1
|
Molinari FN, Marelli M, Berretti E, Serrecchia S, Coppola RE, De Cesare F, Macagnano A. Cutting-Edge Sensor Design: MIP Nanoparticle-Functionalized Nanofibers for Gas-Phase Detection of Limonene in Predictive Agriculture. Polymers (Basel) 2025; 17:326. [PMID: 39940528 PMCID: PMC11820196 DOI: 10.3390/polym17030326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
As population growth and climate change intensify pressures on agriculture, innovative strategies are vital for ensuring food security, optimizing resources, and protecting the environment. This study introduces a novel approach to predictive agriculture by utilizing the unique properties of terpenes, specifically S(-)-limonene, emitted by plants under stress. Advanced sensors capable of detecting subtle limonene variations offer the potential for early stress diagnosis and precise crop interventions. This research marks a significant leap in sensor technology, introducing an innovative active sensing material that combines molecularly imprinted polymer (MIP) technology with electrospinning. S(-)-limonene-selective MIP nanoparticles, engineered using methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA), were synthesized with an average diameter of ~160 nm and integrated into polyvinylpyrrolidone (PVP) nanofibers reinforced with multiwall carbon nanotubes (MWCNTs). This design produced a conductive and highly responsive sensing layer. The sensor exhibited rapid stabilization (200 s), a detection limit (LOD) of 190 ppb, and a selectivity index of 73% against similar monoterpenes. Optimal performance was achieved at 55% relative humidity, highlighting environmental conditions' importance. This pioneering use of polymeric MIP membranes in chemiresistive sensors for limonene detection opens new possibilities for monitoring VOCs, with applications in agricultural stress biomarkers, contaminant detection, and air quality monitoring, advancing precision agriculture and environmental protection.
Collapse
Affiliation(s)
- Fabricio Nicolàs Molinari
- Institute of Atmospheric Pollution Research (IIA)-CNR, 00010 Montelibretti, RM, Italy; (F.N.M.); (S.S.); (F.D.C.)
- National Institute of Industrial Technology (INTI), Buenos Aires B1650WAB, Argentina;
| | - Marcello Marelli
- Institute of Science and Chemical Technologies “Giulio Natta” (SCITEC)-CNR, 20138 Milano, MI, Italy;
| | - Enrico Berretti
- Institute for the Chemistry of OrganoMetallic Compounds (ICCOM)-CNR, 50019 Sesto Fiorentino, FI, Italy;
| | - Simone Serrecchia
- Institute of Atmospheric Pollution Research (IIA)-CNR, 00010 Montelibretti, RM, Italy; (F.N.M.); (S.S.); (F.D.C.)
| | | | - Fabrizio De Cesare
- Institute of Atmospheric Pollution Research (IIA)-CNR, 00010 Montelibretti, RM, Italy; (F.N.M.); (S.S.); (F.D.C.)
- Department for Innovation in Biological, Agrofood and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, VT, Italy
| | - Antonella Macagnano
- Institute of Atmospheric Pollution Research (IIA)-CNR, 00010 Montelibretti, RM, Italy; (F.N.M.); (S.S.); (F.D.C.)
| |
Collapse
|
2
|
Ziaja D, Müller C. Intraspecific and intra-individual chemodiversity and phenotypic integration of terpenes across plant parts and development stages in an aromatic plant. PLANT BIOLOGY (STUTTGART, GERMANY) 2025. [PMID: 39776209 DOI: 10.1111/plb.13763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Some plant species produce an extraordinary diversity of specialized metabolites. The diverse class of terpenes is characteristic for many aromatic plants, and terpenes can occur as both emitted volatiles and stored compounds. Little is known about how intraspecific chemodiversity and phenotypic integration of both emitted volatile and stored terpenes differ intra-individually across plant development and between different plant parts, and studies considering both spatial and temporal scales are scarce. To comprehensively investigate this diversity, we used the aromatic plant Tanacetum vulgare that differs in foliar terpene composition, forming chemotypes. We collected emitted volatile terpenes of both young and old leaves during the rosette, elongated stem, and flowering stage as well as emitted volatiles of flower heads at the flowering stage. Moreover, at the flowering stage, stored terpenes were extracted from different plant parts, including roots. Terpene profiles were measured with (TD)-GC-MS. The composition of emitted volatile terpenes depended on the specific combination of chemotype, plant part, and time point; the chemodiversity of emitted volatiles was mainly affected by the development stage, indicating that at specific development stages individuals require a higher chemodiversity, potentially to mediate different interactions. For stored terpenes, intra-individual differences, mostly between aboveground and belowground plant parts, were found only for specific components of chemodiversity, such as richness and evenness, but not for functional Hill diversity. Phenotypic integration differed mainly across development stage and plant part for emitted volatile terpenes, and across chemotype and plant part for stored terpenes. Our results suggest that intraspecific chemodiversity of terpenes and their integration is a highly plastic trait that may be shaped in dependence of interactions with the environment, and the value that each plant part contributes to the fitness of an individual. Such variation on different scales, both spatially and temporally, should be considered in chemical ecological studies.
