1
|
Kuttippurath J, Patel VK, Roy R, Kumar P. Sources, variability, long-term trends, and radiative forcing of aerosols in the Arctic: implications for Arctic amplification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1621-1636. [PMID: 38044405 DOI: 10.1007/s11356-023-31245-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
Atmospheric pollution in the Arctic has been an important driver for the ongoing climate change there. Increase in the Arctic aerosols causes the phenomena of Arctic haze and Arctic amplification. Our analysis of aerosol optical depth (AOD), black carbon (BC), and dust using ground-based, satellite, and reanalysis data in the Arctic for the period 2003-2019 shows that the lowest amount of all these is found in Greenland and Central Arctic. There is high AOD, BC, and dust in the northern Eurasia and parts of North America. All aerosols show their highest values in spring. Significant positive trends in AOD (> 0.003 year-1) and BC (0.0002-0.0003 year-1) are found in the northwestern America and northern Asia. Significant negative trends are observed for dust (- 0.0001 year-1) around Central Arctic. Seasonal analysis of AOD, BC, and dust reveals an increasing trend in summer and decreasing trend in spring in the Arctic. The major sources of aerosols are the nearby Europe, Russia, and North America regions, as assessed using the potential source contribution function (PSCF). Anthropogenic emissions from the transport, energy, and household sectors along with natural sources such as wildfires contribute to the positive trends of aerosols in the Arctic. These increasing aerosols in the Arctic influence Arctic amplification through radiative effects. Here, we find that the net aerosol radiative forcing is high in Central Arctic, Greenland, Siberia, and Canadian Arctic, about 2-4 W/m2, which can influence the regional temperature. Therefore, our study can assist policy decisions for the mitigation of Arctic haze and Arctic amplification in this environmental fragile region of the Earth.
Collapse
Affiliation(s)
| | - Vikas Kumar Patel
- CORAL, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Raina Roy
- CORAL, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Pankaj Kumar
- CORAL, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
2
|
Yao W, Gui K, Zheng Y, Li L, Wang Y, Che H, Zhang X. Seasonal cycles and long-term trends of arctic tropospheric aerosols based on CALIPSO lidar observations. ENVIRONMENTAL RESEARCH 2023; 216:114613. [PMID: 36272597 DOI: 10.1016/j.envres.2022.114613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/29/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Notable warming trends have been observed in the Arctic, with tropospheric aerosols being one of the key drivers. Here the seasonal cycles of three-dimensional (3D) distributions of aerosol extinction coefficients (AECs) and frequency of occurrences (FoOs) for different aerosol subtypes in the troposphere over the Arctic from 2007 to 2019 are characterized capitalizing on Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) Level-3 gridded aerosol profile product. Seasonal contributions of total and type-dependent aerosols through their partitioning within the planetary boundary layer (PBL) and free troposphere (FT) are also quantified utilizing the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) PBL height data. The results show substantial seasonal and geographical dependence in the distribution of aerosols over the Arctic. Sulfate, black carbon (BC), and organic carbon (OC) contribute most of the total AEC, with Eurasia being the largest contributor. The vertical structure of AECs and FoOs over the Arctic demonstrates that the vertical influence of aerosols is higher in eastern Siberia and North America than in northern Eurasia and its coasts. When the total aerosol optical depth (TAOD) is partitioned into the PBL and FT, results indicate that the contributions of TAOD within the FT tend to be more significant, especially in summer, with the FT contributes 64.2% and 69.2% of TAOD over the lower (i.e., 60° N-70° N) and high (i.e., north of 70° N) Arctic, respectively. Additionally, seasonal trend analyses suggest Arctic TAOD exhibits a multi-year negative trend in winter, spring, and autumn and a positive trend in summer during 2007-2019, due to an overall decrease in sulfate from weakened anthropogenic emissions and a significant increase in BC and OC from enhanced biomass burning activities. Overall, this study has potential implications for understanding the seasonal cycles and trends in Arctic aerosols.
