of cloud droplets. Despite the potential importance of playa dusts for cloud formation, most climate models assume that all dust is nonhygroscopic; however, measurements are needed to clarify the role of dusts in aerosol-cloud interactions. Here, we report measurements of CCN activation from playa dusts and parameterize these results in terms of both κ-Köhler theory and adsorption activation theory for inclusion in atmospheric models. κ ranged from 0.002 ± 0.001 to 0.818 ± 0.094, whereas Frankel-Halsey-Hill (FHH) adsorption parameters of AFHH = 2.20 ± 0.60 and BFHH = 1.24 ± 0.14 described the water uptake properties of the dusts. Measurements made using aerosol time-of-flight mass spectrometry (ATOFMS) revealed the presence of halite, sodium sulfates, and sodium carbonates that were strongly correlated with κ underscoring the role that mineralogy, including salts, plays in water uptake by dust. Predictions of κ made using bulk chemical techniques generally showed good agreement with measured values. However, several samples were poorly predicted suggesting that chemical heterogeneities as a function of size or chemically distinct particle surfaces can determine the hygroscopicity of playa dusts. Our results further demonstrate the importance of dust in aerosol-cloud interactions.
Collapse
Affiliation(s)
- Cassandra J Gaston
- Scripps Institution of Oceanography, University of California , San Diego, La Jolla, California 92093, United States
- Department of Atmospheric Sciences, Rosenstiel School of Marine & Atmospheric Science, University of Miami , Miami, Florida 33149, United States
| | - Kerri A Pratt
- Department of Chemistry and Biochemistry, University of California , San Diego, La Jolla, California 92093, United States
- Department of Chemistry, University of Michigan , Ann Arbor Michigan 48109, United States
| | - Kaitlyn J Suski
- Department of Chemistry and Biochemistry, University of California , San Diego, La Jolla, California 92093, United States
| | - Nathaniel W May
- Department of Chemistry, University of Michigan , Ann Arbor Michigan 48109, United States
| | - Thomas E Gill
- Environmental Science and Engineering Program, University of Texas at El Paso , El Paso, Texas 79968, United States
- Department of Geological Sciences, University of Texas at El Paso , El Paso, Texas 79968, United States
| | - Kimberly A Prather
- Scripps Institution of Oceanography, University of California , San Diego, La Jolla, California 92093, United States
- Department of Chemistry and Biochemistry, University of California , San Diego, La Jolla, California 92093, United States
| |
Collapse
|
9
|
Tang M, Cziczo DJ, Grassian VH. Interactions of Water with Mineral Dust Aerosol: Water Adsorption, Hygroscopicity, Cloud Condensation, and Ice Nucleation. Chem Rev 2016; 116:4205-59. [DOI: 10.1021/acs.chemrev.5b00529] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mingjin Tang
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Daniel J. Cziczo
- Department
of Earth, Atmospheric and Planetary Sciences and Civil and Environmental
Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vicki H. Grassian
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
- Departments
of Chemistry and Biochemistry, Nanoengineering and Scripps Institution
of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
10
|
Sorooshian A, Shingler T, Harpold A, Feagles CW, Meixner T, Brooks PD. Aerosol and precipitation chemistry in the southwestern United States: spatiotemporal trends and interrelationships. ATMOSPHERIC CHEMISTRY AND PHYSICS 2013; 13:7361-7379. [PMID: 24432030 PMCID: PMC3890361 DOI: 10.5194/acp-13-7361-2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This study characterizes the spatial and temporal patterns of aerosol and precipitation composition at six sites across the United States Southwest between 1995 and 2010. Precipitation accumulation occurs mostly during the wintertime (December-February) and during the monsoon season (July-September). Rain and snow pH levels are usually between 5-6, with crustal-derived species playing a major role in acid neutralization. These species (Ca2+, Mg2+, K+, Na+) exhibit their highest concentrations between March and June in both PM2.5 and precipitation due mostly to dust. Crustal-derived species concentrations in precipitation exhibit positive relationships with [Formula: see text], [Formula: see text], and Cl-, suggesting that acidic gases likely react with and partition to either crustal particles or hydrometeors enriched with crustal constituents. Concentrations of particulate [Formula: see text] show a statistically significant correlation with rain [Formula: see text] unlike snow [Formula: see text], which may be related to some combination of the vertical distribution of [Formula: see text] (and precursors) and the varying degree to which [Formula: see text]-enriched particles act as cloud condensation nuclei versus ice nuclei in the region. The coarse : fine aerosol mass ratio was correlated with crustal species concentrations in snow unlike rain, suggestive of a preferential role of coarse particles (mainly dust) as ice nuclei in the region. Precipitation [Formula: see text] : [Formula: see text] ratios exhibit the following features with potential explanations discussed: (i) they are higher in precipitation as compared to PM2.5; (ii) they exhibit the opposite annual cycle compared to particulate [Formula: see text] : [Formula: see text] ratios; and (iii) they are higher in snow relative to rain during the wintertime. Long-term trend analysis for the monsoon season shows that the [Formula: see text] : [Formula: see text] ratio in rain increased at the majority of sites due mostly to air pollution regulations of [Formula: see text] precursors.
