1
|
Bhowmik HS, Tripathi SN, Shukla AK, Lalchandani V, Murari V, Devaprasad M, Shivam A, Bhushan R, Prévôt ASH, Rastogi N. Contribution of fossil and biomass-derived secondary organic carbon to winter water-soluble organic aerosols in Delhi, India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168655. [PMID: 37992837 DOI: 10.1016/j.scitotenv.2023.168655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Delhi, among the world's most polluted megacities, is a hotspot of particulate matter emissions, with high contribution from organic aerosol (OA), affecting health and climate in the entire northern India. While the primary organic aerosol (POA) sources can be effectively identified, an incomplete source apportionment of secondary organic aerosol (SOA) causes significant ambiguity in the management of air quality and the assessment of climate change. Present study uses positive matrix factorization analysis on the water-soluble organic aerosol (WSOA) data from the offline-aerosol mass spectrometry (AMS). It revealed POA as the dominant source of WSOA, with biomass-burning OA (31-34 %) and solid fuel combustion OA (∼21 %) being two major contributors. Here we use water-solubility fingerprints to track the SOA precursors, such as oxalates or organic nitrates, instead of identifying them based on their O:C ratio. Non-fossil precursors dominate in more oxidized oxygenated organic carbon (MO-OOC) (∼90 %), a proxy for aged secondary organic carbon (SOC), by coupling offline-AMS with 14C measurements. On the contrary, the oxidation of fossil fuel emissions produces a large quantity of fresh fossil SOC, which accounts for ∼75 % of less oxidized oxygenated organic carbon (LO-OOC). Our study reveals that apart from major POA contributions, large fractions of fossil (10-14 %) and biomass-derived SOA (23-30 %) contribute significantly to the total WSOA load, having impact on climate and air quality of the Delhi megacity. Our study reveals that large-scale unregulated biomass burning was not only found to dominate in POA but was also observed to be a significant contributor to SOA with implications on human health, highlighting the need for effective control strategies.
Collapse
Affiliation(s)
- Himadri S Bhowmik
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Sachchida N Tripathi
- Department of Civil Engineering and Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Ashutosh K Shukla
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Vipul Lalchandani
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India; School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT, UK
| | - Vishnu Murari
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India; Institut Mines Télécom (IMT) Nord, 941 rue Charles Bourseul, 59508 Douai, France
| | - M Devaprasad
- Geosciences Division, Physical Research Laboratory, Ahmedabad 380009, India; Indian Institute of Technology, Gandhinagar, Gujarat 382355, India
| | - Ajay Shivam
- Geosciences Division, Physical Research Laboratory, Ahmedabad 380009, India
| | - Ravi Bhushan
- Geosciences Division, Physical Research Laboratory, Ahmedabad 380009, India
| | - André S H Prévôt
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institut, Villigen, PSI, 5232, Switzerland
| | - Neeraj Rastogi
- Geosciences Division, Physical Research Laboratory, Ahmedabad 380009, India
| |
Collapse
|
2
|
Gibson L, Crombie AT, McNamara NP, Murrell JC. Isoprene-degrading bacteria associated with the phyllosphere of Salix fragilis, a high isoprene-emitting willow of the Northern Hemisphere. ENVIRONMENTAL MICROBIOME 2021; 16:17. [PMID: 34446108 PMCID: PMC8394569 DOI: 10.1186/s40793-021-00386-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/12/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Isoprene accounts for about half of total biogenic volatile organic compound emissions globally, and as a climate active gas it plays a significant and varied role in atmospheric chemistry. Terrestrial plants are the largest source of isoprene, with willow (Salix) making up one of the most active groups of isoprene producing trees. Bacteria act as a biological sink for isoprene and those bacteria associated with high isoprene-emitting trees may provide further insight into its biodegradation. RESULTS A DNA-SIP experiment incubating willow (Salix fragilis) leaves with 13C-labelled isoprene revealed an abundance of Comamonadaceae, Methylobacterium, Mycobacterium and Polaromonas in the isoprene degrading community when analysed by 16S rRNA gene amplicon sequencing. Metagenomic analysis of 13C-enriched samples confirmed the abundance of Comamonadaceae, Acidovorax, Polaromonas, Variovorax and Ramlibacter. Mycobacterium and Methylobacterium were also identified after metagenomic analysis and a Mycobacterium metagenome-assembled genome (MAG) was recovered. This contained two complete isoprene degradation metabolic gene clusters, along with a propane monooxygenase gene cluster. Analysis of the abundance of the alpha subunit of the isoprene monooxygenase, isoA, in unenriched DNA samples revealed that isoprene degraders associated with willow leaves are abundant, making up nearly 0.2% of the natural bacterial community. CONCLUSIONS Analysis of the isoprene degrading community associated with willow leaves using DNA-SIP and focused metagenomics techniques enabled recovery of the genome of an active isoprene-degrading Mycobacterium species and provided valuable insight into bacteria involved in degradation of isoprene on the leaves of a key species of isoprene-emitting tree in the northern hemisphere.
