1
|
Jiang H, Cai J, Feng X, Chen Y, Wang L, Jiang B, Liao Y, Li J, Zhang G, Mu Y, Chen J. Aqueous-Phase Reactions of Anthropogenic Emissions Lead to the High Chemodiversity of Atmospheric Nitrogen-Containing Compounds during the Haze Event. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16500-16511. [PMID: 37844026 DOI: 10.1021/acs.est.3c06648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Nitrogen-containing organic compounds (NOCs), a type of important reactive-nitrogen species, are abundant in organic aerosols in haze events observed in Northern China. However, due to the complex nature of NOCs, the sources, formation, and influencing factors are still ambiguous. Here, the molecular composition of organic matters (OMs) in hourly PM2.5 samples collected during a haze event in Northern China was characterized using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). We found that CHON compounds (formulas containing C, H, O, and N atoms) dominated the OM fractions during the haze and showed high chemodiversity and transformability. Relying on the newly developed revised-workflow and oxidation-hydrolyzation knowledge for CHON compounds, 64% of the major aromatic CHON compounds (>80%) could be derived from the oxidization or hydrolyzation processes. Results from FT-ICR MS data analysis further showed that the aerosol liquid water (ALW)-involved aqueous-phase reactions are important for the molecular distribution of aromatic-CHON compounds besides the coal combustion, and the ALW-involved aromatic-CHON compound formation during daytime and nighttime was different. Our results improve the understanding of molecular composition, sources, and potential formation of CHON compounds, which can help to advance the understanding for the formation, evolution, and control of haze.
Collapse
Affiliation(s)
- Hongxing Jiang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Junjie Cai
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xinxin Feng
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yingjun Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Lina Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Bin Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yuhong Liao
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yujing Mu
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
2
|
Chattopadhyay G, Midya SK, Chattopadhyay S. Information Theoretic Study of the Ground-Level Ozone and Its Precursors Over Kolkata, India, During the Summer Monsoon. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE 2020. [DOI: 10.1007/s40995-020-01007-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Li J, Sakamoto Y, Kohno N, Fujii T, Matsuoka K, Takemura M, Zhou J, Nakagawa M, Murano K, Sadanaga Y, Nakashima Y, Sato K, Takami A, Yoshino A, Nakayama T, Kato S, Kajii Y. Total hydroxyl radical reactivity measurements in a suburban area during AQUAS-Tsukuba campaign in summer 2017. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:139897. [PMID: 32563867 DOI: 10.1016/j.scitotenv.2020.139897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/19/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
Missing hydroxyl radical (OH) reactivity from unknown/unmeasured trace species empirically accounts for 10%-30% of total OH reactivity and may cause significant uncertainty regarding estimation of photochemical ozone production. Thus, it is essential to unveil the missing OH reactivity for developing an effective ozone mitigation strategy. In this study, we conducted simultaneous observations of total OH reactivity and 54 reactive trace species in a suburban area as part of the Air QUAlity Study (AQUAS)-Tsukuba campaign for the summer of 2017 to gain in-depth insight into total OH reactivity in an area that experienced relatively high contributions of secondary pollutants. The campaign identified on average 35.3% of missing OH reactivity among total OH reactivity (12.9 s-1). In general, ozone-production potential estimation categorized ozone formation in this area as volatile organic compound (VOC)-limited conditions, and missing OH reactivity may increase ozone production potential 40% on average if considered. Our results suggest the importance of photochemical processes of both AVOCs and BVOCs for the production of missing OH reactivity and that we may underestimate the importance of reducing precursors in approach to suppressing ozone production if we ignore the contribution of their photochemical products.
Collapse
Affiliation(s)
- Jiaru Li
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yosuke Sakamoto
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan; Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-Nihonmatsucho, Sakyo-ku, Kyoto 606-8316, Japan; Center for Regional Environmental Research, National Institute for Environmental Studies, Tsukuba City, Ibaraki 305-8506, Japan.
