1
|
Khadgi J, Kafle K, Thapa G, Khaitu S, Sarangi C, Cohen D, Kafle H. Concentration of particulate matter and atmospheric pollutants in the residential area of Kathmandu Valley: A case study of March-April 2021 forest fire events. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125280. [PMID: 39522639 DOI: 10.1016/j.envpol.2024.125280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/20/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Forest fires have become more intense and frequent in recently changing climates. The wide variety of pollutants released by forest fire include greenhouse gases, photochemically reactive compounds, and fine and coarse particulate matter. This study investigated the impact of forest fire events on air quality in the Kathmandu Valley during March-April 2021 using ground air quality monitoring stations and satellite data. The three fire periods were studied (a) Pre-fire from 21st - 23rd March (b) first-fire episode from 24th -27th March and (c) second fire episode from 1st - 5th April of 2021. The concentrations of PM2.5 reached to maximum 199 μg/m3 during pre-fire period, 371 μg/m3 and 280 μg/m3 during first and second fire event respectively. The second fire episode had lower PM2.5 concentration despite higher fire counts (449) compared to the first episode suggesting influence of fire activities near to vicinity of Kathmandu valley during second fire episode. There was a two-day lag between the beginning of forest fire events and an increase in PM2.5 levels in Kathmandu. Satellite observation showed varying patterns for different pollutants. HCHO levels responded quickly to fire activity, while AOD and CO levels increased after a few days. Also, low wind speed, low temperature, and low relative humidity additionally elevated these pollutants in Kathmandu. This study emphasizes the extent of the impact of forest fires on air quality and the importance of considering meteorological and satellite data to understand the distribution of pollutants during such events.
Collapse
Affiliation(s)
- Jasmita Khadgi
- Center for Water and Atmospheric Research, Kathmandu Institute of Applied Sciences (KIAS), Bagdol, Lalitpur, Nepal
| | - Karuna Kafle
- Center for Water and Atmospheric Research, Kathmandu Institute of Applied Sciences (KIAS), Bagdol, Lalitpur, Nepal
| | - Geeta Thapa
- Central Department of Environmental Sciences, Tribhuvan University, Nepal
| | - Soni Khaitu
- Central Department of Environmental Sciences, Tribhuvan University, Nepal
| | - Chandan Sarangi
- Department of Civil Engineering, Indian Institute of Technology, Madras, India
| | - David Cohen
- NSTLI Centre Accelerator Science, ANSTO, Australia
| | - Hemu Kafle
- Center for Water and Atmospheric Research, Kathmandu Institute of Applied Sciences (KIAS), Bagdol, Lalitpur, Nepal.
| |
Collapse
|
2
|
Wentworth GR, Aklilu YA, Landis MS, Hsu YM. Impacts of a large boreal wildfire on ground level atmospheric concentrations of PAHs, VOCs and ozone. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2018; 178:19-30. [PMID: 29681759 PMCID: PMC5906807 DOI: 10.1016/j.atmosenv.2018.01.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
During May 2016 a very large boreal wildfire burned throughout the Athabasca Oil Sands Region (AOSR) in central Canada, and in close proximity to an extensive air quality monitoring network. This study examines speciated 24-h integrated polycyclic aromatic hydrocarbon (PAH) and volatile organic compound (VOC) measurements collected every sixth day at four and seven sites, respectively, from May to August 2016. The sum of PAHs (ΣPAH) was on average 17 times higher in fire-influenced samples (852 ng m-3, n = 8), relative to non-fire influenced samples (50 ng m-3, n = 64). Diagnostic PAH ratios in fire-influenced samples were indicative of a biomass burning source, whereas ratios in June to August samples showed additional influence from petrogenic and fossil fuel combustion. The average increase in the sum of VOCs (ΣVOC) was minor by comparison: 63 ppbv for fire-influenced samples (n = 16) versus 46 ppbv for non-fire samples (n = 90). The samples collected on August 16th and 22nd had large ΣVOC concentrations at all sites (average of 123 ppbv) that were unrelated to wildfire emissions, and composed primarily of acetaldehyde and methanol suggesting a photochemically aged air mass. Normalized excess enhancement ratios (ERs) were calculated for 20 VOCs and 23 PAHs for three fire influenced samples, and the former were generally consistent with previous observations. To our knowledge, this is the first study to report ER measurements for a number of VOCs and PAHs in fresh North American boreal wildfire plumes. During May the aged wildfire plume intercepted the cities of Edmonton (∼380 km south) or Lethbridge (∼790 km south) on four separate occasions. No enhancement in ground-level ozone (O3) was observed in these aged plumes despite an assumed increase in O3 precursors. In the AOSR, the only daily-averaged VOCs which approached or exceeded the hourly Alberta Ambient Air Quality Objectives (AAAQOs) were benzene (during the fire) and acetaldehyde (on August 16th and 22nd). Implications for local and regional air quality as well as suggestions for supplemental air monitoring during future boreal fires, are also discussed.
