1
|
Yin L, Bai B, Zhang B, Zhu Q, Di Q, Requia WJ, Schwartz JD, Shi L, Liu P. Regional-specific trends of PM 2.5 and O 3 temperature sensitivity in the United States. NPJ CLIMATE AND ATMOSPHERIC SCIENCE 2025; 8:12. [PMID: 39803003 PMCID: PMC11717706 DOI: 10.1038/s41612-024-00862-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025]
Abstract
Climate change poses direct and indirect threats to public health, including exacerbating air pollution. However, the influence of rising temperature on air quality remains highly uncertain in the United States, particularly under rapid reduction in anthropogenic emissions. Here, we examined the sensitivity of surface-level fine particulate matter (PM2.5) and ozone (O3) to summer temperature anomalies in the contiguous US as well as their decadal changes using high-resolution datasets generated by machine learning. Our findings demonstrate that in the eastern US, stringent emission control strategies have significantly reduced the positive responses of PM2.5 and O3 to summer temperature, thereby lowering the population exposure associated with warming-induced air quality deterioration. In contrast, PM2.5 in the western US became more sensitive to temperature, highlighting the urgent need to manage and mitigate the impact of worsening wildfires. Our results have important implications for air quality management and risk assessments of future climate change.
Collapse
Affiliation(s)
- Lifei Yin
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Bin Bai
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Bingqing Zhang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Qiao Zhu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322 USA
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Weeberb J. Requia
- School of Public Policy and Government, Fundação Getúlio Vargas, Distrito Federal, Brazil
| | - Joel D. Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA
| | - Liuhua Shi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322 USA
| | - Pengfei Liu
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332 USA
| |
Collapse
|
2
|
Vazquez Santiago J, Hata H, Martinez-Noriega EJ, Inoue K. Ozone trends and their sensitivity in global megacities under the warming climate. Nat Commun 2024; 15:10236. [PMID: 39592683 PMCID: PMC11599728 DOI: 10.1038/s41467-024-54490-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Tropospheric ozone formation depends on the emissions of volatile organic compounds (VOC) and nitrogen oxides (NOx). In megacities, abundant VOC and NOx sources cause relentlessly high ozone episodes, affecting a large share of the global population. This study uses data from the Ozone Monitoring Instrument for formaldehyde (HCHO) and nitrogen dioxide (NO2) as proxy data for VOC and NOx emissions, respectively, with their ratio serving as an indicator of ozone sensitivity. Ground-level ozone (O3) reanalysis from the Copernicus Atmosphere Monitoring is used to assess the O3 trends. We evaluate changes from 2005 to 2019 and their relationship with the warming environment in 41 megacities worldwide, applying seasonal Mann-Kendall, trend decomposition methods, and Pearson correlation analysis. We reveal significant increases in global HCHO (0.1 to 0.31 × 1015 mol cm-2 year-1) and regionally varying NO2 (-0.22 to 0.07 × 1015 mol cm-2 year-1). O3 trends range from -0.31 to 0.70 ppb year-1, highlighting the relevance of precursor abundance on O3 levels. The strong correlation between precursor emissions and increasing temperature suggests that O3 will continue to rise as climate change persists.
Collapse
Affiliation(s)
- Jairo Vazquez Santiago
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki, 305-8560, Japan.
| | - Hiroo Hata
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki, 305-8560, Japan
| | - Edgar J Martinez-Noriega
- Digital Architecture Research Center, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Kazuya Inoue
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki, 305-8560, Japan.
| |
Collapse
|
3
|
Observed Relationship between Ozone and Temperature for Urban Nonattainment Areas in the United States. ATMOSPHERE 2021. [DOI: 10.3390/atmos12101235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This study examined the observed relationship between ozone (O3) and temperature using data from 1995 to 2020 at 20 cities across the United States (U.S.) that exceed the O3 National Ambient Air Quality Standard (NAAQS). The median slope of the O3 versus temperature relationship decreased from 2.8 to 1.5 parts per billion per degrees Celsius (ppb °C−1) in the eastern U.S., 2.2 to 1.3 ppb °C−1 in the midwestern U.S., and 1.7 to 1.1 ppb °C−1 in the western U.S. O3 in the eastern and midwestern U.S. has become less correlated with temperature due to emission controls. In the western U.S., O3 concentrations have declined more slowly and the correlation between O3 and temperature has changed negligibly due to the effects of high background O3 and wildfire smoke. This implies that meeting the O3 NAAQS in the western U.S. will be more challenging compared with other parts of the country.