Collapse
Affiliation(s)
- D Ziaja
- Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - C Müller
- Chemical Ecology, Bielefeld University, Bielefeld, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Bielefeld, Germany
| |
Collapse
|
3
|
Borges DJV, Souza RAC, de Oliveira A, de Sousa RMF, Venâncio H, Demetrio GR, Ambrogi BG, Santos JC. Green Lacewing Chrysoperla externa Is Attracted to Volatile Organic Compounds and Essential Oils Extracted from Eucalyptus urograndis Leaves. PLANTS (BASEL, SWITZERLAND) 2024; 13:2192. [PMID: 39204628 PMCID: PMC11360061 DOI: 10.3390/plants13162192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/24/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Plant herbivore interactions have long been recognized as a complex interplay influenced by various factors, including plant volatile emissions. Understanding the role of these volatiles in mediating plant predator interactions is crucial for developing sustainable pest management strategies. This study investigated the olfactory preferences of Chrysoperla externa larvae for volatiles emitted by Eucalyptus urograndis leaves, focusing on both seedlings and essential oils (EOs). We used Y-tube olfactometry to compare larval preferences between the clean air and various plant treatments, including undamaged and herbivore-damaged leaves. Chemical analysis of EOs revealed higher concentrations of oxygenated monoterpenes and sesquiterpenes in young and damaged leaves, particularly linalool, which has been implicated in insect attraction. Our results showed a significant preference for volatiles emitted by young damaged leaves over clean air for both seedlings (χ2 = 11.03, p = 0.001) and EOs (χ2 = 9.76, p = 0.002). Chrysoperla externa larvae are significantly attracted to specific volatiles from damaged E. urograndis leaves, suggesting these compounds could serve as cues for natural enemy foraging. Our findings enhance the understanding of plant-predator dynamics and suggest potential applications of eucalyptus plantations to sustain C. externa populations for biocontrol purposes.
Collapse
Affiliation(s)
- David Jackson Vieira Borges
- Pos-Graduate Program in Ecology, Conservation and Biodiversity, Federal University of Uberlandia, Uberlandia 38405-240, Minas Gerais, Brazil;
| | - Rafael Aparecido Carvalho Souza
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia 38408-100, Minas Gerais, Brazil; (R.A.C.S.); (A.d.O.); (R.M.F.d.S.)
| | - Alberto de Oliveira
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia 38408-100, Minas Gerais, Brazil; (R.A.C.S.); (A.d.O.); (R.M.F.d.S.)
| | - Raquel Maria Ferreira de Sousa
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia 38408-100, Minas Gerais, Brazil; (R.A.C.S.); (A.d.O.); (R.M.F.d.S.)
| | - Henrique Venâncio
- Pos-Graduate Program in Ecology and Conservation, Federal University of Sergipe, São Cristóvão 49107-230, Sergipe, Brazil;
| | - Guilherme Ramos Demetrio
- Laboratory of Plant Ecology, U. E. Penedo, Campus Arapiraca, Federal University of Alagoas, Penedo 57200-000, Alagoas, Brazil;
| | - Bianca Giuliano Ambrogi
- Department of Ecology, Federal University of Sergipe, São Cristóvão 49107-230, Sergipe, Brazil;
| | - Jean Carlos Santos
- Department of Ecology, Federal University of Sergipe, São Cristóvão 49107-230, Sergipe, Brazil;
| |
Collapse
|
4
|
Peng Q, Yang Y, Ou W, Wei L, Li Z, Deng X, Gao Q. The characteristics and environmental significance of BVOCs released by aquatic macrophytes. CHEMOSPHERE 2024; 361:142574. [PMID: 38852633 DOI: 10.1016/j.chemosphere.2024.142574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/07/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
Biogenic volatile organic compounds (BVOCs) emitted by plants serve crucial biological functions and potentially impact atmospheric environment and global carbon cycling. Despite their significance, BVOC emissions from aquatic macrophytes have been relatively understudied. In this study, for the first time we identified there were 68 major BVOCs released from 34 common aquatic macrophytes, and these compounds referred to alcohols, aldehydes, alkanes, alkenes, arenes, ethers, furans, ketones, phenol. For type of BVOC emissions from different life form and phylogenetic group of aquatic macrophytes, 34 of the 68 BVOCs from emergent and submerged macrophytes are classified into alkene and alcohol compounds, over 50% BVOCs from dicotyledon and monocotyledon belong to alcohol and arene compounds. Charophyte and pteridophyte emitted significantly fewer BVOCs than dicotyledon and monocotyledon, and each of them only released 12 BVOCs. These BVOCs may be of great importance for the growth and development of macrophytes, because many BVOCs, such as azulene, (E)-β-farnesene, and dimethyl sulfide are proved to play vital roles in plant growth, defense, and information transmission. Our results confirmed that both life form and phylogenetic group of aquatic macrophytes had significantly affected the BVOC emissions form macrophytes, and suggested that the intricate interplay of internal and external factors that shape BVOC emissions from aquatic macrophytes. Thus, further studies are urgently needed to investigate the influence factors and ecological function of BVOCs released by macrophytes within aquatic ecosystem.
Collapse
Affiliation(s)
- Qiutong Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, China
| | - Yujing Yang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, China
| | - Wenhui Ou
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, China
| | - Lifei Wei
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, China
| | - Zhongqiang Li
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, China.
| | - Xuwei Deng
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China.
| | - Qiang Gao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| |
Collapse
|
5
|
Li R, Jobson BT, Wen M, Li AL, Huangfu Y, Zhang W, Hardy R, O'Keeffe P, Simpson J, Fauci M, Paden N. Anthropogenic, biogenic, and photochemical influences on surface formaldehyde and its significant decadal (2006-2017) decrease in the Lewiston-Clarkston valley of the northwestern United States. CHEMOSPHERE 2024; 349:140962. [PMID: 38104739 DOI: 10.1016/j.chemosphere.2023.140962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Formaldehyde (HCHO) is a key carcinogen and plays an important role in atmospheric chemistry. Both field measurements and Positive Matrix Factorization (PMF) modeling have been employed to investigate the concentrations and sources of HCHO in the Lewiston-Clarkston (LC) valley of the mountainous northwestern U.S. Different instruments were deployed to measure surface formaldehyde and other related compounds in July of 2016 and 2017. The measurements reveal that the average HCHO concentrations have significantly decreased to 2-5 ppb in the LC valley in comparison to its levels (10-20 ppb) observed in July 2006. This discovery with surface measurements deserves attention given that satellite retrievals showed an increasing long-term trend from 2005 to 2014 in total vertical column density of HCHO in the region, suggesting that satellite instruments may not adequately resolve small valleys in the mountainous region. Our PMF modeling identified four major sources of HCHO in the valley: (1) emissions from a local paper mill, (2) secondary formation and background, (3) biogenic sources, and (4) traffic. This study reveals that the emissions from the paper mill cause high HCHO spikes (6-19 ppb) in the early morning. It is found that biogenic volatile organic compounds (VOCs) in the area are influenced by national forests surrounding the region (e.g., Nez Perce-Clearwater, Umatilla, Wallowa-Whitman, and Idaho Panhandle National Forests). The results provide useful information for developing strategies to control HCHO levels and have implications for future HCHO studies in atmospheric chemistry, which affects secondary aerosols and ozone formation.
