1
|
Li Q, Ma S, Liu Y, Wu X, Fu H, Tu X, Yan S, Zhang L, George C, Chen J. Phase State Regulates Photochemical HONO Production from NaNO 3/Dicarboxylic Acid Mixtures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7516-7528. [PMID: 38629947 DOI: 10.1021/acs.est.3c10980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Field observations of daytime HONO source strengths have not been well explained by laboratory measurements and model predictions up until now. More efforts are urgently needed to fill the knowledge gaps concerning how environmental factors, especially relative humidity (RH), affect particulate nitrate photolysis. In this work, two critical attributes for atmospheric particles, i.e., phase state and bulk-phase acidity, both influenced by ambient RH, were focused to illuminate the key regulators for reactive nitrogen production from typical internally mixed systems, i.e., NaNO3 and dicarboxylic acid (DCA) mixtures. The dissolution of only few oxalic acid (OA) crystals resulted in a remarkable 50-fold increase in HONO production compared to pure nitrate photolysis at 85% RH. Furthermore, the HONO production rates (PHONO) increased by about 1 order of magnitude as RH rose from <5% to 95%, initially exhibiting an almost linear dependence on the amount of surface absorbed water and subsequently showing a substantial increase in PHONO once nitrate deliquescence occurred at approximately 75% RH. NaNO3/malonic acid (MA) and NaNO3/succinic acid (SA) mixtures exhibited similar phase state effects on the photochemical HONO production. These results offer a new perspective on how aerosol physicochemical properties influence particulate nitrate photolysis in the atmosphere.
Collapse
Affiliation(s)
- Qiong Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - Shuaishuai Ma
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, PR China
| | - Yu Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
| | - Xinyuan Wu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
| | - Hongbo Fu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science and Technology, Nanjing 210044, PR China
- Institute of Eco-Chongming (SIEC), 20 Cuiniao Road, Shanghai 202162, PR China
| | - Xiang Tu
- Jiangxi Key Laboratory of Environmental Pollution Control, Jiangxi Academy of Eco-Environmental Sciences and Planning, Nanchang 330000, PR China
| | - Shuwen Yan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
| | - Christian George
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne F-69626, France
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
| |
Collapse
|
2
|
van Pinxteren D, Engelhardt V, Mothes F, Poulain L, Fomba KW, Spindler G, Cuesta-Mosquera A, Tuch T, Müller T, Wiedensohler A, Löschau G, Bastian S, Herrmann H. Residential Wood Combustion in Germany: A Twin-Site Study of Local Village Contributions to Particulate Pollutants and Their Potential Health Effects. ACS ENVIRONMENTAL AU 2024; 4:12-30. [PMID: 38250341 PMCID: PMC10797685 DOI: 10.1021/acsenvironau.3c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 01/23/2024]
Abstract
Residential wood combustion contributing to airborne particulate matter (PM10) was studied for 1 year at two sites in the village of Melpitz. Significant excess pollution was observed at the Melpitz center compared to that at the TROPOS research station Melpitz reference site, situated only 700 m away. Local concentration increments at the village site for the combustion PM constituents organic carbon, elemental carbon, levoglucosan, and benzo[a]pyrene were determined under appropriate wind directions, and their winter mean values were 0.7 μg m-3, 0.3 μg m-3, 0.1 μg m-3, and 0.4 ng m-3, representing relative increases over the regional background concentration of 24, 70, 61, and 107%, respectively. Yearly, weekly, and diurnal profiles of village increments suggest residential heating as the dominant source of this excess pollution, mainly originating from wood combustion. Receptor modeling using positive matrix factorization quantified 4.5 μg m-3 wood combustion PM at the village site, representing an increment of 1.9 μg m-3 and an increase of ∼75% over the 2.6 μg m-3 regional background wood combustion PM. This increment varied with season, temperature, and boundary layer height and reached daily mean values of 4-6 μg m-3 during unfavorable meteorological conditions. Potential health effects were estimated and resulted in an all-cause mortality from short-term exposure to wood combustion PM of 2.1 cases per 100,000 inhabitants and year for areas with similar wood smoke levels as observed in Melpitz. The excess cancer risk from the concentrations of polycyclic aromatic hydrocarbons was 6.4 per 100,000. For both health metrics, the very local contributions from the village itself were about 40-50%, indicating a strong potential for mitigation through local-scale policies. A compilation of literature data demonstrates wood combustion to represent a major source of PM pollution in Germany, with average winter-time contributions of 10-20%. The present study quantifies the negative impacts of heating with wood in rural residential areas, where the continuous monitoring of air quality is typically lacking. Further regulation of this PM source is warranted in order to protect human health.