Collapse
Affiliation(s)
- Lisa Gibson
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Andrew T Crombie
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Niall P McNamara
- Centre of Ecology and Hydrology, Lancaster University, Bailrigg, Lancaster, LA1 4AP, UK
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
3
|
Lyu R, Zhang J, Wu J, Feng Y. Primary Carbonaceous Particle Emission from Four Power Plants with Ultralow Emission in China. ACS OMEGA 2021; 6:1309-1315. [PMID: 33490790 PMCID: PMC7818619 DOI: 10.1021/acsomega.0c04754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/29/2020] [Indexed: 05/27/2023]
Abstract
Particulate matters (PMs) were collected in stacks from two types of ultralow emission coal-fired power plants by a heated electrical low-pressure impactor (HT-ELPI+), including ultralow emission pulverized combustion technology boilers (ULPCBs) and ultralow emission circulating fluidized bed boilers (ULCFBs). The characteristics of organic carbon (OC) and elemental carbon (EC) in size-resolved particles were analyzed. The ultralow emission technologies significantly decreased the mass concentrations of the carbonaceous content, and the emission concentrations of OC and EC ranged from 5.64 to 17.9 μg/m3 for ULPCBs and from 0.57 to 1.85 μg/m3 for ULCFBs. However, the number concentration of particles was not significantly decreased in the four ultralow emission power plants. The OC in the particle emission of ULPCBs presents a bimodal size distribution with the particle size, while three successive unimodal distributions were observed in the ULCFB emission. Compared to ULPCBs, much more char-EC and soot-EC condensed in the particles, which were collected from ULCFBs. Furthermore, the char-EC/soot-EC in the particle fractions of ULPCBs characterized by the "V" type with the sequence of PM1.0 > PM2.5-10 > PM1.0-2.5, differing from the PM1.0 > PM1.0-2.5 > PM2.5-10 of ULCFBs. The ratios of OC/EC in the stacks from two types of boilers did not show obvious variations in particle size distributions, and the mean OC/EC was far higher than those for non-ultralow emission power plants. Considering the impact of OC1, OC4, and EC1, the ratio of high-temperature organic carbon (HTOC, defined as OC2 + OC3) and soot-EC was studied. The HTOC/soot-EC increased with the increase of RH in the stack, and the highest HTOC/soot-EC values were obtained from ULPCBs (33.0% (PM1.0), 11.4% (PM1.0-2.5), and 23.9% (PM2.5-10)). Meanwhile, strong correlations (0.69-0.85, p < 0.001) between HTOC and soot-EC were obtained, implying that HTOC and soot-EC probably simultaneously condensed in the purification equipment.