Collapse
Affiliation(s)
- R Li
- Idaho Department of Environmental Quality, Boise, ID, USA.
| | - B T Jobson
- Laboratory for Atmospheric Research, Department of Civil & Environmental Engineering, Washington State University, Pullman, WA, USA
| | - M Wen
- Laboratory for Atmospheric Research, Department of Civil & Environmental Engineering, Washington State University, Pullman, WA, USA
| | - A L Li
- Boise High School, Boise, ID, USA
| | - Y Huangfu
- Laboratory for Atmospheric Research, Department of Civil & Environmental Engineering, Washington State University, Pullman, WA, USA
| | - W Zhang
- Idaho Department of Environmental Quality, Boise, ID, USA
| | - R Hardy
- Idaho Department of Environmental Quality, Boise, ID, USA
| | - P O'Keeffe
- Laboratory for Atmospheric Research, Department of Civil & Environmental Engineering, Washington State University, Pullman, WA, USA
| | - J Simpson
- Air Quality Program, Nez Perce Tribe, Lapwai, ID, USA
| | - M Fauci
- Air Quality Program, Nez Perce Tribe, Lapwai, ID, USA
| | - N Paden
- Idaho Department of Environmental Quality, Boise, ID, USA
| |
Collapse
|
6
|
Fan WL, Wen CH, Ma LT, Ho CL, Tung GS, Tien CC, Chu FH. Monoterpene synthases contribute to the volatile production in tana (Zanthoxylum ailanthoides) through indigenous cultivation practices. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107969. [PMID: 37597276 DOI: 10.1016/j.plaphy.2023.107969] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023]
Abstract
Tana (Zanthoxylum ailanthoides), a perennial deciduous species in the Rutaceae family, possesses leaves with a unique fragrance that indigenous peoples incorporate into their traditional cuisine. In Kalibuan, the cultivated tana trees were pruned repeatedly to maintain a shorter height, which led to the growth of new leaves that were spicier and pricklier. Tana leaves contain a range of volatile terpenoids, and the pungent aroma may arise from the presence of monoterpenoids. To gain insight into the biosynthetic pathway, five candidate monoterpene synthase genes were cloned and characterized using a purified recombinant protein assay. The main product of Za_mTPS1, Za_mTPS2, and Za_mTPS5 is sabinene, geraniol, and (E)-β-ocimene, respectively. The main product of Za_mTPS3 and Za_mTPS4 is linalool. Real-time PCR analysis revealed that Za_mTPS1 and Za_mTPS5 are expressed at higher levels in prickly leaves of cultivated tana, suggesting that they may contribute to the distinctive aroma of this plant.
Collapse
Affiliation(s)
- Wei-Lin Fan
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, 10617, Taiwan
| | - Chi-Hsiang Wen
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, 10617, Taiwan
| | - Li-Ting Ma
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, 10617, Taiwan
| | - Chen-Lung Ho
- Taiwan Forestry Research Institute, Taipei, 10066, Taiwan
| | | | | | - Fang-Hua Chu
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
7
|
Zhang B, Qiao L, Han H, Xie W, Li L. Variations in VOCs Emissions and Their O 3 and SOA Formation Potential among Different Ages of Plant Foliage. TOXICS 2023; 11:645. [PMID: 37624151 PMCID: PMC10458546 DOI: 10.3390/toxics11080645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023]
Abstract
Volatile organic compounds (VOCs) emitted by plant foliage play an important role in ozone (O3) and secondary organic aerosol (SOA) formation. Their emissions can be influenced by the leaf age. We explored the VOCs emissions and their effects on the formation of O3 and SOA from plant foliage in different ages. VOCs emissions from the young, mature, and senescent leaves of Ginkgo biloba, Ligustrum lucidum, and Forsythia suspensa were measured using the dynamic enclosure system and the TD-GC-MS technique. Based on the emission rates of quantified compounds, their potential to form O3 and SOA was estimated. Results showed that there were significant differences in the VOCs emission rate and their composition among leaves in different ages. The emission rate of the total VOCs by young leaves was the highest, while the lowest by senescent leaves. Monoterpenes were the dominant VOCs category, and isoprene emission had the lowest contribution for the leaves at each age. With increasing leaf age, the proportion of monoterpenes emission increased, and the proportion of sesquiterpenes decreased. The variations of isoprene and other VOCs were different. The potentials of total VOCs, isoprene, monoterpenes, sesquiterpenes, and other VOCs to form O3 (OFP) and SOA (SOAP) varied significantly among leaves at different ages. The total OFP and SOAP were the highest by young leaves, while the lowest by senescent leaves. With increasing leaf age, the contribution of monoterpenes to OFP and SOAP also increased, while that of sesquiterpenes decreased. Our study will provide support for the more accurate parameterization of the emission model and help to understand the VOCs emissions and study the precise prevention and control of complex air pollution at different times.