Collapse
Affiliation(s)
- A. Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona, USA
- Department of Atmospheric Sciences, University of Arizona, Tucson, Arizona, USA
| | - T. Shingler
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona, USA
| | - A. Harpold
- Department of Hydrology and Water Resources, University of Arizona, Tucson, Arizona, USA
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, Colorado, USA
| | - C. W. Feagles
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona, USA
| | - T. Meixner
- Department of Hydrology and Water Resources, University of Arizona, Tucson, Arizona, USA
| | - P. D. Brooks
- Department of Hydrology and Water Resources, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
11
|
Sorooshian A, Csavina J, Shingler T, Dey S, Brechtel FJ, Sáez AE, Betterton EA. Hygroscopic and chemical properties of aerosols collected near a copper smelter: implications for public and environmental health. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:9473-80. [PMID: 22852879 PMCID: PMC3435440 DOI: 10.1021/es302275k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Particulate matter emissions near active copper smelters and mine tailings in the southwestern United States pose a potential threat to nearby environments owing to toxic species that can be inhaled and deposited in various regions of the body depending on the composition and size of the particles, which are linked by particle hygroscopic properties. This study reports the first simultaneous measurements of size-resolved chemical and hygroscopic properties of particles next to an active copper smelter and mine tailings by the towns of Hayden and Winkelman in southern Arizona. Size-resolved particulate matter samples were examined with inductively coupled plasma mass spectrometry, ion chromatography, and a humidified tandem differential mobility analyzer. Aerosol particles collected at the measurement site are enriched in metals and metalloids (e.g., arsenic, lead, and cadmium) and water-uptake measurements of aqueous extracts of collected samples indicate that the particle diameter range of particles most enriched with these species (0.18-0.55 μm) overlaps with the most hygroscopic mode at a relative humidity of 90% (0.10-0.32 μm). These measurements have implications for public health, microphysical effects of aerosols, and regional impacts owing to the transport and deposition of contaminated aerosol particles.
Collapse
Affiliation(s)
- Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, United States.
| | | | | | | | | | | | | |
Collapse
|
12
|
Kavouras IG, Nikolich G, Etyemezian V, DuBois DW, King J, Shafer D. In situ observations of soil minerals and organic matter in the early phases of prescribed fires. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd017420] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Yun Y, Penner JE. Global model comparison of heterogeneous ice nucleation parameterizations in mixed phase clouds. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016506] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Pratt KA, Twohy CH, Murphy SM, Moffet RC, Heymsfield AJ, Gaston CJ, DeMott PJ, Field PR, Henn TR, Rogers DC, Gilles MK, Seinfeld JH, Prather KA. Observation of playa salts as nuclei in orographic wave clouds. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd013606] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Lüönd F, Stetzer O, Welti A, Lohmann U. Experimental study on the ice nucleation ability of size-selected kaolinite particles in the immersion mode. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd012959] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Kanji ZA, Abbatt JPD. Ice Nucleation onto Arizona Test Dust at Cirrus Temperatures: Effect of Temperature and Aerosol Size on Onset Relative Humidity. J Phys Chem A 2009; 114:935-41. [DOI: 10.1021/jp908661m] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Z. A. Kanji
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6
| | - J. P. D. Abbatt
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6
| |
Collapse
|
17
|
DeMott PJ, Petters MD, Prenni AJ, Carrico CM, Kreidenweis SM, Collett JL, Moosmüller H. Ice nucleation behavior of biomass combustion particles at cirrus temperatures. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009jd012036] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Eidhammer T, DeMott PJ, Kreidenweis SM. A comparison of heterogeneous ice nucleation parameterizations using a parcel model framework. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd011095] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Koehler KA, DeMott PJ, Kreidenweis SM, Popovicheva OB, Petters MD, Carrico CM, Kireeva ED, Khokhlova TD, Shonija NK. Cloud condensation nuclei and ice nucleation activity of hydrophobic and hydrophilic soot particles. Phys Chem Chem Phys 2009; 11:7906-20. [DOI: 10.1039/b905334b] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Vlasenko A, Huthwelker T, Gäggeler HW, Ammann M. Kinetics of the heterogeneous reaction of nitric acid with mineral dust particles: an aerosol flowtube study. Phys Chem Chem Phys 2009; 11:7921-30. [DOI: 10.1039/b904290n] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|