Collapse
Affiliation(s)
- Ruihe Lyu
- College
of Marine Resources and Environment, Hebei
Normal University of Science & Technology, Qinhuangdao, Hebei 066004, China
| | - Jinsheng Zhang
- State
Environmental Protection Key Laboratory of Urban Ambient Air Particulate
Matter Pollution Prevention and Control, College of Environmental
Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jianhui Wu
- State
Environmental Protection Key Laboratory of Urban Ambient Air Particulate
Matter Pollution Prevention and Control, College of Environmental
Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yinchang Feng
- State
Environmental Protection Key Laboratory of Urban Ambient Air Particulate
Matter Pollution Prevention and Control, College of Environmental
Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
4
|
Carrión O, McGenity TJ, Murrell JC. Molecular Ecology of Isoprene-Degrading Bacteria. Microorganisms 2020; 8:E967. [PMID: 32605141 PMCID: PMC7409078 DOI: 10.3390/microorganisms8070967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/16/2020] [Accepted: 06/25/2020] [Indexed: 01/08/2023] Open
Abstract
Isoprene is a highly abundant biogenic volatile organic compound (BVOC) that is emitted to the atmosphere in amounts approximating to those of methane. The effects that isoprene has on Earth's climate are both significant and complex, however, unlike methane, very little is known about the biological degradation of this environmentally important trace gas. Here, we review the mechanisms by which bacteria catabolise isoprene, what is known about the diversity of isoprene degraders in the environment, and the molecular tools currently available to study their ecology. Specifically, we focus on the use of probes based on the gene encoding the α-subunit of isoprene monooxygenase, isoA, and DNA stable-isotope probing (DNA-SIP) alone or in combination with other cultivation-independent techniques to determine the abundance, diversity, and activity of isoprene degraders in the environment. These parameters are essential in order to evaluate how microbes might mitigate the effects of this important but neglected climate-active gas. We also suggest key aspects of isoprene metabolism that require further investigation in order to better understand the global isoprene biogeochemical cycle.
Collapse
Affiliation(s)
- Ornella Carrión
- School of Environmental Sciences, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, UK
| | - Terry J. McGenity
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK;
| | - J. Colin Murrell
- School of Environmental Sciences, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
5
|
Carrión O, Gibson L, Elias DMO, McNamara NP, van Alen TA, Op den Camp HJM, Supramaniam CV, McGenity TJ, Murrell JC. Diversity of isoprene-degrading bacteria in phyllosphere and soil communities from a high isoprene-emitting environment: a Malaysian oil palm plantation. MICROBIOME 2020; 8:81. [PMID: 32493439 PMCID: PMC7271495 DOI: 10.1186/s40168-020-00860-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/11/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Isoprene is the most abundantly produced biogenic volatile organic compound (BVOC) on Earth, with annual global emissions almost equal to those of methane. Despite its importance in atmospheric chemistry and climate, little is known about the biological degradation of isoprene in the environment. The largest source of isoprene is terrestrial plants, and oil palms, the cultivation of which is expanding rapidly, are among the highest isoprene-producing trees. RESULTS DNA stable isotope probing (DNA-SIP) to study the microbial isoprene-degrading community associated with oil palm trees revealed novel genera of isoprene-utilising bacteria including Novosphingobium, Pelomonas, Rhodoblastus, Sphingomonas and Zoogloea in both oil palm soils and on leaves. Amplicon sequencing of isoA genes, which encode the α-subunit of the isoprene monooxygenase (IsoMO), a key enzyme in isoprene metabolism, confirmed that oil palm trees harbour a novel diversity of isoA sequences. In addition, metagenome-assembled genomes (MAGs) were reconstructed from oil palm soil and leaf metagenomes and putative isoprene degradation genes were identified. Analysis of unenriched metagenomes showed that isoA-containing bacteria are more abundant in soils than in the oil palm phyllosphere. CONCLUSION This study greatly expands the known diversity of bacteria that can metabolise isoprene and contributes to a better understanding of the biological degradation of this important but neglected climate-active gas. Video abstract.