Collapse
Affiliation(s)
- Dominik van Pinxteren
- Leibniz
Institute for Tropospheric Research (TROPOS), Permoserstr. 15, 04318 Leipzig, Germany
| | - Vanessa Engelhardt
- Leibniz
Institute for Tropospheric Research (TROPOS), Permoserstr. 15, 04318 Leipzig, Germany
| | - Falk Mothes
- Leibniz
Institute for Tropospheric Research (TROPOS), Permoserstr. 15, 04318 Leipzig, Germany
| | - Laurent Poulain
- Leibniz
Institute for Tropospheric Research (TROPOS), Permoserstr. 15, 04318 Leipzig, Germany
| | - Khanneh Wadinga Fomba
- Leibniz
Institute for Tropospheric Research (TROPOS), Permoserstr. 15, 04318 Leipzig, Germany
| | - Gerald Spindler
- Leibniz
Institute for Tropospheric Research (TROPOS), Permoserstr. 15, 04318 Leipzig, Germany
| | - Andrea Cuesta-Mosquera
- Leibniz
Institute for Tropospheric Research (TROPOS), Permoserstr. 15, 04318 Leipzig, Germany
| | - Thomas Tuch
- Leibniz
Institute for Tropospheric Research (TROPOS), Permoserstr. 15, 04318 Leipzig, Germany
| | - Thomas Müller
- Leibniz
Institute for Tropospheric Research (TROPOS), Permoserstr. 15, 04318 Leipzig, Germany
| | - Alfred Wiedensohler
- Leibniz
Institute for Tropospheric Research (TROPOS), Permoserstr. 15, 04318 Leipzig, Germany
| | - Gunter Löschau
- Saxon
State Office for the Environment, Agriculture, and Geology (LfULG), Pillnitzer Platz 3, 01326 Dresden Pillnitz, Germany
| | - Susanne Bastian
- Saxon
State Office for the Environment, Agriculture, and Geology (LfULG), Pillnitzer Platz 3, 01326 Dresden Pillnitz, Germany
| | - Hartmut Herrmann
- Leibniz
Institute for Tropospheric Research (TROPOS), Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
3
|
Xu W, Yang W, Han C, Yang H, Xue X. Significant influences of TiO 2 crystal structures on NO 2 and HONO emissions from the nitrates photolysis. J Environ Sci (China) 2021; 102:198-206. [PMID: 33637244 DOI: 10.1016/j.jes.2020.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 06/12/2023]
Abstract
The emissions of NO2 and HONO from the KNO3 photolysis in the presence of TiO2 were measured using a round-shape reactor coupled to a NOx analyzer. TiO2 played important roles in the emission flux density of NO2 (RNO2) and HONO (RHONO), depending on crystal structures and mass ratios of TiO2. RNO2 and RHONO significantly decreased with increasing the rutile and anatase mass ratios from 0 to 8 and 0.5 wt.%, respectively. Nevertheless, with further increasing the anatase mass ratio to 8 wt.%, there was an increase in RNO2 and RHONO. RNO2 on KNO3/TiO2/SiO2 had positive correlation with the KNO3 mass (1-20 wt.%), irradiation intensity (80-400 W/m2) and temperature (278-308 K), while it had the maximum value at the relative humidity (RH) of 55%. RHONO on KNO3/TiO2/SiO2 slightly varied with the KNO3 mass and temperature, whereas it increased with the irradiation intensity and RH. In addition, the mechanism for NO2 and HONO emissions from the nitrates photolysis and atmospheric implications were discussed.
Collapse
Affiliation(s)
- Wenwen Xu
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Wangjin Yang
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Chong Han
- School of Metallurgy, Northeastern University, Shenyang 110819, China.