Collapse
Affiliation(s)
| | | | | | - Wenxia Xie
- College of Environmental Sciences and Engineering, Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao University, Qingdao 266071, China; (B.Z.); (L.Q.); (H.H.)
| | - Lingyu Li
- College of Environmental Sciences and Engineering, Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao University, Qingdao 266071, China; (B.Z.); (L.Q.); (H.H.)
| |
Collapse
|
8
|
Li YN, Zhang SB, Lv YY, Zhai HC, Cai JP, Hu YS. Linalool, the main volatile constituent from Zanthoxylum schinifolium pericarp, prevents growth of Aspergillus flavus in post-harvest grains. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Mu Z, Llusià J, Zeng J, Zhang Y, Asensio D, Yang K, Yi Z, Wang X, Peñuelas J. An Overview of the Isoprenoid Emissions From Tropical Plant Species. FRONTIERS IN PLANT SCIENCE 2022; 13:833030. [PMID: 35668805 PMCID: PMC9163954 DOI: 10.3389/fpls.2022.833030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Terrestrial vegetation is the largest contributor of isoprenoids (a group of biogenic volatile organic compounds (BVOCs)) to the atmosphere. BVOC emission data comes mostly from temperate regions, and less is known about BVOC emissions from tropical vegetation, even though it is estimated to be responsible for >70% of BVOC emissions. This review summarizes the available data and our current understanding of isoprenoid emissions from tropical plant species and the spatial and temporal variation in emissions, which are strongly species-specific and regionally variable. Emission models lacking foliar level data for tropical species need to revise their parameters to account for seasonal and diurnal variation due to differences in dependencies on temperature and light of emissions from plants in other ecosystems. More experimental information and determining how emission capacity varies during foliar development are warranted to account for seasonal variations more explicitly.
Collapse
Affiliation(s)
- Zhaobin Mu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, China
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| | - Joan Llusià
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| | - Jianqiang Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yanli Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Dolores Asensio
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| | - Kaijun Yang
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| | - Zhigang Yi
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| |
Collapse
|
10
|
Ambient Formaldehyde over the United States from Ground-Based (AQS) and Satellite (OMI) Observations. REMOTE SENSING 2022. [DOI: 10.3390/rs14092191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study evaluates formaldehyde (HCHO) over the U.S. from 2006 to 2015 by comparing ground monitor data from the Air Quality System (AQS) and a satellite retrieval from the Ozone Monitoring Instrument (OMI). Our comparison focuses on the utility of satellite data to inform patterns, trends, and processes of ground-based HCHO across the U.S. We find that cities with higher levels of biogenic volatile organic compound (BVOC) emissions, including primary HCHO, exhibit larger HCHO diurnal amplitudes in surface observations. These differences in hour-to-hour variability in surface HCHO suggests that satellite agreement with ground-based data may depend on the distribution of emission sources. On a seasonal basis, OMI exhibits the highest correlation with AQS in summer and the lowest correlation in winter. The ratios of HCHO in summer versus other seasons show pronounced seasonal variability in OMI, likely due to seasonal changes in the vertical HCHO distribution. The seasonal variability in HCHO from satellite is more pronounced than at the surface, with seasonal variability 20–100% larger in satellite than surface observations. The seasonal variability also has a latitude dependency, with more variability in higher latitude regions. OMI agrees with AQS on the interannual variability in certain periods, whereas AQS and OMI do not show a consistent decadal trend. This is possibly due to a rather large interannual variability in HCHO, which makes the small decadal drift less significant. Temperature also explains part of the interannual variabilities. Small temperature variations in the western U.S. are reflected with more quiescent HCHO interannual variability in that region. The decrease in summertime HCHO in the southeast U.S. could also be partially explained by a small and negative trend in local temperatures.
Collapse
|
11
|
Mann L, Laplanche D, Turlings TCJ, Desurmont GA. A comparative study of plant volatiles induced by insect and gastropod herbivory. Sci Rep 2021; 11:23698. [PMID: 34880284 PMCID: PMC8654843 DOI: 10.1038/s41598-021-02801-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/10/2021] [Indexed: 11/27/2022] Open
Abstract
Insect and gastropod herbivores are major plant consumers and their importance in the evolution of plant defensive traits is broadly recognized. However, their respective effects on plant responses have rarely been compared. Here we focused on plant volatile emissions (VOCs) following herbivory and compared the effects of herbivory by caterpillars of the generalist insect Spodoptera littoralis and by generalist slugs of the genus Arion on the VOCs emissions of 14 cultivated plant species. Results revealed that plants consistently produced higher amounts of volatiles and responded more specifically to caterpillar than to slug herbivory. Specifically, plants released on average 6.0 times more VOCs (total), 8.9 times more green leaf volatiles, 4.2 times more terpenoids, 6.0 times more aromatic hydrocarbons, and 5.7 times more other VOCs in response to 1 cm2 of insect damage than to 1 cm2 of slug damage. Interestingly, four of the plant species tested produced a distinct blend of volatiles following insect damage but not slug damage. These findings may result from different chemical elicitors or from physical differences in herbivory by the two herbivores. This study is an important step toward a more inclusive view of plant responses to different types of herbivores.
Collapse
Affiliation(s)
- Leslie Mann
- Institute of Biology, University of Neuchâtel, 11 Rue Emile-argand, 2000, Neuchâtel, Switzerland.,University of Canterbury, Christchurch, New Zealand
| | - Diane Laplanche
- Institute of Biology, University of Neuchâtel, 11 Rue Emile-argand, 2000, Neuchâtel, Switzerland
| | - Ted C J Turlings
- Institute of Biology, University of Neuchâtel, 11 Rue Emile-argand, 2000, Neuchâtel, Switzerland
| | - Gaylord A Desurmont
- Institute of Biology, University of Neuchâtel, 11 Rue Emile-argand, 2000, Neuchâtel, Switzerland. .,European Biological Control Laboratory (EBCL USDA ARS), Montferrier-sur-lez, France.