Collapse
Affiliation(s)
- Ornella Carrión
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Lisa Gibson
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Dafydd M O Elias
- UK Centre of Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
| | - Niall P McNamara
- UK Centre of Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
| | - Theo A van Alen
- Department of Microbiology, Faculty of Science, IWWR, Radboud University Nijmegen, Heyendaalseweg 135, NL-6525 AJ, Nijmegen, The Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, Faculty of Science, IWWR, Radboud University Nijmegen, Heyendaalseweg 135, NL-6525 AJ, Nijmegen, The Netherlands
| | - Christina Vimala Supramaniam
- School of Biosciences, Nottingham Centre of Sustainable Palm Oil, University of Nottingham-Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | | | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
6
|
Scott CE, Monks SA, Spracklen DV, Arnold SR, Forster PM, Rap A, Carslaw KS, Chipperfield MP, Reddington CLS, Wilson C. Impact on short-lived climate forcers (SLCFs) from a realistic land-use change scenario via changes in biogenic emissions. Faraday Discuss 2019; 200:101-120. [PMID: 28585973 DOI: 10.1039/c7fd00028f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
More than one quarter of natural forests have been cleared by humans to make way for other land-uses, with changes to forest cover projected to continue. The climate impact of land-use change (LUC) is dependent upon the relative strength of several biogeophysical and biogeochemical effects. In addition to affecting the surface albedo and exchanging carbon dioxide (CO2) and moisture with the atmosphere, vegetation emits biogenic volatile organic compounds (BVOCs), altering the formation of short-lived climate forcers (SLCFs) including aerosol, ozone (O3) and methane (CH4). Once emitted, BVOCs are rapidly oxidised by O3, and the hydroxyl (OH) and nitrate (NO3) radicals. These oxidation reactions yield secondary organic products which are implicated in the formation and growth of aerosol particles and are estimated to have a negative radiative effect on the climate (i.e. a cooling). These reactions also deplete OH, increasing the atmospheric lifetime of CH4, and directly affect concentrations of O3; the latter two being greenhouse gases which impose a positive radiative effect (i.e. a warming) on the climate. Our previous work assessing idealised deforestation scenarios found a positive radiative effect due to changes in SLCFs; however, since the radiative effects associated with changes to SLCFs result from a combination of non-linear processes it may not be appropriate to scale radiative effects from complete deforestation scenarios according to the deforestation extent. Here we combine a land-surface model, a chemical transport model, a global aerosol model, and a radiative transfer model to assess the net radiative effect of changes in SLCFs due to historical LUC between the years 1850 and 2000.
Collapse
Affiliation(s)
- C E Scott
- Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Reductive metabolism of the important atmospheric gas isoprene by homoacetogens. ISME JOURNAL 2019; 13:1168-1182. [PMID: 30643199 PMCID: PMC6474224 DOI: 10.1038/s41396-018-0338-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/18/2018] [Accepted: 12/02/2018] [Indexed: 02/01/2023]
Abstract
Isoprene is the most abundant biogenic volatile organic compound (BVOC) in the Earth's atmosphere and plays important roles in atmospheric chemistry. Despite this, little is known about microbiological processes serving as a terrestrial sink for isoprene. While aerobic isoprene degrading bacteria have been identified, there are no known anaerobic, isoprene-metabolizing organisms. In this study an H2-consuming homoacetogenic enrichment was shown to utilize 1.6 μmoles isoprene h-1 as an electron acceptor in addition to HCO3-. The isoprene-reducing community was dominated by Acetobacterium spp. and isoprene was shown to be stoichiometrically reduced to three methylbutene isomers (2-methyl-1-butene (>97%), 3-methyl-1-butene (≤2%), 2-methyl-2-butene (≤1%). In the presence of isoprene, 40% less acetate was formed suggesting that isoprene reduction is coupled to energy conservation in Acetobacterium spp. This study improves our understanding of linkages and feedbacks between biogeochemistry and terrestrial microbial activity.