| | - Nanase Kohno
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomihide Fujii
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kohei Matsuoka
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Marina Takemura
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-Nihonmatsucho, Sakyo-ku, Kyoto 606-8316, Japan
| | - Jun Zhou
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Maho Nakagawa
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan; National Institute of Information and Communications Technology, 4-2-1 Nukui-kita, Koganei, Tokyo 184-8795, Japan
| | - Kentaro Murano
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yasuhiro Sadanaga
- Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Yoshihiro Nakashima
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8538, Japan
| | - Kei Sato
- Center for Regional Environmental Research, National Institute for Environmental Studies, Tsukuba City, Ibaraki 305-8506, Japan
| | - Akinori Takami
- Center for Regional Environmental Research, National Institute for Environmental Studies, Tsukuba City, Ibaraki 305-8506, Japan
| | - Ayako Yoshino
- Center for Regional Environmental Research, National Institute for Environmental Studies, Tsukuba City, Ibaraki 305-8506, Japan
| | - Tomoki Nakayama
- Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Shungo Kato
- Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Yoshizumi Kajii
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan; Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-Nihonmatsucho, Sakyo-ku, Kyoto 606-8316, Japan; Center for Regional Environmental Research, National Institute for Environmental Studies, Tsukuba City, Ibaraki 305-8506, Japan.
| |
Collapse
|
4
|
Kasthuriarachchi NY, Rivellini LH, Adam MG, Lee AKY. Light Absorbing Properties of Primary and Secondary Brown Carbon in a Tropical Urban Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10808-10819. [PMID: 32867480 DOI: 10.1021/acs.est.0c02414] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Brown carbon (BrC) has significant climatic impact, but its emission sources and formation processes remain under-represented in climate models. However, there are only limited field studies to quantify the light absorption properties of specific types of primary and secondary organic aerosols (POAs and SOAs) in different environments. This work investigates the light absorption properties of the major OA components in Singapore, a well-developed city in the tropical region, where air quality can be influenced by multiple local urban sources and regional biomass burning events. The source-specific mass absorption cross-section (MAC) and wavelength dependence of different BrC components were quantified based on highly time-resolved aerosol chemical composition and absorption measurements. In particular, the combustion-related emission sources were the primary contributors to BrC light absorption and they were moderately absorbing. The SOA materials, which were freshly formed under atmospheric conditions with industrial influences, were also moderately light absorptive. The aged SOA components that were composed of aged regional emissions, including biomass burning and coal combustion emissions from nearby regions, were weakly light absorbing, highlighting the possibility of photobleaching of BrC during their atmospheric aging and dispersion. Lastly, our estimations illustrate that typical urban POAs and SOAs can contribute up to approximately 36-58% of the BrC absorption, even in some urban locations that are influenced by biomass burning emissions.
Collapse
Affiliation(s)
- Nethmi Y Kasthuriarachchi
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Laura-Hélèna Rivellini
- NUS Environmental Research Institute, National University of Singapore, 117411, Singapore
| | - Max G Adam
- NUS Environmental Research Institute, National University of Singapore, 117411, Singapore
| | - Alex K Y Lee
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
- NUS Environmental Research Institute, National University of Singapore, 117411, Singapore
| |
Collapse
|
5
|
Use of Combined Observational- and Model-Derived Photochemical Indicators to Assess the O3-NOx-VOC System Sensitivity in Urban Areas. ATMOSPHERE 2017. [DOI: 10.3390/atmos8020022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Huang J, Zhang W, Mo J, Wang S, Liu J, Chen H. Urbanization in China drives soil acidification of Pinus massoniana forests. Sci Rep 2015; 5:13512. [PMID: 26400019 PMCID: PMC4585849 DOI: 10.1038/srep13512] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 07/28/2015] [Indexed: 11/29/2022] Open
Abstract
Soil acidification instead of alkalization has become a new environmental issue caused by urbanization. However, it remains unclear the characters and main contributors of this acidification. We investigated the effects of an urbanization gradient on soil acidity of Pinus massoniana forests in Pearl River Delta, South China. The soil pH of pine forests at 20-cm depth had significantly positive linear correlations with the distance from the urban core of Guangzhou. Soil pH reduced by 0.44 unit at the 0–10 cm layer in urbanized areas compared to that in non-urbanized areas. Nitrogen deposition, mean annual temperature and mean annual precipitation were key factors influencing soil acidification based on a principal component analysis. Nitrogen deposition showed significant linear relationships with soil pH at the 0–10 cm (for ammonium N (-N), P < 0.05; for nitrate N (-N), P < 0.01) and 10–20 cm (for -N, P < 0.05) layers. However, there was no significant loss of exchangeable non-acidic cations along the urbanization gradient, instead their levels were higher in urban than in urban/suburban area at the 0–10 cm layer. Our results suggested N deposition particularly under the climate of high temperature and rainfall, greatly contributed to a significant soil acidification occurred in the urbanized environment.