| | - He Yang
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Xiangxin Xue
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| |
Collapse
|
4
|
Yang W, Han C, Yang H, Xue X. Significant HONO formation by the photolysis of nitrates in the presence of humic acids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:679-686. [PMID: 30228059 DOI: 10.1016/j.envpol.2018.09.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
The generation of HONO and NO2 by the photolysis of nitrates in the presence of humic acids (HA) was measured under various conditions. The photolysis experiments of HA, KNO3 and KNO3/HA under simulated sunlight was carried out by a flow tube reactor at ambient temperature and pressure. HONO and NO2 were major products by the photolysis of KNO3. By contrast, the photolysis of HA and KNO3/HA mainly generated HONO. HA significantly enhanced the formation of HONO during the photolysis process of KNO3. With increasing the KNO3 mass, the HONO formation rate (RHONO) on KNO3/HA increased while the photolysis rate normalized by the KNO3 mass exhibited an opposite trend. RHONO on KNO3/HA linearly increased with irradiation intensity (88-262 W/m2) and relative humidity (7-70%), whereas it linearly decreased with the pH (pH = 2-12). In addition, the reaction paths of the HONO formation by the photolysis of nitrates in the presence of HA were proposed according to experimental results. Finally, atmospheric implications of the enhanced HONO formation by the photolysis of nitrates in the presence of HA were discussed.
Collapse
Affiliation(s)
- Wangjin Yang
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Chong Han
- School of Metallurgy, Northeastern University, Shenyang, 110819, China.
| | - He Yang
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Xiangxin Xue
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
5
|
Liu Z, Xie Y, Hu B, Wen T, Xin J, Li X, Wang Y. Size-resolved aerosol water-soluble ions during the summer and winter seasons in Beijing: Formation mechanisms of secondary inorganic aerosols. CHEMOSPHERE 2017; 183:119-131. [PMID: 28544897 DOI: 10.1016/j.chemosphere.2017.05.095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
Size-segregated water-soluble ionic species (WSIs) were measured using an Anderson cascade impactor from Jul. to Aug. 2008 and from Dec. 2009 to Feb. 2010 in urban Beijing. The results showed that fine particles (PM2.1, Dp < 2.1 μm) accounted for ∼49% (summer) and ∼34% (winter) of the total particulate mass, and WSIs accounted for 23-82% of the mass concentration of PM2.1. Secondary inorganic aerosols (SIAs, the sum of SO42-, NO3- and NH4+) accounted for more than 30% of the fine particles, which were greatly elevated during particle pollution events (PM events), thereby leading to an alteration of the size distributions of SO42- and NO3- to nearly single fine-mode distributions peaking at 0.65-2.1 μm. This finding suggests that heterogeneous aqueous reactions were enhanced at high RH values. SIAs also increased during dust events, particularly for coarse mode SO42-, which indicated enhanced heterogeneous reactions on the dust surface. The positive matrix factorization (PMF) model was used to resolve the bulk mass size distributions into condensation, droplet, and coarse modes, representing the three major sources of the particles. The formation of SO42- was attributed primarily to in-cloud or aerosol droplet processes during summer (45%), and the heterogeneous reaction of SO2 on mineral dust surfaces was an important formation pathway during winter (45%). The formation pathways of NO3- in fine particles were similar to those of SO42-, where over 30% were formed by in-cloud processes. This work provides important field measurement-based evidence for understanding the formation pathway of secondary inorganic aerosols in the megacity of Beijing.
Collapse
Affiliation(s)
- Zirui Liu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| | - Yuzhu Xie
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Bo Hu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Tianxue Wen
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Jinyuan Xin
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Xingru Li
- Department of Chemistry, Analytical and Testing Center, Capital Normal University, Beijing 100048, China
| | - Yuesi Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| |
Collapse
|
6
|
Spranger T, van Pinxteren D, Herrmann H. Two-Dimensional Offline Chromatographic Fractionation for the Characterization of Humic-Like Substances in Atmospheric Aerosol Particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5061-5070. [PMID: 28333457 DOI: 10.1021/acs.est.7b00077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Organic carbon in atmospheric particles comprises a large fraction of chromatographically unresolved compounds, often referred to as humic-like substances (HULIS), which influence particle properties and impact climate, human health, and ecosystems. To better understand its composition, a two-dimensional (2D) offline method combining size-exclusion (SEC) and reversed-phase liquid chromatography (RP-HPLC) using a new spiked gradient profile is presented. It separates HULIS into 55 fractions of different size and polarity, with estimated ranges of molecular weight and octanol/water partitioning coefficient (log P) from 160-900 g/mol and 0.2-3.3, respectively. The distribution of HULIS within the 2D size versus polarity space is illustrated with heat maps of ultraviolet absorption at 254 nm. It is found to strongly differ in a small example set of samples from a background site near Leipzig, Germany. In winter, the most intense signals were obtained for the largest molecules (>520 g/mol) with low polarity (log P ∼ 1.9), whereas in summer, smaller (225-330 g/mol) and more polar (log P ∼ 0.55) molecules dominate. The method reveals such differences in HULIS composition in a more detailed manner than previously possible and can therefore help to better elucidate the sources of HULIS in different seasons or at different sites. Analyzing Suwannee river fulvic acid as a common HULIS surrogate shows a similar polarity range, but the sizes are clearly larger than those of atmospheric HULIS.