Collapse
|
4
|
Wang B, Shuman J, Shugart HH, Lerdau MT. Biodiversity matters in feedbacks between climate change and air quality: a study using an individual-based model. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:1223-1231. [PMID: 29603469 DOI: 10.1002/eap.1721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/27/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Air quality is closely associated with climate change via the biosphere because plants release large quantities of volatile organic compounds (VOC) that mediate both gaseous pollutants and aerosol dynamics. Earlier studies, which considered only leaf physiology and simply scale up from leaf-level enhancements of emissions, suggest that climate warming enhances whole forest VOC emissions, and these increased VOC emissions aggravate ozone pollution and secondary organic aerosol formation. Using an individual-based forest VOC emissions model, UVAFME-VOC, that simulates system-level emissions by explicitly simulating forest community dynamics to the individual tree level, ecological competition among the individuals of differing size and age, and radiative transfer and leaf function through the canopy, we find that climate warming only sometimes stimulates isoprene emissions (the single largest source of non-methane hydrocarbon) in a southeastern U.S. forest. These complex patterns result from the combination of higher temperatures' stimulating emissions at the leaf level but decreasing the abundance of isoprene-emitting taxa at the community level by causing a decline in the abundance of isoprene-emitting species (Quercus spp.). This ecological effect eventually outweighs the physiological one, thus reducing overall emissions. Such reduced emissions have far-reaching implications for the climate-air-quality relationships that have been established on the paradigm of warming-enhancement VOC emissions from vegetation. This local scale modeling study suggests that community ecology rather than only individual physiology should be integrated into future studies of biosphere-climate-chemistry interactions.
Collapse
Affiliation(s)
- Bin Wang
- Department of Environmental Sciences, University of Virginia, P.O. Box 400123, Clark Hall, 291 McCormick Road, Charlottesville, Virginia, 22904, USA
| | - Jacquelyn Shuman
- Terrestrial Sciences Section, Climate and Global Dynamics, National Center for Atmospheric Research, 1850 Table Mesa Drive, Boulder, Colorado, 80305, USA
| | - Herman H Shugart
- Department of Environmental Sciences, University of Virginia, P.O. Box 400123, Clark Hall, 291 McCormick Road, Charlottesville, Virginia, 22904, USA
| | - Manuel T Lerdau
- Department of Environmental Sciences, University of Virginia, P.O. Box 400123, Clark Hall, 291 McCormick Road, Charlottesville, Virginia, 22904, USA
| |
Collapse
|
5
|
Mao J, Carlton A, Cohen RC, Brune WH, Brown SS, Wolfe GM, Jimenez JL, Pye HOT, Ng NL, Xu L, McNeill VF, Tsigaridis K, McDonald BC, Warneke C, Guenther A, Alvarado MJ, de Gouw J, Mickley LJ, Leibensperger EM, Mathur R, Nolte CG, Portmann RW, Unger N, Tosca M, Horowitz LW. Southeast Atmosphere Studies: learning from model-observation syntheses. ATMOSPHERIC CHEMISTRY AND PHYSICS 2018; 18:2615-2651. [PMID: 29963079 PMCID: PMC6020695 DOI: 10.5194/acp-18-2615-2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Concentrations of atmospheric trace species in the United States have changed dramatically over the past several decades in response to pollution control strategies, shifts in domestic energy policy and economics, and economic development (and resulting emission changes) elsewhere in the world. Reliable projections of the future atmosphere require models to not only accurately describe current atmospheric concentrations, but to do so by representing chemical, physical and biological processes with conceptual and quantitative fidelity. Only through incorporation of the processes controlling emissions and chemical mechanisms that represent the key transformations among reactive molecules can models reliably project the impacts of future policy, energy and climate scenarios. Efforts to properly identify and implement the fundamental and controlling mechanisms in atmospheric models benefit from intensive observation periods, during which collocated measurements of diverse, speciated chemicals in both the gas and condensed phases are obtained. The Southeast Atmosphere Studies (SAS, including SENEX, SOAS, NOMADSS and SEAC4RS) conducted during the summer of 2013 provided an unprecedented opportunity for the atmospheric modeling community to come together to evaluate, diagnose and improve the representation of fundamental climate and air quality processes in models of varying temporal and spatial scales. This paper is aimed at discussing progress in evaluating, diagnosing and improving air quality and climate modeling using comparisons to SAS observations as a guide to thinking about improvements to mechanisms and parameterizations in models. The effort focused primarily on model representation of fundamental atmospheric processes that are essential to the formation of ozone, secondary organic aerosol (SOA) and other trace species in the troposphere, with the ultimate goal of understanding the radiative impacts of these species in the southeast and elsewhere. Here we address questions surrounding four key themes: gas-phase chemistry, aerosol chemistry, regional climate and chemistry interactions, and natural and anthropogenic emissions. We expect this review to serve as a guidance for future modeling efforts.