Collapse
Affiliation(s)
- Juan Huang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Wei Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jiangming Mo
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Shizhong Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Juxiu Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Hao Chen
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
7
|
Xue L, Wang T, Wang X, Blake DR, Gao J, Nie W, Gao R, Gao X, Xu Z, Ding A, Huang Y, Lee S, Chen Y, Wang S, Chai F, Zhang Q, Wang W. On the use of an explicit chemical mechanism to dissect peroxy acetyl nitrate formation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 195:39-47. [PMID: 25194270 DOI: 10.1016/j.envpol.2014.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/03/2014] [Accepted: 08/07/2014] [Indexed: 06/03/2023]
Abstract
Peroxy acetyl nitrate (PAN) is a key component of photochemical smog and plays an important role in atmospheric chemistry. Though it has been known that PAN is produced via reactions of nitrogen oxides (NOx) with some volatile organic compounds (VOCs), it is difficult to quantify the contributions of individual precursor species. Here we use an explicit photochemical model--Master Chemical Mechanism (MCM) model--to dissect PAN formation and identify principal precursors, by analyzing measurements made in Beijing in summer 2008. PAN production was sensitive to both NOx and VOCs. Isoprene was the predominant VOC precursor at suburb with biogenic impact, whilst anthropogenic hydrocarbons dominated at downtown. PAN production was attributable to a relatively small class of compounds including NOx, xylenes, trimethylbenzenes, trans/cis-2-butenes, toluene, and propene. MCM can advance understanding of PAN photochemistry to a species level, and provide more relevant recommendations for mitigating photochemical pollution in large cities.
Collapse
Affiliation(s)
- Likun Xue
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China; Environment Research Institute, Shandong University, Ji'nan, Shandong, China.
| | - Tao Wang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China; Environment Research Institute, Shandong University, Ji'nan, Shandong, China; Chinese Research Academy of Environmental Sciences, Beijing, China.
| | - Xinfeng Wang
- Environment Research Institute, Shandong University, Ji'nan, Shandong, China
| | - Donald R Blake
- Department of Chemistry, University of California at Irvine, Irvine, CA, USA
| | - Jian Gao
- Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Wei Nie
- Institute for Climate and Global Change Research, Nanjing University, Nanjing, Jiangsu, China
| | - Rui Gao
- Environment Research Institute, Shandong University, Ji'nan, Shandong, China
| | - Xiaomei Gao
- Environment Research Institute, Shandong University, Ji'nan, Shandong, China; School of resources and environment, Ji'nan University, Shandong, China
| | - Zheng Xu
- Environment Research Institute, Shandong University, Ji'nan, Shandong, China
| | - Aijun Ding
- Institute for Climate and Global Change Research, Nanjing University, Nanjing, Jiangsu, China
| | - Yu Huang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - Shuncheng Lee
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - Yizhen Chen
- Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Shulan Wang
- Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Fahe Chai
- Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Ji'nan, Shandong, China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Ji'nan, Shandong, China; Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
8
|
Wang F, Zhang Z, Massling A, Ketzel M, Kristensson A. Particle formation events measured at a semirural background site in Denmark. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:3050-3059. [PMID: 23054763 DOI: 10.1007/s11356-012-1184-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 09/04/2012] [Indexed: 06/01/2023]
Abstract
The particle formation and growth events observed at a semirural background site in Denmark were analyzed based on particle number size distribution data collected during the period from February 2005 to December 2010. The new particle formation (NPF) events have been classified visually in detail according to 3D daily plots in combination with an automatic routine. A clear seasonal variation was found in the way that events occurred more frequently during the warm season from May to September and especially in June. The mean values of the apparent 6 nm particle formation rates, the growth rate and the condensation sink were about 0.36 cm(-3) s(-1), 2.6 nm h(-1), 4.3 × 10(-3) s(-1), respectively. A positive relationship of oxidation capacity (OX = O3 + NO2) of the atmosphere and the appearance of NPF events was found indicating that the oxidation of the atmosphere was linked to the formation of new particles. An analysis of a 3-day backward trajectories revealed that NW air masses from the North Sea were giving the highest probability of NPF events, namely between 20 and 40 %.