Collapse
Affiliation(s)
- Wenrui Yao
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China; Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai, 200438, China
| | - Ke Gui
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China.
| | - Yu Zheng
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
| | - Lei Li
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
| | - Yaqiang Wang
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
| | - Huizheng Che
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China.
| | - Xiaoye Zhang
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
| |
Collapse
|
3
|
Hu C, Wei Z, Zhan H, Gu W, Liu H, Chen A, Jiang B, Yue F, Zhang R, Fan S, He P, Leung KMY, Wang X, Xie Z. Molecular characteristics, sources and influencing factors of isoprene and monoterpenes secondary organic aerosol tracers in the marine atmosphere over the Arctic Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158645. [PMID: 36089018 DOI: 10.1016/j.scitotenv.2022.158645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/14/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Biogenic secondary organic aerosols (BSOA) are important components of the remote marine atmosphere. However, the response of BSOA changes to sea ice reduction over the Arctic Ocean remains unclear. Here we investigated isoprene and monoterpenes secondary organic aerosol (SOAI and SOAM) tracers in three years of summer aerosol samples collected from the Arctic Ocean atmosphere. The results indicated that methyltetrols were the most abundant SOAI tracers, while the main oxidation products of monoterpenes varied over the years owing to different aerosol aging. The results of the principal component analysis (PCA)-generalized additive model (GAM) combined with correlation analysis suggested that SOAI tracers were mainly generated by the oxidation of isoprene from marine emissions, while SOAM tracers were probably more influenced by terrestrial transport. Estimation of secondary organic carbon (SOC) indicated that monoterpenes oxidation contributed more than isoprene and that sea ice changes had a relatively small effect on biogenic SOC concentration levels. Our study quantified the contribution of influencing factors to the atmospheric concentration of BSOA tracers in the Arctic Ocean, and showed that there were differences in the sources of precursors for different BSOA. Hence, our findings have contributed to a better understanding of the characteristics, sources and formation of SOA in the atmosphere of the Arctic Ocean.
Collapse
Affiliation(s)
- Chengge Hu
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China; Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, China
| | - Zexun Wei
- First Institute of Oceanography, and Key Laboratory of Marine Science and Numerical Modeling, Ministry of Natural Resources, Qingdao, China; Laboratory for Regional Oceanography and Numerical Modeling, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; Shandong Key Laboratory of Marine Science and Numerical Modeling, Qingdao, China
| | - Haicong Zhan
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Weihua Gu
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Hongwei Liu
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Afeng Chen
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Bei Jiang
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China; Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, China
| | - Fange Yue
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Runqi Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Shidong Fan
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Pengzhen He
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China.
| | - Zhouqing Xie
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
4
|
Han Y, Fu B, Tao S, Zhu D, Wang X, Peng S, Li B. Impact of the initial hydrophilic ratio on black carbon aerosols in the Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153044. [PMID: 35038527 DOI: 10.1016/j.scitotenv.2022.153044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Black carbon (BC) contributes to patterns of Arctic warming, yet the initial hydrophilic ratio (IHR) of BC emitted from various sources and its impact on Arctic BC remain uncertain. With the use of a tagged tracer method of BC implemented in the global chemistry transport model GEOS-Chem, IHRs were partitioned into 7 BC combustion source categories according to the PKU-BC-v2 emission inventory. The results show that as the IHR increased, the concentration of BC decreased globally. The impact on Arctic BC was mainly reflected in the vertical profile and the burden rather than at the surface. Specifically, the greatest impact of IHR on Arctic BC appeared in summer, with the largest perturbation appearing at an altitude of approximately 600 hPa, reaching 8%. This change in BC vertical profile was mainly caused by the IHR change of wildfire combustion in Russia (44%) and Canada (51%), and the emissions from these two regions were also the two most important contributors to the BC concentration and burden in the middle and lower Arctic atmosphere in summer. In the other three seasons, anthropogenic combustion sources (oil, coal, and biomass) in East Asia, Russia, and Europe accounted for 19-40%, 14-28%, and 7-23%, respectively, of the monthly BC burden. Emissions from Russia were the most important contributor (27-43%) to the monthly BC surface concentration. Due to the large adjustment in IHR from 20% to 70%, biomass burning in Europe was shown to be the dominant contributor causing both burden (39%) and surface concentration (88%) changes in all seasons except summer.