Collapse
Affiliation(s)
- Jingqiu Mao
- Geophysical Institute and Department of Chemistry, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Annmarie Carlton
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Ronald C. Cohen
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, USA
| | - William H. Brune
- Department of Meteorology, Pennsylvania State University, University Park, PA, USA
| | - Steven S. Brown
- Department of Chemistry and CIRES, University of Colorado Boulder, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Boulder, CO, USA
| | - Glenn M. Wolfe
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
- Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Jose L. Jimenez
- Department of Chemistry and CIRES, University of Colorado Boulder, Boulder, CO, USA
| | - Havala O. T. Pye
- National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Nga Lee Ng
- School of Chemical and Biomolecular Engineering and School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Lu Xu
- School of Chemical and Biomolecular Engineering and School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - V. Faye McNeill
- Department of Chemical Engineering, Columbia University, New York, NY USA
| | - Kostas Tsigaridis
- Center for Climate Systems Research, Columbia University, New York, NY, USA
- NASA Goddard Institute for Space Studies, New York, NY, USA
| | - Brian C. McDonald
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - Carsten Warneke
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - Alex Guenther
- Department of Earth System Science, University of California, Irvine, CA, USA
| | | | - Joost de Gouw
- Department of Chemistry and CIRES, University of Colorado Boulder, Boulder, CO, USA
| | - Loretta J. Mickley
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | | | - Rohit Mathur
- National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Christopher G. Nolte
- National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Robert W. Portmann
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Boulder, CO, USA
| | - Nadine Unger
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Mika Tosca
- School of the Art Institute of Chicago (SAIC), Chicago, IL 60603, USA
| | - Larry W. Horowitz
- Geophysical Fluid Dynamics Laboratory–National Oceanic and Atmospheric Administration, Princeton, NJ, USA
| |
Collapse
|
6
|
Morgott DA. The Human Exposure Potential from Propylene Releases to the Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15010066. [PMID: 29300328 PMCID: PMC5800165 DOI: 10.3390/ijerph15010066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/22/2017] [Accepted: 12/23/2017] [Indexed: 11/16/2022]
Abstract
A detailed literature search was performed to assess the sources, magnitudes and extent of human inhalation exposure to propylene. Exposure evaluations were performed at both the community and occupational levels for those living or working in different environments. The results revealed a multitude of pyrogenic, biogenic and anthropogenic emission sources. Pyrogenic sources, including biomass burning and fossil fuel combustion, appear to be the primary contributors to atmospheric propylene. Despite a very short atmospheric lifetime, measurable levels could be detected in highly remote locations as a result of biogenic release. The indoor/outdoor ratio for propylene has been shown to range from about 2 to 3 in non-smoking homes, which indicates that residential sources may be the largest contributor to the overall exposure for those not occupationally exposed. In homes where smoking takes place, the levels may be up to thirty times higher than non-smoking residences. Atmospheric levels in most rural regions are typically below 2 ppbv, whereas the values in urban levels are much more variable ranging as high as 10 ppbv. Somewhat elevated propylene exposures may also occur in the workplace; especially for firefighters or refinery plant operators who may encounter levels up to about 10 ppmv.
Collapse
Affiliation(s)
- David A Morgott
- Pennsport Consulting, LLC, 1 Christian Street, Unit#21, Philadelphia, PA 19147, USA.
