1
|
Singh RK, Satyanarayana ANV, Prasad PSH. Retrieval of high-resolution aerosol optical depth (AOD) using Landsat 8 imageries over different LULC classes over a city along Indo-Gangetic Plain, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:473. [PMID: 38662282 DOI: 10.1007/s10661-024-12631-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Aerosol optical depth (AOD) serves as a crucial indicator for assessing regional air quality. To address regional and urban pollution issues, there is a requirement for high-resolution AOD products, as the existing data is of very coarse resolution. To address this issue, we retrieved high-resolution AOD over Kanpur (26.4499°N, 80.3319°E), located in the Indo-Gangetic Plain (IGP) region using Landsat 8 imageries and implemented the algorithm SEMARA, which combines SARA (Simplified Aerosol Retrieval Algorithm) and SREM (Simplified and Robust Surface Reflectance Estimation). Our approach leveraged the green band of the Landsat 8, resulting in an impressive spatial resolution of 30 m of AOD and rigorously validated with available AERONET observations. The retrieved AOD is in good agreement with high correlation coefficients (r) of 0.997, a low root mean squared error of 0.035, and root mean bias of - 4.91%. We evaluated the retrieved AOD with downscaled MODIS (MCD19A2) AOD products across various land classes for cropped and harvested period of agriculture cycle over the study region. It is noticed that over the built-up region of Kanpur, the SEMARA algorithm exhibits a stronger correlation with the MODIS AOD product compared to vegetation, barren areas and water bodies. The SEMARA approach proved to be more effective for AOD retrieval over the barren and built-up land categories for harvested period compared with the cropping period. This study offers a first comparative examination of SEMARA-retrieved high-resolution AOD and MODIS AOD product over a station of IGP.
Collapse
Affiliation(s)
- Rohit Kumar Singh
- Centre for Ocean, River, Atmosphere and Land Sciences, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India
| | - A N V Satyanarayana
- Centre for Ocean, River, Atmosphere and Land Sciences, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India.
| | - P S Hari Prasad
- Centre for Ocean, River, Atmosphere and Land Sciences, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India
| |
Collapse
|
2
|
Su X, Wang L, Gui X, Yang L, Li L, Zhang M, Qin W, Tao M, Wang S, Wang L. Retrieval of total and fine mode aerosol optical depth by an improved MODIS Dark Target algorithm. ENVIRONMENT INTERNATIONAL 2022; 166:107343. [PMID: 35716506 DOI: 10.1016/j.envint.2022.107343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Total and fine mode aerosol optical depth (AODT and AODF), as well as the fine mode fraction (FMF = AODF/AODT), are critical variables for climate change and atmospheric environment studies. The retrievals with high accuracy from satellite observations, particularly FMF and AODF over land, remain challenging. This study aims to improve the Moderate-resolution Imaging Spectro-radiometer (MODIS) land dark target (DT) algorithm for retrieving AODT, AODF, and FMF on a global scale. Based on the fact that the underestimated surface reflectance (SR) could overestimate the AODT and underestimate the aerosol size parameter in the DT algorithm, two robust schemes were developed to improve SR determination: the first (NEW1 DT) used the top of the atmosphere reflectance instead of SR at 2.12 µm; the second (NEW2 DT) used eleven-year MODIS data to establish a monthly spectral SR relationship model (2.12-0.47 and 2.12-0.65 µm) database at pixel-by-pixel scale. Then a novel lookup table approach based on the physical process was proposed to retrieve the AODF and FMF. The new MODIS AODT, FMF, and AODF were compared to AERosol RObotic NETwork (AERONET) retrievals. Results showed that the root mean square error (RMSE) was 0.096-0.103, 0.098-0.099, and 0.167-0.180 for the new AODTs, AODFs, and FMFs, respectively, which were better than that of the Collection 6.1 (C6.1) DT (0.117, 0.235, and 0.426) in the validation by global AERONET sites. From the validation results, NEW2 DT provided better AODT and coarse mode AOD retrievals, while NEW1 DT had better AODF and FMF performances. The spatial patterns of AODF, FMF, and AODC of the new DT algorithms were comparable to those of the Polarization and Directionality of the Earth's Reflectances aerosol product. Hence, the new algorithms have the potential to provide global AODT, FMF, and AODF products over land to the scientific community with high accuracy using long-term MODIS data.