Collapse
Affiliation(s)
- Yunman Han
- Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Bo Fu
- Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shu Tao
- Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Dongqiang Zhu
- Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xuhui Wang
- Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shushi Peng
- Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Bengang Li
- Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
5
|
One-Year Measurements of Equivalent Black Carbon, Optical Properties, and Sources in the Urumqi River Valley, Tien Shan, China. ATMOSPHERE 2020. [DOI: 10.3390/atmos11050478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Equivalent black carbon (EBC) was measured with a seven-wavelength Aethalometer (AE-31) in the Urumqi River Valley, eastern Tien Shan, China. This is the first high-resolution, online measurement of EBC conducted in the eastern Tien Shan allowing analysis of the seasonal and hourly variations of the light absorption properties of EBC. Results showed that the highest concentrations of EBC were in autumn, followed by those in summer. The hourly variations of EBC showed two plateaus during 8:00–9:00 h local time (LT) and 16:00–19:00 h LT, respectively. The contribution of biomass burning to EBC in winter and spring was higher than in summer and autumn. The planetary boundary layer height (PBLH) showed an inverse relationship with EBC concentrations, suggesting that the reduction of the PBLH leads to enhanced EBC. The aerosol optical depths (AOD) over the Urumqi River Valley, derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) data and back trajectory analysis, showed that the pollution from Central Asia was more likely to affect the atmosphere of Tien Shan in summer and autumn. This suggests that long-distance transported pollutants from Central Asia could also be potential contributors to EBC concentrations in the Urumqi River Valley, the same as local anthropogenic activities.
Collapse
|
6
|
Qi L, Wang S. Sources of black carbon in the atmosphere and in snow in the Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:442-454. [PMID: 31323589 DOI: 10.1016/j.scitotenv.2019.07.073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
We systematically identify sources of black carbon (BC) in the Arctic, including BC in the troposphere, at surface and in snow, using tagged tracer technique implemented in a 3D global chemical transport model GEOS-Chem. We validate modeled BC sources (fossil fuel combustion versus biomass burning) against carbon isotope measurements at Barrow (Alaska), Zeppelin (Norway), Abisko (Sweden), Alert (Canada) and Tiksi (Russia) in the Arctic. The model reproduces the observed annual mean fraction of biomass burning (fbb, %) at the five sites within 20% and the observed and modeled monthly fbb values agree within a factor of two. Model results suggest that fossil fuel combustion is the major source of BC in the troposphere (50-94%, vary with sub-regions), at surface (55-68%) and in snow (58-69%) in the Arctic as annual mean, but biomass burning dominates at certain altitudes (600-800 hPa) and during periods of time between April to September. The model shows that BC in the troposphere, in deposition and in snow in different Arctic sub-regions have distinctively different sources and source regions. We find that long-range transport of Asian emissions has a stronger influence on BC in the atmosphere than on BC deposition. In contrast, contributions from Russian and European emissions are larger for BC deposition than for BC in the atmosphere. Specifically, Asian fossil fuel combustion emissions dominate BC loading in all Arctic sub-regions in both winter (Oct.-Mar., 35-54%) and summer (Apr.-Sep., 34-56%). For BC deposition, Siberian fossil fuel emissions are the largest contributors in Russia both in winter (62%) and summer (44%), and European fossil fuel emissions dominate in Ny-Ålesund (44% in winter) and Tromsø (71% in winter and 46% in summer). For BC deposition in the North American sector, Asian fossil fuel emissions are the largest contributors in winter (25-38%) and North American biomass burning emissions (38-72%) dominate in summer.