Collapse
|
9
|
Smirnoff A, Savard MM, Vet R, Simard MC. Nitrogen and triple oxygen isotopes in near-road air samples using chemical conversion and thermal decomposition. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:2791-2804. [PMID: 23124671 DOI: 10.1002/rcm.6406] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RATIONALE The determination of triple oxygen (δ(18)O and δ(17)O) and nitrogen isotopes (δ(15)N) is important when investigating the sources and atmospheric paths of nitrate and nitrite. To fully understand the atmospheric contribution into the terrestrial nitrogen cycle, it is crucial to determine the δ(15)N values of oxidised and reduced nitrogen species in precipitation and dry deposition. METHODS In an attempt to further develop non-biotic methods and avoid expensive modifications of the gas-equilibration system, we have combined and modified sample preparation procedures and analytical setups used by other researchers. We first chemically converted NO(3)(-) and NH(4)(+) into NO(2)(-) and then into N(2)O. Subsequently, the resulting gas was decomposed into N(2) and O(2) and analyzed by isotope ratio mass spectrometry (IRMS) using a pre-concentration system equipped with a gold reduction furnace. RESULTS The δ(17)O, δ(18)O and δ(15)N values of nitrate and nitrite samples were acquired simultaneously in one run using a single analytical system. Most importantly, the entire spectrum of δ(17)O, δ(18)O and/or δ(15)N values was determined from atmospheric nitrate, nitric oxide, ammonia and ammonium. The obtained isotopic values for air and precipitation samples were in good agreement with those from previous studies. CONCLUSIONS We have further advanced chemical approaches to sample preparation and isotope analyses of nitrogen-bearing compounds. The proposed methods are inexpensive and easily adaptable to a wide range of laboratory conditions. This will substantially contribute to further studies on sources and pathways of nitrate, nitrite and ammonium in terrestrial nitrogen cycling.
Collapse
Affiliation(s)
- Anna Smirnoff
- Natural Resources Canada, Earth Sciences Sector, 490, de la Couronne, Québec (QC), Canada, G1K 9A9.
| | | | | | | |
Collapse
|
10
|
Fujitani Y, Kumar P, Tamura K, Fushimi A, Hasegawa S, Takahashi K, Tanabe K, Kobayashi S, Hirano S. Seasonal differences of the atmospheric particle size distribution in a metropolitan area in Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 437:339-347. [PMID: 22960110 DOI: 10.1016/j.scitotenv.2012.07.085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 07/26/2012] [Accepted: 07/26/2012] [Indexed: 06/01/2023]
Abstract
We compared the effect of ambient temperature observed in two different seasons on the size distribution and particle number concentration (PNC) as a function of distance (up to ~250 m) from a major traffic road (25% of the vehicles are heavy-duty diesel vehicles). The modal particle diameter was found between 10 and 30 nm at the roadside in the winter. However, there was no peak for this size range in the summer, even at the roadside. Ambient temperature affects both the atmospheric dilution ratio (DR) and the evaporation rate of particles, thus it affects the decay rate of PNC. We corrected the DR effect in order to focus on the effect of particle evaporation on PNC decay. The decay rate of PNC with DR was found to depend on the season and particle diameter. During the winter, the decay rate for smaller particles (<30 nm) was much higher (i.e., the concentration decreased significantly against DR), whereas it was low during the summer. In contrast, for particles >30 nm in diameter, the decay rate was nearly the same during both seasons. This distinction between particles less than or greater than 30 nm in diameter reflects differences in particle volatility properties. Mass-transfer theory was used to estimate evaporation rates of C20-C36 n-alkane particles, which are the major n-alkanes in diesel exhaust particles. The C20-C28 n-alkanes of 30-nm particles completely evaporate at 31.2 °C (summer), and their lifetime is shorter than the transport time of air masses in our region of interest. Absence of the peak at 10-30 nm and the low decay rate of PNC <30 nm in diameter in the summer were likely due to the evaporation of compounds of similar volatilities comparable to the C20-C36 n-alkanes from particles near the exhaust pipes of vehicles, and complete evaporation of semivolatile materials before they reached the roadside. These results suggest that the lifetime of particles <30 nm in diameter depends on the ambient temperature, which differs between seasons. This leads us to conclude that these particles show distinctly different spatial distributions depending on the season.
