1
|
Solar Ultraviolet Radiation Temporal Variability Analysis from 2-Year of Continuous Observation in an Amazonian City of Brazil. ATMOSPHERE 2022. [DOI: 10.3390/atmos13071054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Solar ultraviolet radiation (UVR) is a highly energetic component of the solar spectrum that needs to be monitored because of the effects on human health and on the ecosystems. In Brazil, few cities monitor UVR, especially in the Amazon region which is particularly poor in observation. This work is the first to address the short-term (2-year) time variability of UVR in Santarém (2°25′ S, 54°44′ W, 51 m) using ground-based measurements. The irradiance in the wavelength range of 250–400 nm was investigated on different time scales. Furthermore, to understand how the UVR varies without the influence of clouds, the hours corresponding to the clear sky condition were analyzed as well as the hours in all sky conditions. Regarding the averages, there is a slight variation over the year. In all sky and clear sky conditions, the dry season had a higher average than the rainy season, despite the slight difference. Also, both in all-sky and clear-sky conditions the maximums occurred around local solar noon, and reached a maximum of 87 in the dry season under the clear sky condition. Further understanding of the radiative effects of the clouds in UVR time variability is considered essential for future research. This study can serve as a reference for UVR levels in this region where no other ground-based UVR measurements are made.
Collapse
|
2
|
Volatile Organic Compounds in the Azteca/ Cecropia Ant-Plant Symbiosis and the Role of Black Fungi. J Fungi (Basel) 2021; 7:jof7100836. [PMID: 34682257 PMCID: PMC8539435 DOI: 10.3390/jof7100836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/01/2022] Open
Abstract
Black fungi of the order Chaetothyriales are grown by many tropical plant-mutualistic ants as small so-called “patches” in their nests, which are located inside hollow structures provided by the host plant (“domatia”). These fungi are introduced and fostered by the ants, indicating that they are important for the colony. As several species of Chaetothyriales tolerate, adsorb, and metabolize toxic volatiles, we investigated the composition of volatile organic compounds (VOCs) of selected domatia in the Azteca/Cecropia ant-plant mutualism. Concentrations of VOCs in ant-inhabited domatia, empty domatia, and background air were compared. In total, 211 compounds belonging to 19 chemical families were identified. Ant-inhabited domatia were dominated by ketones with 2-heptanone, a well-known ant alarm semiochemical, as the most abundant volatile. Empty domatia were characterized by relatively high concentrations of the monoterpenes d-limonene, p-cymene and β-phellandrene, as well as the heterocyclic sulphur-containing compound, benzothiazole. These compounds have biocidal properties and are primarily biosynthesized by plants as a defense mechanism. Interestingly, most of the latter compounds were present at lower concentrations in ant inhabited domatia than in non-colonized ones. We suggest that Chaetothyriales may play a role in reducing the VOCs, underlining that the mutualistic nature of these fungi as VOCs accumulation might be detrimental for the ants, especially the larvae.
Collapse
|
3
|
Characteristic Volatile Composition of Seven Seaweeds from the Yellow Sea of China. Mar Drugs 2021; 19:md19040192. [PMID: 33805423 PMCID: PMC8066643 DOI: 10.3390/md19040192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 11/17/2022] Open
Abstract
Plant volatile organic compounds (VOCs) represent a relatively wide class of secondary metabolites. The VOC profiles of seven seaweeds (Grateloupia filicina, Polysiphonia senticulosa, Callithamnion corymbosum, Sargassum thunbergii, Dictyota dichotoma, Enteromorpha prolifera and Ulva lactuca) from the Yellow Sea of China were investigated using multifiber headspace solid phase microextraction coupled with gas chromatography–mass spectrometry (HS-SPME/GC–MS), among them, the VOCs of three red algae Grateloupia filicina, Polysiphonia senticulosa, and Callithamnion corymbosum were first reported. Principal component analysis (PCA) was used to disclose characteristic categories and molecules of VOCs and network pharmacology was performed to predict potential biomedical utilization of candidate seaweeds. Aldehyde was found to be the most abundant VOC category in the present study and (E)-β-ionone was the only compound found to exist in all seven seaweeds. The chemical diversity of aldehydes in E. prolifera suggest its potential application in chemotaxonomy and hinted that divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber is more suitable for aldehyde extraction. VOCs in D. dichotoma were characterized as sesquiterpenes and diterpenes and the most relevant pharmacological pathway was the neuroactive ligand–receptor interaction pathway, which suggests that D. dichotoma may have certain preventive and therapeutic values in cancer, especially in lung cancer, in addition to neuropsychiatric diseases.