Collapse
|
8
|
Impact on short-lived climate forcers increases projected warming due to deforestation. Nat Commun 2018; 9:157. [PMID: 29323116 PMCID: PMC5764971 DOI: 10.1038/s41467-017-02412-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/29/2017] [Indexed: 11/25/2022] Open
Abstract
The climate impact of deforestation depends on the relative strength of several biogeochemical and biogeophysical effects. In addition to affecting the exchange of carbon dioxide (CO2) and moisture with the atmosphere and surface albedo, vegetation emits biogenic volatile organic compounds (BVOCs) that alter the formation of short-lived climate forcers (SLCFs), which include aerosol, ozone and methane. Here we show that a scenario of complete global deforestation results in a net positive radiative forcing (RF; 0.12 W m−2) from SLCFs, with the negative RF from decreases in ozone and methane concentrations partially offsetting the positive aerosol RF. Combining RFs due to CO2, surface albedo and SLCFs suggests that global deforestation could cause 0.8 K warming after 100 years, with SLCFs contributing 8% of the effect. However, deforestation as projected by the RCP8.5 scenario leads to zero net RF from SLCF, primarily due to nonlinearities in the aerosol indirect effect. The climate impacts of deforestation due to changes in biogenic volatile organic compound emissions, which act as short-lived climate forcers (SLCFs), are poorly understood. Here the authors show that including the impact SLCFs increases the projected warming associated with idealised deforestation scenarios.
Collapse
|
9
|
Srivastva N, Singh A, Bhardwaj Y, Dubey SK. Biotechnological potential for degradation of isoprene: a review. Crit Rev Biotechnol 2017; 38:587-599. [DOI: 10.1080/07388551.2017.1379467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Navnita Srivastva
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Abhishek Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Yashpal Bhardwaj
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Suresh Kumar Dubey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
10
|
Xu L, Guo H, Weber RJ, Ng NL. Chemical Characterization of Water-Soluble Organic Aerosol in Contrasting Rural and Urban Environments in the Southeastern United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:78-88. [PMID: 27997132 DOI: 10.1021/acs.est.6b05002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We developed a novel system for direct and online characterization of water-solubility of organic aerosol (OA) by coupling a Particle Into Liquid Sampler (PILS) to a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). We showed that approximately 88% and 77% of OA are water-soluble in rural Centreville, Alabama and urban Atlanta, Georgia, respectively. The water-solubility of OA factors, resolved with Positive Matrix Factorization analysis of AMS data, is directly investigated for the first time. Above 80% of isoprene-derived OA is water-soluble and its water-soluble fraction has the least variability among all OA factors. This is consistent with that the majority of this factor represents OA formed through the aqueous-phase reaction of isoprene epoxydiols. More-oxidized oxygenated OA is dominantly water-soluble, consistent with this factor representing highly oxidized compounds. Less-oxidized oxygenated OA has the lowest water-solubility among all secondary OA factors, which agrees with the hypothesis that this factor in the southeastern U.S. includes contributions from organic nitrates. While hydrocarbon-like OA is largely water-insoluble, biomass burning OA and cooking OA have the largest range of water-soluble fraction. This study on the water-solubility of OA factors provides insights for interpretation of OA factors and improves understanding of the complex OA sources in the atmosphere.
Collapse
Affiliation(s)
- Lu Xu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Hongyu Guo
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Rodney J Weber
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Nga Lee Ng
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
11
|
Clark CH, Kacarab M, Nakao S, Asa-Awuku A, Sato K, Cocker DR. Temperature Effects on Secondary Organic Aerosol (SOA) from the Dark Ozonolysis and Photo-Oxidation of Isoprene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:5564-5571. [PMID: 27175613 DOI: 10.1021/acs.est.5b05524] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Isoprene is globally the most ubiquitous nonmethane hydrocarbon. The biogenic emission is found in abundance and has a propensity for SOA formation in diverse climates. It is important to characterize isoprene SOA formation with varying reaction temperature. In this work, the effect of temperature on SOA formation, physical properties, and chemical nature is probed. Three experimental systems are probed for temperature effects on SOA formation from isoprene, NO + H2O2 photo-oxidation, H2O2 only photo-oxidation, and dark ozonolysis. These experiments show that isoprene readily forms SOA in unseeded chamber experiments, even during dark ozonolysis, and also reveal that temperature affects SOA yield, volatility, and density formed from isoprene. As temperature increases SOA yield is shown to generally decrease, particle density is shown to be stable (or increase slightly), and formed SOA is shown to be less volatile. Chemical characterization is shown to have a complex trend with both temperature and oxidant, but extensive chemical speciation are provided.