Collapse
Affiliation(s)
- Tobias Spranger
- Leibniz-Institut für Troposphärenforschung (TROPOS) , Permoserstr. 15, 04318 Leipzig, Germany
| | - Dominik van Pinxteren
- Leibniz-Institut für Troposphärenforschung (TROPOS) , Permoserstr. 15, 04318 Leipzig, Germany
| | - Hartmut Herrmann
- Leibniz-Institut für Troposphärenforschung (TROPOS) , Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
7
|
Seasonal Variation of Nitrate Concentration and Its Direct Radiative Forcing over East Asia. ATMOSPHERE 2016. [DOI: 10.3390/atmos7080105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Jariyasopit N, Zimmermann K, Schrlau J, Arey J, Atkinson R, Yu TW, Dashwood RH, Tao S, Simonich SLM. Heterogeneous reactions of particulate matter-bound PAHs and NPAHs with NO3/N2O5, OH radicals, and O3 under simulated long-range atmospheric transport conditions: reactivity and mutagenicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:10155-64. [PMID: 25119270 PMCID: PMC4152393 DOI: 10.1021/es5015407] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/19/2014] [Accepted: 07/21/2014] [Indexed: 05/02/2023]
Abstract
The heterogeneous reactions of ambient particulate matter (PM)-bound polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs (NPAHs) with NO3/N2O5, OH radicals, and O3 were studied in a laboratory photochemical chamber. Ambient PM2.5 and PM10 samples were collected from Beijing, China, and Riverside, California, and exposed under simulated atmospheric long-range transport conditions for O3 and OH and NO3 radicals. Changes in the masses of 23 PAHs and 20 NPAHs, as well as the direct and indirect-acting mutagenicity of the PM (determined using the Salmonella mutagenicity assay with TA98 strain), were measured prior to and after exposure to NO3/N2O5, OH radicals, and O3. In general, O3 exposure resulted in the highest relative degradation of PM-bound PAHs with more than four rings (benzo[a]pyrene was degraded equally well by O3 and NO3/N2O5). However, NPAHs were most effectively formed during the Beijing PM exposure to NO3/N2O5. In ambient air, 2-nitrofluoranthene (2-NF) is formed from the gas-phase NO3 radical- and OH radical-initiated reactions of fluoranthene, and 2-nitropyrene (2-NP) is formed from the gas-phase OH radical-initiated reaction of pyrene. There was no formation of 2-NF or 2-NP in any of the heterogeneous exposures, suggesting that gas-phase formation of NPAHs did not play an important role during chamber exposures. Exposure of Beijing PM to NO3/N2O5 resulted in an increase in direct-acting mutagenic activity which was associated with the formation of mutagenic NPAHs. No NPAH formation was observed in any of the exposures of the Riverside PM. This was likely due to the accumulation of atmospheric degradation products from gas-phase reactions of volatile species onto the surface of PM collected in Riverside prior to exposure in the chamber, thus decreasing the availability of PAHs for reaction.