Collapse
Affiliation(s)
- Yuji Fujitani
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sahu LK, Kondo Y, Moteki N, Takegawa N, Zhao Y, Cubison MJ, Jimenez JL, Vay S, Diskin GS, Wisthaler A, Mikoviny T, Huey LG, Weinheimer AJ, Knapp DJ. Emission characteristics of black carbon in anthropogenic and biomass burning plumes over California during ARCTAS-CARB 2008. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd017401] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Kondo Y, Matsui H, Moteki N, Sahu L, Takegawa N, Kajino M, Zhao Y, Cubison MJ, Jimenez JL, Vay S, Diskin GS, Anderson B, Wisthaler A, Mikoviny T, Fuelberg HE, Blake DR, Huey G, Weinheimer AJ, Knapp DJ, Brune WH. Emissions of black carbon, organic, and inorganic aerosols from biomass burning in North America and Asia in 2008. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd015152] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Morino Y, Takahashi K, Fushimi A, Tanabe K, Ohara T, Hasegawa S, Uchida M, Takami A, Yokouchi Y, Kobayashi S. Contrasting diurnal variations in fossil and nonfossil secondary organic aerosol in urban outflow, Japan. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:8581-8586. [PMID: 20886860 DOI: 10.1021/es102392r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Diurnal variations of fossil secondary organic carbon (SOC) and nonfossil SOC were determined for the first time using a combination of several carbonaceous aerosol measurement techniques, including radiocarbon (¹⁴C) determinations by accelerator mass spectrometry, and a receptor model (chemical mass balance, CMB) at a site downwind of Tokyo during the summer of 2007. Fossil SOC showed distinct diurnal variation with a maximum during daytime, whereas diurnal variation of nonfossil SOC was relatively small. This behavior was reproduced by a chemical transport model (CTM). However, the CTM underestimated the concentration of anthropogenic secondary organic aerosol (ASOA) by a factor of 4-7, suggesting that ASOA enhancement during daytime is not explained by production from volatile organic compounds that are traditionally considered major ASOA precursors. This result suggests that unidentified semivolatile organic compounds or multiphase chemistry may contribute largely to ASOA production. As our knowledge of production pathways of secondary organic aerosol (SOA) is still limited, diurnal variations of fossil and nonfossil SOC in our estimate give an important experimental constraint for future development of SOA models.
Collapse
Affiliation(s)
- Yu Morino
- National Institute for Environmental Studies, Ibaraki, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Liu Z, Wang Y, Gu D, Zhao C, Huey LG, Stickel R, Liao J, Shao M, Zhu T, Zeng L, Liu SC, Chang CC, Amoroso A, Costabile F. Evidence of reactive aromatics as a major source of peroxy acetyl nitrate over China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:7017-7022. [PMID: 20707413 DOI: 10.1021/es1007966] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We analyze the observations of near-surface peroxy acetyl nitrate (PAN) and its precursors in Beijing, China in August of 2007. The levels of PAN are remarkably high (up to 14 ppbv), surpassing those measured over other urban regions in recent years. Analyses employing a 1-D version of a chemical transport model (Regional chEmical and trAnsport Model, REAM) indicate that aromatic non-methane hydrocarbons (NMHCs) are the dominant (55-75%) PAN source. The major oxidation product of aromatics that produces acetyl peroxy radicals is methylglyoxal (MGLY). PAN and O(3) in the observations are correlated at daytime; aromatic NMHCs appear to play an important role in O(3) photochemistry. Previous NMHC measurements indicate the presence of reactive aromatics at high levels over broad polluted regions of China. Aromatics are often ignored in global and (to a lesser degree) regional 3D photochemical transport models; their emissions over China as well as photochemistry are quite uncertain. Our findings suggest that critical assessments of aromatics emissions and chemistry (such as the yields of MGLY) are necessary to understand and assess ozone photochemistry and regional pollution export in China.
Collapse
Affiliation(s)
- Zhen Liu
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Matsui H, Koike M, Kondo Y, Takegawa N, Kita K, Miyazaki Y, Hu M, Chang SY, Blake DR, Fast JD, Zaveri RA, Streets DG, Zhang Q, Zhu T. Spatial and temporal variations of aerosols around Beijing in summer 2006: Model evaluation and source apportionment. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd010906] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Miyazaki Y, Kondo Y, Shiraiwa M, Takegawa N, Miyakawa T, Han S, Kita K, Hu M, Deng ZQ, Zhao Y, Sugimoto N, Blake DR, Weber RJ. Chemical characterization of water-soluble organic carbon aerosols at a rural site in the Pearl River Delta, China, in the summer of 2006. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009jd011736] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Takegawa N, Miyakawa T, Kuwata M, Kondo Y, Zhao Y, Han S, Kita K, Miyazaki Y, Deng Z, Xiao R, Hu M, van Pinxteren D, Herrmann H, Hofzumahaus A, Holland F, Wahner A, Blake DR, Sugimoto N, Zhu T. Variability of submicron aerosol observed at a rural site in Beijing in the summer of 2006. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd010857] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Matsui H, Koike M, Takegawa N, Kondo Y, Griffin RJ, Miyazaki Y, Yokouchi Y, Ohara T. Secondary organic aerosol formation in urban air: Temporal variations and possible contributions from unidentified hydrocarbons. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd010164] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|