| |
Collapse
|
12
|
Mohd Hanif N, Limi Hawari NSS, Othman M, Abd Hamid HH, Ahamad F, Uning R, Ooi MCG, Wahab MIA, Sahani M, Latif MT. Ambient volatile organic compounds in tropical environments: Potential sources, composition and impacts - A review. CHEMOSPHERE 2021; 285:131355. [PMID: 34710962 DOI: 10.1016/j.chemosphere.2021.131355] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 06/16/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Volatile organic compounds (VOCs) are widely recognized to affect the environment and human health. This review provides a comprehensive presentation of the types and levels of VOCs, their sources and potential effects on human health and the environment based on past and current observations made at tropical sites. Isoprene was found to be the dominant biogenic VOC in the tropics. Tropical broad leaf evergreen trees are the main emitters of isoprene, making up more than 70% of the total emissions. The VOCs found in the tropical remote marine atmosphere included isoprene (>100 ppt), dimethyl sulfide (≤100 ppt) and halocarbons, i.e. bromoform (≤8.4 ppt), dibromomethane (≤2.7 ppt) and dibromochloromethane (≤1.6 ppt). VOCs such as benzene, toluene, ethylbenzene and xylene (BTEX) are the most monitored anthropogenic VOCs and are present mainly due to motor vehicles emissions. Additionally, biomass burning contributes to anthropogenic VOCs, especially high molecular weight VOCs, e.g. methanol and acetonitrile. The relative contributions of VOC species to ozone are determined through the level of the Ozone Formation Potential (OFP) of different species. Emissions of VOCs (e.g. very short-lived halogenated gases) in the tropics are capable of contributing to stratospheric ozone depletion. BTEX has been identified as the main types of VOCs that are associated with the cancer risk in urban areas in tropical regions. Finally, future studies related to VOCs in the tropics and their associated health risks are needed to address these concerns.
Collapse
Affiliation(s)
- Norfazrin Mohd Hanif
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| | - Nor Syamimi Sufiera Limi Hawari
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Murnira Othman
- Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Haris Hafizal Abd Hamid
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Fatimah Ahamad
- AQ Expert Solutions, Jalan Dato Muda Linggi, Seremban, 70100, Negeri Sembilan, Malaysia
| | - Royston Uning
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Maggie Chel Gee Ooi
- Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Muhammad Ikram A Wahab
- Environmental Health and Industrial Safety Program, Center for Health and Applied Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| | - Mazrura Sahani
- Environmental Health and Industrial Safety Program, Center for Health and Applied Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| | - Mohd Talib Latif
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| |
Collapse
|
13
|
Effah E, Barrett DP, Peterson PG, Potter MA, Holopainen JK, Clavijo McCormick A. Seasonal Volatile Emission Patterns of the Endemic New Zealand Shrub Dracophyllum subulatum on the North Island Central Plateau. FRONTIERS IN PLANT SCIENCE 2021; 12:734531. [PMID: 34721463 PMCID: PMC8553956 DOI: 10.3389/fpls.2021.734531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Volatile organic compounds (VOCs) produced by plants are essential indicators of their physiological response to environmental conditions. But evidence of natural variation in VOC emissions and their contributing factors is still limited, especially for non-cultivated species. Here we explored the natural volatile emissions of Dracophyllum subulatum Hook.f., an endemic shrub to the North Island Central Plateau of New Zealand, and determined some environmental factors driving the plant's emissions. Volatile emissions of D. subulatum were measured on four separate occasions from December 2017 to September 2018 using the "push-pull" headspace sampling technique and analyzed using gas chromatography-mass spectrometry (GC-MS). D. subulatum was classified based on the volatiles measured on each sampling occasion using linear discriminant analysis (LDA). On each sampling occasion, we also recorded and compared ambient air temperature, herbivory damage, total soil nitrogen (N), available phosphorus (P), potassium (K), and soil moisture content. The relationship between environmental variables that differed significantly between sampling occasions and volatile emissions were estimated using generalized linear models (GLMs). Based on VOCs measured on each sampling occasion, we were able to distinguish different chemical profiles. Overall, we found that total emission and the relative proportions of all major chemical classes released by D. subulatum were significantly higher during summer. The GLMs reveal that differences in environmental factors between the four sampling occasions are highly associated with changing emissions. Higher temperatures in summer had a consistently strong positive relationship with emissions, while the impacts of soil moisture content, P and K were variable and depended on the chemical class. These results are discussed, particularly how high temperature (warming) may shape volatile emissions and plants' ecology.
Collapse
Affiliation(s)
- Evans Effah
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - D. Paul Barrett
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Paul G. Peterson
- Manaaki Whenua - Landcare Research, Massey University, Palmerston North, New Zealand
| | - Murray A. Potter
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Jarmo K. Holopainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | | |
Collapse
|
14
|
Ryde I, Li T, Rieksta J, dos Santos BM, Neilson EHJ, Gericke O, Jepsen JU, Bork LRH, Holm HS, Rinnan R. Seasonal and elevational variability in the induction of specialized compounds from mountain birch (Betula pubescens var. pumila) by winter moth larvae (Operophtera brumata). TREE PHYSIOLOGY 2021; 41:1019-1033. [PMID: 33601421 PMCID: PMC8190950 DOI: 10.1093/treephys/tpab023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 05/06/2023]
Abstract
The mountain birch [Betula pubescens var. pumila (L.)] forest in the Subarctic is periodically exposed to insect outbreaks, which are expected to intensify due to climate change. To mitigate abiotic and biotic stresses, plants have evolved chemical defenses, including volatile organic compounds (VOCs) and non-volatile specialized compounds (NVSCs). Constitutive and induced production of these compounds, however, are poorly studied in Subarctic populations of mountain birch. Here, we assessed the joint effects of insect herbivory, elevation and season on foliar VOC emissions and NVSC contents of mountain birch. The VOCs were sampled in situ by an enclosure technique and analyzed by gas chromatography-mass spectrometry. NVSCs were analyzed by liquid chromatography-mass spectrometry using an untargeted approach. At low elevation, experimental herbivory by winter moth larvae (Operophtera brumata) increased emissions of monoterpenes and homoterpenes over the 3-week feeding period, and sesquiterpenes and green leaf volatiles at the end of the feeding period. At high elevation, however, herbivory augmented only homoterpene emissions. The more pronounced herbivory effects at low elevation were likely due to higher herbivory intensity. Of the individual compounds, linalool, ocimene, 4,8-dimethylnona-1,3,7-triene, 2-methyl butanenitrile and benzyl nitrile were among the most responsive compounds in herbivory treatments. Herbivory also altered foliar NVSC profiles at both low and high elevations, with the most responsive compounds likely belonging to fatty acyl glycosides and terpene glycosides. Additionally, VOC emissions from non-infested branches were higher at high than low elevation, particularly during the early season, which was mainly driven by phenological differences. The VOC emissions varied substantially over the season, largely reflecting the seasonal variations in temperature and light levels. Our results suggest that if insect herbivory pressure continues to rise in the mountain birch forest with ongoing climate change, it will significantly increase VOC emissions with important consequences for local trophic interactions and climate.