Collapse
Affiliation(s)
- Narumol Jariyasopit
- Department
of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Kathryn Zimmermann
- Air
Pollution Research Center, University of
California, Riverside, California 92521, United States
| | - Jill Schrlau
- Environmental
and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Janet Arey
- Air
Pollution Research Center, University of
California, Riverside, California 92521, United States
| | - Roger Atkinson
- Air
Pollution Research Center, University of
California, Riverside, California 92521, United States
| | - Tian-Wei Yu
- Environmental
and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Roderick H. Dashwood
- Institute
of Biosciences & Technology, Texas A&M Health Science Center, Houston, Texas 77030, United States
| | - Shu Tao
- College
of Urban and Environmental Science, Peking
University, Beijing, 100871, China
| | - Staci L. Massey Simonich
- Department
of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
- Environmental
and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
9
|
McGinnis JE, Heo J, Olson MR, Rutter AP, Schauer JJ. Understanding the sources and composition of the incremental excess of fine particles across multiple sampling locations in one air shed. J Environ Sci (China) 2014; 26:818-826. [PMID: 25079412 DOI: 10.1016/s1001-0742(13)60508-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 08/18/2013] [Accepted: 09/16/2013] [Indexed: 06/03/2023]
Abstract
Well-designed health studies and the development of effective regulatory policies need to rely on an understanding of the incremental differences in particulate matter concentrations and their sources. Although only a limited number of studies have been conducted to examine spatial differences in sources to particulate matter within an air shed, routine monitoring data can be used to better understand these differences. Measurements from the US EPA Chemical Speciation Network (CSN) collected between 2002-2008 were analyzed to demonstrate the utility of regulatory data across three sites located within 100 km of each other. Trends in concentrations, source contribution, and incremental excesses across three sites were investigated using the Positive Matrix Factorization model. Similar yearly trends in chemical composition were observed across all sites, however, excesses of organic matter and elemental carbon were observed in the urban center that originated from local emissions of mobile sources and biomass burning. Secondary sulfate and secondary nitrate constituted over half of the PM2.5 with no spatial differences observed across sites. For these components, the excess of emissions from industrial sources could be directly quantified. This study demonstrates that CSN data from multiple sites can be successfully used to derive consistent source profiles and source contributions for regional pollution, and that CSN data can be used to quantify incremental differences in source contributions of across these sites. The analysis strategy can be used in other regions of the world to take advantage of existing ambient particulate matter monitoring data to better the understanding of spatial differences in source contributions within a given air shed.
Collapse
Affiliation(s)
- Jerome E McGinnis
- University of Wisconsin-Madison, Environmental Chemistry and Technology Program, Madison, WI 53706, USA
| | - Jongbae Heo
- University of Wisconsin-Madison, Environmental Chemistry and Technology Program, Madison, WI 53706, USA
| | - Michael R Olson
- University of Wisconsin-Madison, Environmental Chemistry and Technology Program, Madison, WI 53706, USA
| | - Andrew P Rutter
- University of Wisconsin-Madison, Environmental Chemistry and Technology Program, Madison, WI 53706, USA
| | - James J Schauer
- University of Wisconsin-Madison, Environmental Chemistry and Technology Program, Madison, WI 53706, USA; Wisconsin State Laboratory of Hygiene, Madison, WI 53718, USA.
| |
Collapse
|
10
|
Wang Z, Ren P, Sun Y, Ma X, Liu X, Na G, Yao Z. Gas/particle partitioning of polycyclic aromatic hydrocarbons in coastal atmosphere of the north Yellow Sea, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:5753-5763. [PMID: 23463281 DOI: 10.1007/s11356-013-1588-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/18/2013] [Indexed: 06/01/2023]
Abstract
Samples of gas- and particle-phase polycyclic aromatic hydrocarbons (PAHs) were collected at three sampling stations (Xiaomai Island, Laohutan, and Zhangzi Island) in the north Yellow Sea, China during November 2008 and September 2009 to study their atmospheric transport potential and the gas/particle distributions. The composition of PAHs was dominated by gaseous compounds. The percentages of the particle-phase PAHs to the total concentrations were found to be higher during the heating period than the non-heating period. The ratios of naphthalene and acenaphthene to phenanthrene, chrysene and dibenzo(a,h)anthracene showed an increasing trend from Xiaomai Island to Zhangzi Island, which can be called as the local atmospheric distillation of PAHs. Gas/particle partitioning coefficients (K p) and their relationship with the sub-cooled liquid vapor pressures (pºL) of PAHs were investigated. The regressions of logK p versus logpºL gave significant correlations for all samples of the three sites with r (2) values in the range 0.56-0.66 (p<0.01). Both Junge-Pankow adsorption model and octanol-air partition coefficient absorption model tended to underestimate the sorption for most PAHs, but the absorption model appeared to be more suitable for predicting the particle fraction of PAHs than the Junge-Pankow model.