Collapse
Affiliation(s)
- Gregory R. Wentworth
- Environmental Monitoring and Science Division, Alberta Environment and Parks, 10th Floor 9888 Jasper Ave. NW, T5J 5C6, Edmonton, AB, Canada
| | - Yayne-abeba Aklilu
- Environmental Monitoring and Science Division, Alberta Environment and Parks, 10th Floor 9888 Jasper Ave. NW, T5J 5C6, Edmonton, AB, Canada
| | - Matthew S. Landis
- US Environmental Protection Agency, Office of Research and Development, Research Triangle Park, 27709, NC, USA
| | - Yu-Mei Hsu
- Wood Buffalo Environmental Association, 100-330 Thickwood Blvd., T9K 1Y1, Fort McMurray, AB, Canada
| |
Collapse
|
3
|
Kabatas B, Unal A, Pierce RB, Kindap T, Pozzoli L. The contribution of Saharan dust in PM(10) concentration levels in Anatolian Peninsula of Turkey. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 488-489:413-421. [PMID: 24485280 DOI: 10.1016/j.scitotenv.2013.12.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/09/2013] [Accepted: 12/09/2013] [Indexed: 06/03/2023]
Abstract
Sahara-originated dust is the most significant natural source of particulate matter; however, this contribution is still unclear in the Eastern Mediterranean especially in Western Turkey, where significant industrial sources and metropolitan areas are located. The Real-time Air Quality Modeling System (RAQMS) is utilized to explore the possible effects of Saharan dust on high levels of PM10 measured in Turkey. RAQMS model is compared with 118-air quality stations distributed throughout Turkey (81 cities) for April 2008. MODIS aerosol product (MOD04 for Terra and MYD04 for Aqua) is used to see columnar aerosol loading of the atmosphere at 550 nm (Aerosol optical depth (AOD) values found to be between 0.6 and 0.8 during the episode). High-resolution vertical profiles of clouds and aerosols are provided from CALIOP, on board of CALISPO satellite. The results suggest a significant contribution of Sahara dust to high levels of PM10 in Turkey with RAQMS and in situ time series showing similar patterns. The two data sets are found to be in agreement with a correlation of 0.87.
Collapse
Affiliation(s)
- B Kabatas
- Eurasia Institute of Earth Sciences, Istanbul Technical University, Istanbul, Turkey
| | - A Unal
- Eurasia Institute of Earth Sciences, Istanbul Technical University, Istanbul, Turkey.
| | - R B Pierce
- NOAA/NESDIS Center for Satellite Applications and Research, Madison, Wisconsin, USA
| | - T Kindap
- Eurasia Institute of Earth Sciences, Istanbul Technical University, Istanbul, Turkey
| | - L Pozzoli
- Eurasia Institute of Earth Sciences, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
4
|
Natarajan M, Pierce RB, Schaack TK, Lenzen AJ, Al-Saadi JA, Soja AJ, Charlock TP, Rose FG, Winker DM, Worden JR. Radiative forcing due to enhancements in tropospheric ozone and carbonaceous aerosols caused by Asian fires during spring 2008. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016584] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Alvarado MJ, Cady-Pereira KE, Xiao Y, Millet DB, Payne VH. Emission Ratios for Ammonia and Formic Acid and Observations of Peroxy Acetyl Nitrate (PAN) and Ethylene in Biomass Burning Smoke as Seen by the Tropospheric Emission Spectrometer (TES). ATMOSPHERE 2011; 2:633-654. [PMID: 33758673 PMCID: PMC7983869 DOI: 10.3390/atmos2040633] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We use the Tropospheric Emission Spectrometer (TES) aboard the NASA Aura satellite to determine the concentrations of the trace gases ammonia (NH3) and formic acid (HCOOH) within boreal biomass burning plumes, and present the first detection of peroxy acetyl nitrate (PAN) and ethylene (C2H4) by TES. We focus on two fresh Canadian plumes observed by TES in the summer of 2008 as part of the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS-B) campaign. We use TES retrievals of NH3 and HCOOH within the smoke plumes to calculate their emission ratios (1.0% ± 0.5% and 0.31% ± 0.21%, respectively) relative to CO for these Canadian fires. The TES derived emission ratios for these gases agree well with previous aircraft and satellite estimates, and can complement ground-based studies that have greater surface sensitivity. We find that TES observes PAN mixing ratios of ~2 ppb within these mid-tropospheric boreal biomass burning plumes when the average cloud optical depth is low (<0.1) and that TES can detect C2H4 mixing ratios of ~2 ppb in fresh biomass burning smoke plumes.
Collapse
Affiliation(s)
| | | | - Yaping Xiao
- Atmospheric and Environmental Research (AER), Lexington, MA 02421, USA
| | - Dylan B. Millet
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN 55455-0213, USA
| | - Vivienne H. Payne
- Atmospheric and Environmental Research (AER), Lexington, MA 02421, USA
| |
Collapse
|
6
|
Miller DJ, Sun K, Zondlo MA, Kanter D, Dubovik O, Welton EJ, Winker DM, Ginoux P. Assessing boreal forest fire smoke aerosol impacts on U.S. air quality: A case study using multiple data sets. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011jd016170] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David J. Miller
- Department of Civil and Environmental Engineering; Princeton University; Princeton New Jersey USA
| | - Kang Sun
- Department of Civil and Environmental Engineering; Princeton University; Princeton New Jersey USA
| | - Mark A. Zondlo
- Department of Civil and Environmental Engineering; Princeton University; Princeton New Jersey USA
| | - David Kanter
- Woodrow Wilson School of Public and International Affairs; Princeton University; Princeton New Jersey USA
| | - Oleg Dubovik
- Laboratoire d'Optique Atmosphérique; Université de Lille 1/CNRS; Villeneuve d'Ascq France
| | | | | | - Paul Ginoux
- NOAA Geophysical Fluid Dynamics Laboratory; Princeton; New Jersey USA
| |
Collapse
|
7
|
Gonzi S, Palmer PI. Vertical transport of surface fire emissions observed from space. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd012053] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|