Collapse
Affiliation(s)
- Christopher H Clark
- Naval Surface Warfare Center , Corona Division, Norco, California 92860, United States
| | | | | | | | - Kei Sato
- Asian Environment Research Group, National Institute for Environmental Studies , Tsukuba, Ibaraki 305-0053, Japan
| | | |
Collapse
|
12
|
Bougiatioti A, Papayannis A, Vratolis S, Argyrouli A, Mihalopoulos N, Tsagkaraki M, Nenes A, Eleftheriadis K. Aerosol Activity and Hygroscopicity Combined with Lidar Data in the Urban Atmosphere of Athens, Greece in the Frame of the HYGRA_CD Campaign. EPJ WEB OF CONFERENCES 2016. [DOI: 10.1051/epjconf/201611915008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
13
|
Rickards AMJ, Miles REH, Davies JF, Marshall FH, Reid JP. Measurements of the Sensitivity of Aerosol Hygroscopicity and the κ Parameter to the O/C Ratio. J Phys Chem A 2013; 117:14120-31. [DOI: 10.1021/jp407991n] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | | | - James F. Davies
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, U.K
| | | | - Jonathan P. Reid
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, U.K
| |
Collapse
|
14
|
Jardine KJ, Meyers K, Abrell L, Alves EG, Yanez Serrano AM, Kesselmeier J, Karl T, Guenther A, Chambers JQ, Vickers C. Emissions of putative isoprene oxidation products from mango branches under abiotic stress. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3697-708. [PMID: 23881400 PMCID: PMC3745727 DOI: 10.1093/jxb/ert202] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Although several per cent of net carbon assimilation can be re-released as isoprene emissions to the atmosphere by many tropical plants, much uncertainty remains regarding its biological significance. In a previous study, we detected emissions of isoprene and its oxidation products methyl vinyl ketone (MVK) and methacrolein (MACR) from tropical plants under high temperature/light stress, suggesting that isoprene is oxidized not only in the atmosphere but also within plants. However, a comprehensive analysis of the suite of isoprene oxidation products in plants has not been performed and production relationships with environmental stress have not been described. In this study, putative isoprene oxidation products from mango (Mangifera indica) branches under abiotic stress were first identified. High temperature/light and freeze-thaw treatments verified direct emissions of the isoprene oxidation products MVK and MACR together with the first observations of 3-methyl furan (3-MF) and 2-methyl-3-buten-2-ol (MBO) as putative novel isoprene oxidation products. Mechanical wounding also stimulated emissions of MVK and MACR. Photosynthesis under (13)CO2 resulted in rapid (<30 min) labelling of up to five carbon atoms of isoprene, with a similar labelling pattern observed in the putative oxidation products. These observations highlight the need to investigate further the mechanisms of isoprene oxidation within plants under stress and its biological and atmospheric significance.
Collapse
Affiliation(s)
- Kolby J Jardine
- Climate Science Department, Earth Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Building 64, Room 241, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Harman CE, Kasting JF, Wolf ET. Atmospheric production of glycolaldehyde under hazy prebiotic conditions. ORIGINS LIFE EVOL B 2013; 43:77-98. [PMID: 23695543 DOI: 10.1007/s11084-013-9332-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/11/2013] [Indexed: 10/26/2022]
Abstract
The early Earth's atmosphere, with extremely low levels of molecular oxygen and an appreciable abiotic flux of methane, could have been a source of organic compounds necessary for prebiotic chemistry. Here, we investigate the formation of a key RNA precursor, glycolaldehyde (2-hydroxyacetaldehyde, or GA) using a 1-dimensional photochemical model. Maximum atmospheric production of GA occurs when the CH4:CO2 ratio is close to 0.02. The total atmospheric production rate of GA remains small, only 1 × 10(7) mol yr(-1). Somewhat greater amounts of GA production, up to 2 × 10(8) mol yr(-1), could have been provided by the formose reaction or by direct delivery from space. Even with these additional production mechanisms, open ocean GA concentrations would have remained at or below ~1 μM, much smaller than the 1-2 M concentrations required for prebiotic synthesis routes like those proposed by Powner et al. (Nature 459:239-242, 2009). Additional production or concentration mechanisms for GA, or alternative formation mechanisms for RNA, are needed, if this was indeed how life originated on the early Earth.