Collapse
Affiliation(s)
- Zhen Wang
- National Marine Environmental Monitoring Center, Dalian, 116023, China
| | | | | | | | | | | | | |
Collapse
|
11
|
van Pinxteren D, Teich M, Herrmann H. Hollow fibre liquid-phase microextraction of functionalised carboxylic acids from atmospheric particles combined with capillary electrophoresis/mass spectrometric analysis. J Chromatogr A 2012; 1267:178-88. [DOI: 10.1016/j.chroma.2012.06.097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 06/11/2012] [Accepted: 06/24/2012] [Indexed: 11/24/2022]
|
12
|
Kristensen TB, Wex H, Nekat B, Nøjgaard JK, van Pinxteren D, Lowenthal DH, Mazzoleni LR, Dieckmann K, Bender Koch C, Mentel TF, Herrmann H, Gannet Hallar A, Stratmann F, Bilde M. Hygroscopic growth and CCN activity of HULIS from different environments. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd018249] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
WANG WENTAO, JARIYASOPIT NARUMOL, SCHRLAU JILL, JIA YULING, TAO SHU, YU TIANWEI, DASHWOOD RODERICKH, ZHANG WEI, WANG XUEJUN, SIMONICH STACILMASSEY. Concentration and photochemistry of PAHs, NPAHs, and OPAHs and toxicity of PM2.5 during the Beijing Olympic Games. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:6887-95. [PMID: 21766847 PMCID: PMC3155004 DOI: 10.1021/es201443z] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Atmospheric particulate matter with diameter <2.5 um (PM(2.5)) was collected at Peking University (PKU) in Beijing, China before, during, and after the 2008 Olympics and analyzed for black carbon (BC), organic carbon (OC), lower molecular weight (MW < 300) and MW302 Polycyclic Aromatic Hydrocarbons (PAHs), nitrated PAHs (NPAHs) and oxygenated PAHs (OPAHs). In addition, the direct and indirect acting mutagenicity of the PM(2.5) and the potential for DNA damage to human lung cells were also measured. Significant reductions in BC (45%), OC (31%), MW< 300 PAH (26-73%), MW 302 PAH (22-77%), NPAH (15-68%), and OPAH (25-53%) concentrations were measured during the source control and Olympic periods. However, the mutagenicity of the PM(2.5) was significantly reduced only during the Olympic period. The PAH, NPAH, and OPAH composition of the PM(2.5) was similar throughout the study, suggesting similar sources during the different periods. During the source control period, the parent PAH concentrations were correlated with NO, CO, and SO(2) concentrations, indicating that these PAHs were associated with both local and regional emissions. However, the NPAH and OPAH concentrations were only correlated with the NO concentrations, indicating that the NPAH and OPAH were primarily associated with local emissions. The relatively high 2-nitrofluoranthene/1-nitropyrene ratio (25-46) and 2-nitrofluoranthene/2-nitropyrene ratio (3.4-4.8), suggested a predominance of photochemical formation of NPAHs through OH-radical-initiated reactions in the atmosphere. On average, the ∑NPAH and ∑OPAH concentrations were 8% of the parent PAH concentrations, while the direct-acting mutagenicity (due to the NPAH and OPAH) was 200% higher than the indirect-acting mutagenicity (due to the PAH). This suggests that NPAH and OPAH make up a significant portion of the overall mutagenicity of PM(2.5) in Beijing.
Collapse
Affiliation(s)
- WENTAO WANG
- College of Urban and Environmental Science, Peking University, Beijing, China, 100871
| | - NARUMOL JARIYASOPIT
- Department of Chemistry, Oregon State University, Corvallis, Oregon USA 97331
| | - JILL SCHRLAU
- Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA, 97331
| | - YULING JIA
- Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA, 97331
| | - SHU TAO
- College of Urban and Environmental Science, Peking University, Beijing, China, 100871
| | - TIAN-WEI YU
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon USA, 97331
| | | | - WEI ZHANG
- College of Urban and Environmental Science, Peking University, Beijing, China, 100871
| | - XUEJUN WANG
- College of Urban and Environmental Science, Peking University, Beijing, China, 100871
| | - STACI L. MASSEY SIMONICH
- Department of Chemistry, Oregon State University, Corvallis, Oregon USA 97331
- Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA, 97331
| |
Collapse
|
14
|
Wehner B, Berghof M, Cheng YF, Achtert P, Birmili W, Nowak A, Wiedensohler A, Garland RM, Pöschl U, Hu M, Zhu T. Mixing state of nonvolatile aerosol particle fractions and comparison with light absorption in the polluted Beijing region. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd010923] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Yue D, Hu M, Wu Z, Wang Z, Guo S, Wehner B, Nowak A, Achtert P, Wiedensohler A, Jung J, Kim YJ, Liu S. Characteristics of aerosol size distributions and new particle formation in the summer in Beijing. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd010894] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Cheng YF, Berghof M, Garland RM, Wiedensohler A, Wehner B, Müller T, Su H, Zhang YH, Achtert P, Nowak A, Pöschl U, Zhu T, Hu M, Zeng LM. Influence of soot mixing state on aerosol light absorption and single scattering albedo during air mass aging at a polluted regional site in northeastern China. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd010883] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|