Collapse
|
4
|
Yáñez-Serrano AM, Bourtsoukidis E, Alves EG, Bauwens M, Stavrakou T, Llusià J, Filella I, Guenther A, Williams J, Artaxo P, Sindelarova K, Doubalova J, Kesselmeier J, Peñuelas J. Amazonian biogenic volatile organic compounds under global change. GLOBAL CHANGE BIOLOGY 2020; 26:4722-4751. [PMID: 32445424 DOI: 10.1111/gcb.15185] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Biogenic volatile organic compounds (BVOCs) play important roles at cellular, foliar, ecosystem and atmospheric levels. The Amazonian rainforest represents one of the major global sources of BVOCs, so its study is essential for understanding BVOC dynamics. It also provides insights into the role of such large and biodiverse forest ecosystem in regional and global atmospheric chemistry and climate. We review the current information on Amazonian BVOCs and identify future research priorities exploring biogenic emissions and drivers, ecological interactions, atmospheric impacts, depositional processes and modifications to BVOC dynamics due to changes in climate and land cover. A feedback loop between Amazonian BVOCs and the trends of climate and land-use changes in Amazonia is then constructed. Satellite observations and model simulation time series demonstrate the validity of the proposed loop showing a combined effect of climate change and deforestation on BVOC emission in Amazonia. A decreasing trend of isoprene during the wet season, most likely due to forest biomass loss, and an increasing trend of the sesquiterpene to isoprene ratio during the dry season suggest increasing temperature stress-induced emissions due to climate change.
Collapse
Affiliation(s)
- Ana M Yáñez-Serrano
- CREAF, Cerdanyola del Vallès, Spain
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, Spain
| | - Efstratios Bourtsoukidis
- Atmospheric Chemistry and Multiphase Chemistry Departments, Max Planck Institute for Chemistry, Mainz, Germany
| | - Eliane G Alves
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Maite Bauwens
- Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
| | | | - Joan Llusià
- CREAF, Cerdanyola del Vallès, Spain
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, Spain
| | - Iolanda Filella
- CREAF, Cerdanyola del Vallès, Spain
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, Spain
| | - Alex Guenther
- Department of Earth System Science, University of California, Irvine, CA, USA
| | - Jonathan Williams
- Atmospheric Chemistry and Multiphase Chemistry Departments, Max Planck Institute for Chemistry, Mainz, Germany
| | - Paulo Artaxo
- Instituto de Física, Universidade de Sao Paulo, São Paulo, Brazil
| | - Katerina Sindelarova
- Faculty of Mathematics and Physics, Department of Atmospheric Physics, Charles University, Prague, Czechia
| | - Jana Doubalova
- Faculty of Mathematics and Physics, Department of Atmospheric Physics, Charles University, Prague, Czechia
- Modelling and Assessment Department, Czech Hydrometeorological Institute, Prague, Czechia
| | - Jürgen Kesselmeier
- Atmospheric Chemistry and Multiphase Chemistry Departments, Max Planck Institute for Chemistry, Mainz, Germany
| | - Josep Peñuelas
- CREAF, Cerdanyola del Vallès, Spain
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, Spain
| |
Collapse
|
5
|
Rinnan R, Steinke M, McGenity T, Loreto F. Plant volatiles in extreme terrestrial and marine environments. PLANT, CELL & ENVIRONMENT 2014; 37:1776-89. [PMID: 24601952 DOI: 10.1111/pce.12320] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 02/26/2014] [Indexed: 05/15/2023]
Abstract
This review summarizes the current understanding on plant and algal volatile organic compound (VOC) production and emission in extreme environments, where temperature, water availability, salinity or other environmental factors pose stress on vegetation. Here, the extreme environments include terrestrial systems, such as arctic tundra, deserts, CO₂ springs and wetlands, and marine systems such as sea ice, tidal rock pools and hypersaline environments, with mangroves and salt marshes at the land-sea interface. The emission potentials at fixed temperature and light level or actual emission rates for phototrophs in extreme environments are frequently higher than for organisms from less stressful environments. For example, plants from the arctic tundra appear to have higher emission potentials for isoprenoids than temperate species, and hypersaline marine habitats contribute to global dimethyl sulphide (DMS) emissions in significant amounts. DMS emissions are more widespread than previously considered, for example, in salt marshes and some desert plants. The reason for widespread VOC, especially isoprenoid, emissions from different extreme environments deserves further attention, as these compounds may have important roles in stress resistance and adaptation to extremes. Climate warming is likely to significantly increase VOC emissions from extreme environments both by direct effects on VOC production and volatility, and indirectly by altering the composition of the vegetation.
Collapse
Affiliation(s)
- Riikka Rinnan
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen Ø, DK-2100, Denmark; Centre for Permafrost (CENPERM), University of Copenhagen, Copenhagen K, DK-1350, Denmark
| | | | | | | |
Collapse
|