Collapse
Affiliation(s)
- Chester E Harman
- Department of Geosciences, Penn State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
16
|
Abstract
Clouds, a key component of the climate system, form when water vapor condenses upon atmospheric particulates termed cloud condensation nuclei (CCN). Variations in CCN concentrations can profoundly impact cloud properties, with important effects on local and global climate. Organic matter constitutes a significant fraction of tropospheric aerosol mass, and can influence CCN activity by depressing surface tension, contributing solute, and influencing droplet activation kinetics by forming a barrier to water uptake. We present direct evidence that two ubiquitous atmospheric trace gases, methylglyoxal (MG) and acetaldehyde, known to be surface-active, can enhance aerosol CCN activity upon uptake. This effect is demonstrated by exposing acidified ammonium sulfate particles to 250 parts per billion (ppb) or 8 ppb gas-phase MG and/or acetaldehyde in an aerosol reaction chamber for up to 5 h. For the more atmospherically relevant experiments, i.e., the 8-ppb organic precursor concentrations, significant enhancements in CCN activity, up to 7.5% reduction in critical dry diameter for activation, are observed over a timescale of hours, without any detectable limitation in activation kinetics. This reduction in critical diameter enhances the apparent particle hygroscopicity up to 26%, which for ambient aerosol would lead to cloud droplet number concentration increases of 8-10% on average. The observed enhancements exceed what would be expected based on Köhler theory and bulk properties. Therefore, the effect may be attributed to the adsorption of MG and acetaldehyde to the gas-aerosol interface, leading to surface tension depression of the aerosol. We conclude that gas-phase surfactants may enhance CCN activity in the atmosphere.
Collapse
|
17
|
Levin EJT, Prenni AJ, Petters MD, Kreidenweis SM, Sullivan RC, Atwood SA, Ortega J, DeMott PJ, Smith JN. An annual cycle of size-resolved aerosol hygroscopicity at a forested site in Colorado. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016854] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Kuwata M, Zorn SR, Martin ST. Using elemental ratios to predict the density of organic material composed of carbon, hydrogen, and oxygen. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:787-94. [PMID: 22145565 DOI: 10.1021/es202525q] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A governing equation was developed to predict the density ρ(org) of organic material composed of carbon, oxygen, and hydrogen using the elemental ratios O:C and H:C as input parameters: ρ(org) = 1000 [(12 + 1(H:C) + 16(O:C)]/[7.0 + 5.0(H:C) + 4.15(O:C)] valid for 750 < ρ(org) < 1900 kg m(-3). Comparison of the actual to predicted ρ(org) values shows that the developed equation has an accuracy of 12% for more than 90% of the 31 atmospherically relevant compounds used in the training set. The equation was further validated for secondary organic material (SOM) produced by isoprene photo-oxidation and by α-pinene ozonolysis. Depending on the conditions of SOM production, ρ(org/SOM) ranged from 1230 to 1460 kg m(-3), O:C ranged from 0.38 to 0.72, and H:C ranged from 1.40 to 1.86. Atmospheric chemistry models that simulate particle production and growth can employ the developed equation to simulate particle physical properties. The equation can also extend atmospheric measurements presented as van Krevelen diagrams to include estimates of the material density of particles and their components. Use of the equation, however, is restricted to particle components having negligible quantities of additional elements, most notably nitrogen.
Collapse
Affiliation(s)
- Mikinori Kuwata
- School of Engineering and Applied Sciences and Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, United States
| | | | | |
Collapse
|