Collapse
Affiliation(s)
- Xin Su
- Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Lunche Wang
- Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China.
| | - Xuan Gui
- Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Leiku Yang
- School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Lei Li
- State Key Laboratory of Severe Weather (LASW) and Key Laboratory of Atmospheric Chemistry (LAC), Chinese Academy of Meteorological Sciences, Beijing, China
| | - Ming Zhang
- Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Wenmin Qin
- Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Minghui Tao
- Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Shaoqiang Wang
- Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Lizhe Wang
- School of Computer Science, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
3
|
Xia X, Che H, Shi H, Chen H, Zhang X, Wang P, Goloub P, Holben B. Advances in sunphotometer-measured aerosol optical properties and related topics in China: Impetus and perspectives. ATMOSPHERIC RESEARCH 2021; 249:105286. [PMID: 33012934 PMCID: PMC7518977 DOI: 10.1016/j.atmosres.2020.105286] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 06/02/2023]
Abstract
Aerosol is a critical trace component of the atmosphere. Many processes in the Earth's climate system are intimately related to aerosols via their direct and indirect radiative effects. Aerosol effects are not limited to these climatic aspects, however. They are also closely related to human health, photosynthesis, new energy, etc., which makes aerosol a central focus in many research fields. A fundamental requirement for improving our understanding of the diverse aerosol effects is to accumulate high-quality aerosol data by various measurement techniques. Sunphotometer remote sensing is one of the techniques that has been playing an increasingly important role in characterizing aerosols across the world. Much progress has been made on this aspect in China during the past decade, which is the work reviewed in this paper. Three sunphotometer networks have been established to provide high-quality observations of long-term aerosol optical properties across the country. Using this valuable dataset, our understanding of spatiotemporal variability and long-term trends of aerosol optical properties has been much improved. The radiative effects of aerosols both at the bottom and at the top of the atmosphere are comprehensively assessed. Substantial warming of the atmosphere by aerosol absorption is revealed. The long-range transport of dust from the Taklimakan Desert in Northwest China and anthropogenic aerosols from South Asia to the Tibetan Plateau is characterized based on ground-based and satellite remote sensing as well as model simulations. Effective methods to estimate chemical compositions from sunphotometer aerosol products are developed. Dozens of satellite and model aerosol products are validated, shedding new light on how to improve these products. These advances improve our understanding of the critical role played by aerosols in both the climate and environment. Finally, a perspective on future research is presented.
Collapse
Affiliation(s)
- Xiangao Xia
- LAGEO, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huizheng Che
- State Key Laboratory of Severe Weather (LASW) and Key Laboratory of Atmospheric Chemistry (LAC), Chinese Academy of Meteorological Sciences, CMA, Beijing 100081, China
| | - Hongrong Shi
- LAGEO, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Hongbin Chen
- LAGEO, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoye Zhang
- State Key Laboratory of Severe Weather (LASW) and Key Laboratory of Atmospheric Chemistry (LAC), Chinese Academy of Meteorological Sciences, CMA, Beijing 100081, China
| | - Pucai Wang
- LAGEO, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Phillipe Goloub
- Univ. Lille, CNRS, UMR 8518 - LOA - Laboratoire d'Optique Atmosphérique, F-59000 Lille, France
| | - Brent Holben
- Biospheric Sciences Branch, Code 923, NASA/Goddard Space Flight Center, Greenbelt, MD, USA
| |
Collapse
|
4
|
Zhu L, Xu Q, Cheng C, Sun X, Wu P, Yang L. Simultaneous determination of aerosol optical depth and exponent of the Junge power law from MODIS shortwave infrared bands over Qinghai Lake. APPLIED OPTICS 2018; 57:6497-6502. [PMID: 30117889 DOI: 10.1364/ao.57.006497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
The water-leaving radiances for shortwave infrared (SWIR) channels can be negligible, and these channels also contain information on aerosol particle size. Therefore, the satellite-based data of SWIR channels can be used to estimate aerosol particle size over inland waters [Appl. Opt.39, 887 (2000)APOPAI0003-693510.1364/AO.39.000887]. Supposing the actual atmospheric aerosol size distribution is based on the Junge power law, in this paper an iterative algorithm is used to simultaneously determine the aerosol optical depth (AOD) and the exponent of the Junge power law from Aqua MODIS L1B reflectance data of channels 1.64 μm and 2.13 μm over Qinghai Lake. Whether using the constant or variable aerosol complex refractive index (ACRI), the retrieved exponent of the Junge power law is always larger than the product value. Supposing the product values are accurate, for the constant ACRI, there are 68.91% and 25.48% pixels of acceptable retrieval AOD and the exponent of the Junge power-law value, respectively. Likewise, there are 71.63% and 43.75% pixels for variable ACRI. Compared with the retrieval error under constant ACRI, there are 58.65% and 98.72% pixels, with a smaller AOD and Junge power-law index retrieval error under variable ACRIs, respectively. In addition, the precision of the AOD retrieved with variable ACRI is improved when the AOD product is less than 0.17. However, under the current environment with frequent aerosol particle pollution, the same ACRI for the ten wavelengths can achieve results with equivalent accuracy compared with variable ACRI.