Collapse
Affiliation(s)
- Ingvild Ryde
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
- Section for Plant Biochemistry, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Tao Li
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark
| | - Jolanta Rieksta
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark
| | - Bruna M dos Santos
- Section for Plant Biochemistry, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Elizabeth H J Neilson
- Section for Plant Biochemistry, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Oliver Gericke
- Section for Plant Biochemistry, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Jane U Jepsen
- Department of Tromsø (NINA Tromsø), Norwegian Institute for Nature Research (NINA), Hjalmar Johansens Gate 14, NO-9296 Tromsø, Norway
| | - Louise R H Bork
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Hildur S Holm
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Riikka Rinnan
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark
| |
Collapse
|
15
|
Seasonal and environmental variation in volatile emissions of the New Zealand native plant Leptospermum scoparium in weed-invaded and non-invaded sites. Sci Rep 2020; 10:11736. [PMID: 32678113 PMCID: PMC7366711 DOI: 10.1038/s41598-020-68386-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/12/2020] [Indexed: 02/08/2023] Open
Abstract
The New Zealand tea tree Leptospermun scoparium (mānuka) is widely known for the antimicrobial properties of its honey. Mānuka is native to New Zealand, growing in a range of environments, including the Central Volcanic Plateau of the North Island, where it is currently threatened by the spread of exotic invasive weeds such as heather (Calluna vulgaris) and Scotch broom (Cytisus scoparius). Here, we characterise for the first time the aboveground volatile organic compounds (VOCs) produced by mānuka in this area, during summer and winter seasons, in weed-invaded and non-invaded stands. We measured plant volatiles at four sites, each with a distinct combination of woody species: (1) conspecific stands of mānuka; (2) mānuka and another native species (Dracophyllum subulatum); and mānuka with one of two European invasive plants, (3) heather or (4) Scotch broom. We also quantified herbivore damage on target mānuka plants and analysed microclimatic variables (soil nutrients, air temperature and soil water content) to investigate their impact on volatile emissions. Our results reveal a strong seasonal effect on volatile emissions, but also significant differences between sites associated with biotic and abiotic changes partly driven by invasive plants. Overall, volatile emission rates from mānuka were typically lower at sites where invaders were present. We point to several factors that could contribute to the observed emission patterns and areas of interest for future research to provide a comprehensive understanding of VOC emissions in nature. Given the vital role of volatile compounds in plant communication, we also recommend future studies to be performed in multiple seasons, with larger sample sizes and more study sites to expand on these findings and explore the ecological impacts of changes in VOC emissions during plant invasion.
Collapse
|
16
|
Herbivory and Attenuated UV Radiation Affect Volatile Emissions of the Invasive Weed Calluna vulgaris. Molecules 2020; 25:molecules25143200. [PMID: 32668802 PMCID: PMC7397131 DOI: 10.3390/molecules25143200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 11/17/2022] Open
Abstract
Calluna vulgaris (heather) is an aggressive invasive weed on the Central Plateau, North Is., New Zealand (NZ), where it encounters different environmental factors compared to its native range in Europe, such as high ultraviolet radiation (UV) and a lack of specialist herbivores. The specialist herbivore Lochmaea suturalis (heather beetle) was introduced from the United Kingdom (UK) in 1996 as a biocontrol agent to manage this invasive weed. Like other plant invaders, a novel environment may be challenging for heather as it adjusts to its new conditions. This process of “adjustment” involves morphological and physiological changes often linked to phenotypic plasticity. The biochemical responses of exotic plants to environmental variables in their invaded range is poorly understood. The production and release of volatile organic compounds (VOCs) is essential to plant communication and highly susceptible to environmental change. This study therefore aimed to explore the VOC emissions of heather in response to different levels of UV exposure, and to feeding damage by L. suturalis. Using tunnel houses clad with UV-selective filters, we measured VOCs produced by heather under NZ ambient, 20% attenuated, and 95% attenuated solar UV treatments. We also compared VOC emissions in the field at adjacent sites where L. suturalis was present or absent. Volatiles produced by the same target heather plants were measured at four different times in the spring and summer of 2018–2019, reflecting variations in beetle’s abundance, feeding stage and plant phenology. Heather plants under 95% attenuated UV produced significantly higher amounts of (E)-β-farnesene, decanal, benzaldehyde, and benzeneacetaldehyde compared to 25% attenuated and ambient UV radiation. We also found significant differences in volatiles produced by heather plants in beetle-present versus beetle-absent sites on most sampling occasions. We also recorded a lower number of generalist herbivores on heather at sites where L. suturalis was present. Interactions between invasive plants, a novel environment, and the native communities they invade, are discussed.