Collapse
Affiliation(s)
- Ling Qi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China.
| |
Collapse
|
7
|
Recent Advances in Quantifying Wet Scavenging Efficiency of Black Carbon Aerosol. ATMOSPHERE 2019. [DOI: 10.3390/atmos10040175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Black carbon (BC) aerosol is of great importance not only for its strong potential in heating air and impacts on cloud, but also because of its hazards to human health. Wet deposition is regarded as the main sink of BC, constraining its lifetime and thus its impact on the environment and climate. However, substantial controversial and ambiguous issues in the wet scavenging processes of BC are apparent in current studies. Despite of its significance, there are only a small number of field studies that have investigated the incorporation of BC-containing particles into cloud droplets and influencing factors, in particular, the in-cloud scavenging, because it was simplicitly considered in many studies (as part of total wet scavenging). The mass scavenging efficiencies (MSEs) of BC were observed to be varied over the world, and the influencing factors were attributed to physical and chemical properties (e.g., size and chemical compositions) and meteorological conditions (cloud water content, temperature, etc.). In this review, we summarized the MSEs and potential factors that influence the in-cloud and below-cloud scavenging of BC. In general, MSEs of BC are lower at low-altitude regions (urban, suburban, and rural sites) and increase with the rising altitude, which serves as additional evidence that atmospheric aging plays an important role in the chemical modification of BC. Herein, higher altitude sites are more representative of free-tropospheric conditions, where BC is usually more aged. Despite of increasing knowledge of BC–cloud interaction, there are still challenges that need to be addressed to gain a better understanding of the wet scavenging of BC. We recommend that more comprehensive methods should be further estimated to obtain high time-resolved scavenging efficiency (SE) of BC, and to distinguish the impact of in-cloud and below-cloud scavenging on BC mass concentration, which is expected to be useful for constraining the gap between field observation and modeling simulation results.
Collapse
|
8
|
Fang Z, Yang W, Chen M, Zheng M, Hu W. Abundance and sinking of particulate black carbon in the western Arctic and Subarctic Oceans. Sci Rep 2016; 6:29959. [PMID: 27417410 PMCID: PMC4945930 DOI: 10.1038/srep29959] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/28/2016] [Indexed: 11/23/2022] Open
Abstract
The abundance and sinking of particulate black carbon (PBC) were examined for the first time in the western Arctic and Subarctic Oceans. In the central Arctic Ocean, high PBC concentrations with a mean of 0.021 ± 0.016 μmol L−1 were observed in the marginal ice zone (MIZ). A number of parameters, including temperature, salinity and 234Th/238U ratios, indicated that both the rapid release of atmospherically deposited PBC on sea ice and a slow sinking rate were responsible for the comparable PBC concentrations between the MIZ and mid-latitudinal Pacific Ocean (ML). On the Chukchi and Bering Shelves (CBS), PBC concentrations were also comparable to those obtained in the ML. Further, significant deficits of 234Th revealed the rapid sinking of PBC on the CBS. These results implied additional source terms for PBC in addition to atmospheric deposition and fluvial discharge on the western Arctic shelves. Based on 234Th/238U disequilibria, the net sinking rate of PBC out of the surface water was −0.8 ± 2.5 μmol m−3 d−1 (mean ± s.d.) in the MIZ. In contrast, on the shelves, the average sinking rate of PBC was 6.1 ± 4.6 μmol m−3 d−1. Thus, the western Arctic Shelf was probably an effective location for burying PBC.
Collapse
Affiliation(s)
- Ziming Fang
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Weifeng Yang
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Min Chen
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Minfang Zheng
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Wangjiang Hu
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
9
|
Ervens B. Modeling the processing of aerosol and trace gases in clouds and fogs. Chem Rev 2015; 115:4157-98. [PMID: 25898144 DOI: 10.1021/cr5005887] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Barbara Ervens
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80302, United States.,Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, Colorado 80305, United States
| |
Collapse
|
10
|
Ghigliotti L, Møller P, Cheng CH, Christiansen J, Fevolden SE, Pisano E. Exploring the diversity of Arctic eelpouts: First cytogenetic data on species of the genus Lycodes (Teleostei, Zoarcidae). Mar Genomics 2012. [DOI: 10.1016/j.margen.2012.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|