| |
Collapse
|
7
|
Doherty RM, Heal MR, O’Connor FM. Climate change impacts on human health over Europe through its effect on air quality. Environ Health 2017; 16:118. [PMID: 29219103 PMCID: PMC5773909 DOI: 10.1186/s12940-017-0325-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This review examines the current literature on the effects of future emissions and climate change on particulate matter (PM) and O3 air quality and on the consequent health impacts, with a focus on Europe. There is considerable literature on the effects of climate change on O3 but fewer studies on the effects of climate change on PM concentrations. Under the latest Intergovernmental Panel on Climate Change (IPCC) 5th assessment report (AR5) Representative Concentration Pathways (RCPs), background O3 entering Europe is expected to decrease under most scenarios due to higher water vapour concentrations in a warmer climate. However, under the extreme pathway RCP8.5 higher (more than double) methane (CH4) abundances lead to increases in background O3 that offset the O3 decrease due to climate change especially for the 2100 period. Regionally, in polluted areas with high levels of nitrogen oxides (NOx), elevated surface temperatures and humidities yield increases in surface O3 - termed the O3 climate penalty - especially in southern Europe. The O3 response is larger for metrics that represent the higher end of the O3 distribution, such as daily maximum O3. Future changes in PM concentrations due to climate change are much less certain, although several recent studies also suggest a PM climate penalty due to high temperatures and humidity and reduced precipitation in northern mid-latitude land regions in 2100.A larger number of studies have examined both future climate and emissions changes under the RCP scenarios. Under these pathways the impact of emission changes on air quality out to the 2050s will be larger than that due to climate change, because of large reductions in emissions of O3 and PM pollutant precursor emissions and the more limited climate change response itself. Climate change will also affect climate extreme events such as heatwaves. Air pollution episodes are associated with stagnation events and sometimes heat waves. Air quality during the 2003 heatwave over Europe has been examined in numerous studies and mechanisms for enhancing O3 have been identified.There are few studies on health effects associated with climate change impacts alone on air quality, but these report higher O3-related health burdens in polluted populated regions and greater PM2.5 health burdens in these emission regions. Studies that examine the combined impacts of climate change and anthropogenic emissions change under the RCP scenarios report reductions in global and European premature O3-respiratory related and PM mortalities arising from the large decreases in precursor emissions. Under RCP 8.5 the large increase in CH4 leads to global and European excess O3-respiratory related mortalities in 2100. For future health effects, besides uncertainty in future O3 and particularly PM concentrations, there is also uncertainty in risk estimates such as effect modification by temperature on pollutant-response relationships and potential future adaptation that would alter exposure risk.
Collapse
Affiliation(s)
- Ruth M. Doherty
- School of GeoSciences, University of Edinburgh, Alexander Crum Brown Road, Edinburgh, EH9 3FF UK
| | - Mathew R. Heal
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, Scotland EH9 3FJ UK
| | | |
Collapse
|
8
|
The Variability of Ozone Sensitivity to Anthropogenic Emissions with Biogenic Emissions Modeled by MEGAN and BEIS3. ATMOSPHERE 2017. [DOI: 10.3390/atmos8100187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Rosenkranz M, Pugh TAM, Schnitzler JP, Arneth A. Effect of land-use change and management on biogenic volatile organic compound emissions--selecting climate-smart cultivars. PLANT, CELL & ENVIRONMENT 2015; 38:1896-1912. [PMID: 25255900 DOI: 10.1111/pce.12453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 06/03/2023]
Abstract
Land-use change (LUC) has fundamentally altered the form and function of the terrestrial biosphere. Increasing human population, the drive for higher living standards and the potential challenges of mitigating and adapting to global environmental change mean that further changes in LUC are unavoidable. LUC has direct consequences on climate not only via emissions of greenhouse gases and changing the surface energy balance but also by affecting the emission of biogenic volatile organic compounds (BVOCs). Isoprenoids, which dominate global BVOC emissions, are highly reactive and strongly modify atmospheric composition. The effects of LUC on BVOC emissions and related atmospheric chemistry have been largely ignored so far. However, compared with natural ecosystems, most tree species used in bioenergy plantations are strong BVOC emitters, whereas intensively cultivated crops typically emit less BVOCs. Here, we summarize the current knowledge on LUC-driven BVOC emissions and how these might affect atmospheric composition and climate. We further discuss land management and plant-breeding strategies, which could be taken to move towards climate-friendly BVOC emissions while simultaneously maintaining or improving key ecosystem functions such as crop yield under a changing environment.