Collapse
|
17
|
Chatterjee P, Kanagendran A, Samaddar S, Pazouki L, Sa TM, Niinemets Ü. Influence of Brevibacterium linens RS16 on foliage photosynthetic and volatile emission characteristics upon heat stress in Eucalyptus grandis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134453. [PMID: 31670196 DOI: 10.1016/j.scitotenv.2019.134453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Heat stress induces secondary metabolic changes in plants, channeling photosynthetic carbon and energy, away from primary metabolic processes, including, growth. Use of ACC (1-aminocyclopropane-1-carboxylate) deaminase containing plant growth promoting bacteria (PGPB) in conferring heat resistance in plants and the role of PGPB, in altering net carbon assimilation, constitutive and stress volatile emissions has not been studied yet. We exposed leaves of Eucalyptus grandis inoculated and non-inoculated with PGPB Brevibacterium linens RS16 to two levels of heat stress (37 °C and 41 °C for 5 min) and quantified temporal changes in foliage photosynthetic characteristics and volatile emission rates at 0.5 h, day 1 and day 5 after the stress application. Heat stress resulted in immediate reductions in dark-adapted photosystem II (PSII) quantum yield (Fv/Fm), net assimilation rate (A), stomatal conductance to water vapor (gs), and enhancement of stress volatile emissions, including enhanced emissions of green leaf volatiles (GLV), mono- and sesquiterpenes, light weight oxygenated volatile organic compounds (LOC), geranyl-geranyl diphosphate pathway volatiles (GGDP), saturated aldehydes, and benzenoids, with partial recovery by day 5. Changes in stress-induced volatiles were always less in leaves inoculated with B. linens RS16. However, net assimilation rate was enhanced by bacterial inoculation only in the 37 °C treatment and overall reduction of isoprene emissions was observed in bacterially-treated leaves. Principal component analysis (PCA), correlation analysis and partial least squares discriminant analysis (PLS-DA) indicated that different stress applications influenced specific volatile organic compounds. In addition, changes in the expression analysis of heat shock protein 70 gene (DnaK) gene in B. linens RS16 upon exposure to higher temperatures further indicated that B. linens RS16 has developed its own heat resistance mechanism to survive under higher temperature regimes. Taken together, this study demonstrates that foliar application of ACC deaminase containing PGPB can ameliorate heat stress effects in realistic biological settings.
Collapse
Affiliation(s)
- Poulami Chatterjee
- Department of Environmental and Biological Chemistry, Chungbuk National University Cheongju, Chungbuk 28644, Republic of Korea; Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616, USA
| | - Arooran Kanagendran
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia; FARCE Lab, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Sandipan Samaddar
- Department of Environmental and Biological Chemistry, Chungbuk National University Cheongju, Chungbuk 28644, Republic of Korea; Department of Land, Air, and Water Resources, University of California, Davis, California 95616, USA
| | - Leila Pazouki
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia; Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Tong-Min Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University Cheongju, Chungbuk 28644, Republic of Korea.
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia; Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia.
| |
Collapse
|
18
|
Kanagendran A, Chatterjee P, Liu B, Sa T, Pazouki L, Niinemets Ü. Foliage inoculation by Burkholderia vietnamiensis CBMB40 antagonizes methyl jasmonate-mediated stress in Eucalyptus grandis. JOURNAL OF PLANT PHYSIOLOGY 2019; 242:153032. [PMID: 31491672 PMCID: PMC6863749 DOI: 10.1016/j.jplph.2019.153032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 05/21/2023]
Abstract
Methyl jasmonate (MeJA) is widely used as a model chemical to study hypersensitive responses to biotic stress impacts in plants. Elevated levels of methyl jasmonate induce jasmonate-dependent defense responses, associated with a decline in primary metabolism and enhancement of secondary metabolism of plants. However, there is no information of how stress resistance of plants, and accordingly the sensitivity to exogenous MeJA can be decreased by endophytic plant growth promoting rhizobacteria (PGPR) harboring ACC (1-aminocyclopropane-1-carboxylate) deaminase. In this study, we estimated stress alleviating potential of endophytic PGPR against MeJA-induced plant perturbations through assessing photosynthetic traits and stress volatile emissions. We used mild (5 mM) to severe (20 mM) MeJA and endophytic plant growth promoting rhizobacteria Burkholderia vietnamiensis CBMB40 and studied how MeJA and B. vietnamiensis treatments influenced temporal changes in photosynthetic characteristics and stress volatile emissions. Separate application of MeJA markedly decreased photosynthetic characteristics and increased lipoxygenase pathway (LOX) volatiles, volatile isoprenoids, saturated aldehydes, lightweight oxygenated compounds (LOC), geranyl-geranyl diphosphate pathway (GGDP) volatiles, and benzenoids. However, MeJA-treated leaves inoculated by endophytic bacteria B. vietnamiensis had substantially increased photosynthetic characteristics and decreased emissions of LOX, volatile isoprenoids and other stress volatiles compared with non-inoculated MeJA treatments, especially at later stages of recovery. In addition, analysis of leaf terpenoid contents demonstrated that several mono- and sesquiterpenes were de novo synthesized upon MeJA and B. vietnamiensis applications. This study demonstrates that foliar application of endophytic bacteria B. vietnamiensis can potentially enhance resistance to biotic stresses and contribute to the maintenance of the integrity of plant metabolic activity.
Collapse
Affiliation(s)
- Arooran Kanagendran
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia; Faculty of Science, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| | - Poulami Chatterjee
- Department of Environmental and Biological Chemistry, Chungbuk National University, Chungbuk 28644, Republic of Korea; Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Bin Liu
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia
| | - Tongmin Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University, Chungbuk 28644, Republic of Korea
| | - Leila Pazouki
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia; Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia; Estonian Academy of Sciences, Kohtu 6, Tallinn 10130, Estonia
| |
Collapse
|
19
|
Chatterjee P, Kanagendran A, Samaddar S, Pazouki L, Sa TM, Niinemets Ü. Methylobacterium oryzae CBMB20 influences photosynthetic traits, volatile emission and ethylene metabolism in Oryza sativa genotypes grown in salt stress conditions. PLANTA 2019; 249:1903-1919. [PMID: 30877435 PMCID: PMC6875431 DOI: 10.1007/s00425-019-03139-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/12/2019] [Indexed: 05/05/2023]
Abstract
MAIN CONCLUSION Inoculation of endophytic Methylobacterium oryzae CBMB20 in salt-stressed rice plants improves photosynthesis and reduces stress volatile emissions due to mellowing of ethylene-dependent responses and activating vacuolar H+-ATPase. The objective of this study was to analyze the impact of ACC (1-aminocyclopropane-1-carboxylate) deaminase-producing Methylobacterium oryzae CBMB20 in acclimation of plant to salt stress by controlling photosynthetic characteristics and volatile emission in salt-sensitive (IR29) and moderately salt-resistant (FL478) rice (Oryza sativa L.) cultivars. Saline levels of 50 mM and 100 mM NaCl with and without bacteria inoculation were applied, and the temporal changes in stress response and salinity resistance were assessed by monitoring photosynthetic characteristics, ACC accumulation, ACC oxidase activity (ACO), vacuolar H+ ATPase activity, and volatile organic compound (VOC) emissions. Salt stress considerably reduced photosynthetic rate, stomatal conductance, PSII efficiency and vacuolar H+ ATPase activity, but it increased ACC accumulation, ACO activity, green leaf volatiles, mono- and sesquiterpenes, and other stress volatiles. These responses were enhanced with increasing salt stress and time. However, rice cultivars treated with CBMB20 showed improved plant vacuolar H+ ATPase activity, photosynthetic characteristics and decreased ACC accumulation, ACO activity and VOC emission. The bacteria-dependent changes were greater in the IR29 cultivar. These results indicate that decreasing photosynthesis and vacuolar H+ ATPase activity rates and increasing VOC emission rates in response to high-salinity stress were effectively mitigated by M. oryzae CBMB20 inoculation.