Collapse
|
5
|
Evaluation of the MODIS C6 Aerosol Optical Depth Products over Chongqing, China. ATMOSPHERE 2017. [DOI: 10.3390/atmos8110227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Novel Decomposition Scheme for Characterizing Urban Air Quality with MODIS. REMOTE SENSING 2017. [DOI: 10.3390/rs9080812] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Improving Spatial Coverage for Aqua MODIS AOD using NDVI-Based Multi-Temporal Regression Analysis. REMOTE SENSING 2017. [DOI: 10.3390/rs9040340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
|
9
|
|
10
|
The Variations and Trends of MODIS C5 & C6 Products’ Errors in the Recent Decade over the Background and Urban Areas of North China. REMOTE SENSING 2016. [DOI: 10.3390/rs8090754] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Validation of MODIS Aerosol Optical Depth Retrieval over Mountains in Central China Based on a Sun-Sky Radiometer Site of SONET. REMOTE SENSING 2016. [DOI: 10.3390/rs8020111] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Analysis of Aerosol Properties in Beijing Based on Ground-Based Sun Photometer and Air Quality Monitoring Observations from 2005 to 2014. REMOTE SENSING 2016. [DOI: 10.3390/rs8020110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Li Z, Li C, Chen H, Tsay SC, Holben B, Huang J, Li B, Maring H, Qian Y, Shi G, Xia X, Yin Y, Zheng Y, Zhuang G. East Asian Studies of Tropospheric Aerosols and their Impact on Regional Climate (EAST-AIRC): An overview. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd015257] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Niu F, Li Z, Li C, Lee KH, Wang M. Increase of wintertime fog in China: Potential impacts of weakening of the Eastern Asian monsoon circulation and increasing aerosol loading. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd013484] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Lee KH, Li Z, Cribb MC, Liu J, Wang L, Zheng Y, Xia X, Chen H, Li B. Aerosol optical depth measurements in eastern China and a new calibration method. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd012812] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Li C, Krotkov NA, Dickerson RR, Li Z, Yang K, Chin M. Transport and evolution of a pollution plume from northern China: A satellite-based case study. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd012245] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Cheng YF, Berghof M, Garland RM, Wiedensohler A, Wehner B, Müller T, Su H, Zhang YH, Achtert P, Nowak A, Pöschl U, Zhu T, Hu M, Zeng LM. Influence of soot mixing state on aerosol light absorption and single scattering albedo during air mass aging at a polluted regional site in northeastern China. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd010883] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Choi YS, Park RJ, Ho CH. Estimates of ground-level aerosol mass concentrations using a chemical transport model with Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol observations over East Asia. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd011041] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Nichol JE, Wong MS. High resolution remote sensing of densely urbanised regions: a case study of Hong Kong. SENSORS 2009; 9:4695-708. [PMID: 22408549 PMCID: PMC3291934 DOI: 10.3390/s90604695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 06/11/2009] [Accepted: 06/15/2009] [Indexed: 11/16/2022]
Abstract
Data on the urban environment such as climate or air quality is usually collected at a few point monitoring stations distributed over a city. However, the synoptic viewpoint of satellites where a whole city is visible on a single image permits the collection of spatially comprehensive data at city-wide scale. In spite of rapid developments in remote sensing systems, deficiencies in image resolution and algorithm development still exist for applications such as air quality monitoring and urban heat island analysis. This paper describes state-of-the-art techniques for enhancing and maximising the spatial detail available from satellite images, and demonstrates their applications to the densely urbanised environment of Hong Kong. An Emissivity Modulation technique for spatial enhancement of thermal satellite images permits modelling of urban microclimate in combination with other urban structural parameters at local scale. For air quality monitoring, a Minimum Reflectance Technique (MRT) has been developed for MODIS 500 m images. The techniques described can promote the routine utilization of remotely sensed images for environmental monitoring in cities of the 21(st) century.
Collapse
Affiliation(s)
- Janet E. Nichol
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: (+852) 2766-5952
| | | |
Collapse
|
20
|
Eidhammer T, Montague DC, Deshler T. Determination of index of refraction and size of supermicrometer particles from light scattering measurements at two angles. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009607] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Xia X, Eck TF, Holben BN, Phillippe G, Chen H. Analysis of the weekly cycle of aerosol optical depth using AERONET and MODIS data. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009604] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Chen WT, Kahn RA, Nelson D, Yau K, Seinfeld JH. Sensitivity of multiangle imaging to the optical and microphysical properties of biomass burning aerosols. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009414] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Xia X, Li Z, Holben B, Wang P, Eck T, Chen H, Cribb M, Zhao Y. Aerosol optical properties and radiative effects in the Yangtze Delta region of China. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2007jd008859] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Li Z, Chen H, Cribb M, Dickerson R, Holben B, Li C, Lu D, Luo Y, Maring H, Shi G, Tsay SC, Wang P, Wang Y, Xia X, Zheng Y, Yuan T, Zhao F. Preface to special section on East Asian Studies of Tropospheric Aerosols: An International Regional Experiment (EAST-AIRE). ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2007jd008853] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Li Z, Niu F, Lee KH, Xin J, Hao WM, Nordgren B, Wang Y, Wang P. Validation and understanding of Moderate Resolution Imaging Spectroradiometer aerosol products (C5) using ground-based measurements from the handheld Sun photometer network in China. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2007jd008479] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|