Collapse
Affiliation(s)
- Maaria Rosenkranz
- Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Thomas A M Pugh
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, 82467, Garmisch-Partenkirchen, Germany
| | - Jörg-Peter Schnitzler
- Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Almut Arneth
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, 82467, Garmisch-Partenkirchen, Germany
| |
Collapse
|
10
|
Fiore AM, Naik V, Spracklen DV, Steiner A, Unger N, Prather M, Bergmann D, Cameron-Smith PJ, Cionni I, Collins WJ, Dalsøren S, Eyring V, Folberth GA, Ginoux P, Horowitz LW, Josse B, Lamarque JF, MacKenzie IA, Nagashima T, O'Connor FM, Righi M, Rumbold ST, Shindell DT, Skeie RB, Sudo K, Szopa S, Takemura T, Zeng G. Global air quality and climate. Chem Soc Rev 2012; 41:6663-83. [PMID: 22868337 DOI: 10.1039/c2cs35095e] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Emissions of air pollutants and their precursors determine regional air quality and can alter climate. Climate change can perturb the long-range transport, chemical processing, and local meteorology that influence air pollution. We review the implications of projected changes in methane (CH(4)), ozone precursors (O(3)), and aerosols for climate (expressed in terms of the radiative forcing metric or changes in global surface temperature) and hemispheric-to-continental scale air quality. Reducing the O(3) precursor CH(4) would slow near-term warming by decreasing both CH(4) and tropospheric O(3). Uncertainty remains as to the net climate forcing from anthropogenic nitrogen oxide (NO(x)) emissions, which increase tropospheric O(3) (warming) but also increase aerosols and decrease CH(4) (both cooling). Anthropogenic emissions of carbon monoxide (CO) and non-CH(4) volatile organic compounds (NMVOC) warm by increasing both O(3) and CH(4). Radiative impacts from secondary organic aerosols (SOA) are poorly understood. Black carbon emission controls, by reducing the absorption of sunlight in the atmosphere and on snow and ice, have the potential to slow near-term warming, but uncertainties in coincident emissions of reflective (cooling) aerosols and poorly constrained cloud indirect effects confound robust estimates of net climate impacts. Reducing sulfate and nitrate aerosols would improve air quality and lessen interference with the hydrologic cycle, but lead to warming. A holistic and balanced view is thus needed to assess how air pollution controls influence climate; a first step towards this goal involves estimating net climate impacts from individual emission sectors. Modeling and observational analyses suggest a warming climate degrades air quality (increasing surface O(3) and particulate matter) in many populated regions, including during pollution episodes. Prior Intergovernmental Panel on Climate Change (IPCC) scenarios (SRES) allowed unconstrained growth, whereas the Representative Concentration Pathway (RCP) scenarios assume uniformly an aggressive reduction, of air pollutant emissions. New estimates from the current generation of chemistry-climate models with RCP emissions thus project improved air quality over the next century relative to those using the IPCC SRES scenarios. These two sets of projections likely bracket possible futures. We find that uncertainty in emission-driven changes in air quality is generally greater than uncertainty in climate-driven changes. Confidence in air quality projections is limited by the reliability of anthropogenic emission trajectories and the uncertainties in regional climate responses, feedbacks with the terrestrial biosphere, and oxidation pathways affecting O(3) and SOA.
Collapse
Affiliation(s)
- Arlene M Fiore
- Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Martins DK, Stauffer RM, Thompson AM, Knepp TN, Pippin M. Surface ozone at a coastal suburban site in 2009 and 2010: Relationships to chemical and meteorological processes. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016828] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Katragkou E, Zanis P, Kioutsioukis I, Tegoulias I, Melas D, Krüger BC, Coppola E. Future climate change impacts on summer surface ozone from regional climate-air quality simulations over Europe. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011jd015899] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- E. Katragkou
- Laboratory of Atmospheric Physics, School of Physics; Aristotle University of Thessaloniki; Thessaloniki Greece
- Department of Meteorology and Climatology, School of Geology; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - P. Zanis
- Department of Meteorology and Climatology, School of Geology; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - I. Kioutsioukis
- Laboratory of Atmospheric Physics, School of Physics; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - I. Tegoulias
- Department of Meteorology and Climatology, School of Geology; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - D. Melas
- Laboratory of Atmospheric Physics, School of Physics; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - B. C. Krüger
- Institute of Meteorology; University of Natural Resources and Life Sciences; Vienna Austria
| | - E. Coppola
- International Centre for Theoretical Physics; Trieste Italy
| |
Collapse
|
13
|
|
14
|
Observed suppression of ozone formation at extremely high temperatures due to chemical and biophysical feedbacks. Proc Natl Acad Sci U S A 2010; 107:19685-90. [PMID: 21041679 DOI: 10.1073/pnas.1008336107] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ground level ozone concentrations ([O(3)]) typically show a direct linear relationship with surface air temperature. Three decades of California measurements provide evidence of a statistically significant change in the ozone-temperature slope (Δm(O3-T)) under extremely high temperatures (> 312 K). This Δm(O3-T) leads to a plateau or decrease in [O(3)], reflecting the diminished role of nitrogen oxide sequestration by peroxyacetyl nitrates and reduced biogenic isoprene emissions at high temperatures. Despite inclusion of these processes in global and regional chemistry-climate models, a statistically significant change in Δm(O3-T) has not been noted in prior studies. Future climate projections suggest a more frequent and spatially widespread occurrence of this Δm(O3-T) response, confounding predictions of extreme ozone events based on the historically observed linear relationship.
Collapse
|
15
|
Fang Y, Fiore AM, Horowitz LW, Levy H, Hu Y, Russell AG. Sensitivity of the NOybudget over the United States to anthropogenic and lightning NOxin summer. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010jd014079] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|