Collapse
Affiliation(s)
- Poulami Chatterjee
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Arooran Kanagendran
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Sandipan Samaddar
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Leila Pazouki
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
- Department of Biology, University of Louisville, Louisville, KY, 40292, USA
| | - Tong-Min Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia.
- Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia.
| |
Collapse
|
20
|
Brilli F, Loreto F, Baccelli I. Exploiting Plant Volatile Organic Compounds (VOCs) in Agriculture to Improve Sustainable Defense Strategies and Productivity of Crops. FRONTIERS IN PLANT SCIENCE 2019; 10:264. [PMID: 30941152 PMCID: PMC6434774 DOI: 10.3389/fpls.2019.00264] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/19/2019] [Indexed: 05/19/2023]
Abstract
There is an urgent need for new sustainable solutions to support agriculture in facing current environmental challenges. In particular, intensification of productivity and food security needs require sustainable exploitation of natural resources and metabolites. Here, we bring the attention to the agronomic potential of volatile organic compounds (VOCs) emitted from leaves, as a natural and eco-friendly solution to defend plants from stresses and to enhance crop production. To date, application of VOCs is often limited to fight herbivores. Here we argue that potential applications of VOCs are much wider, as they can also protect from pathogens and environmental stresses. VOCs prime plant's defense mechanisms for an enhanced resistance/tolerance to the upcoming stress, quench reactive oxygen species (ROS), have potent antimicrobial as well as allelopathic effects, and might be important in regulating plant growth, development, and senescence through interactions with plant hormones. Current limits and drawbacks that may hamper the use of VOCs in open field are analyzed, and solutions for a better exploitation of VOCs in future sustainable agriculture are envisioned.
Collapse
Affiliation(s)
- Federico Brilli
- Institute for Sustainable Plant Protection, National Research Council of Italy, Florence, Italy
- *Correspondence: Federico Brilli,
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, National Research Council of Italy, Rome, Italy
| | - Ivan Baccelli
- Institute for Sustainable Plant Protection, National Research Council of Italy, Florence, Italy
- Ivan Baccelli,
| |
Collapse
|
21
|
Barta CE, Bolander B, Bilby SR, Brown JH, Brown RN, Duryee AM, Edelman DR, Gray CE, Gossett C, Haddock AG, Helsel MM, Jones AD, Klingseis ME, Leslie K, Miles EW, Prawitz RA. In Situ Dark Adaptation Enhances the Efficiency of DNA Extraction from Mature Pin Oak (Quercus palustris) Leaves, Facilitating the Identification of Partial Sequences of the 18S rRNA and Isoprene Synthase (IspS) Genes. PLANTS (BASEL, SWITZERLAND) 2017; 6:E52. [PMID: 29073736 PMCID: PMC5750628 DOI: 10.3390/plants6040052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/29/2017] [Accepted: 10/19/2017] [Indexed: 12/26/2022]
Abstract
Mature oak (Quercus spp.) leaves, although abundantly available during the plants' developmental cycle, are rarely exploited as viable sources of genomic DNA. These leaves are rich in metabolites difficult to remove during standard DNA purification, interfering with downstream molecular genetics applications. The current work assessed whether in situ dark adaptation, to deplete sugar reserves and inhibit secondary metabolite synthesis could compensate for the difficulties encountered when isolating DNA from mature leaves rich in secondary metabolites. We optimized a rapid, commercial kit based method to extract genomic DNA from dark- and light-adapted leaves. We demonstrated that in situ dark adaptation increases the yield and quality of genomic DNA obtained from mature oak leaves, yielding templates of sufficiently high quality for direct downstream applications, such as PCR amplification and gene identification. The quality of templates isolated from dark-adapted pin oak leaves particularly improved the amplification of larger fragments in our experiments. From DNA extracts prepared with our optimized method, we identified for the first time partial segments of the genes encoding 18S rRNA and isoprene synthase (IspS) from pin oak (Quercus palustris), whose full genome has not yet been sequenced.
Collapse
Affiliation(s)
- Csengele E Barta
- Department of Biology, Missouri Western State University, 4525 Downs Drive, Agenstein-Remington Halls, St. Joseph, MO 64507, USA.
| | - Bethany Bolander
- Department of Biology, Missouri Western State University, 4525 Downs Drive, Agenstein-Remington Halls, St. Joseph, MO 64507, USA.
| | - Steven R Bilby
- Department of Biology, Missouri Western State University, 4525 Downs Drive, Agenstein-Remington Halls, St. Joseph, MO 64507, USA.
| | - Jeremy H Brown
- Department of Biology, Missouri Western State University, 4525 Downs Drive, Agenstein-Remington Halls, St. Joseph, MO 64507, USA.
| | - Reid N Brown
- Department of Biology, Missouri Western State University, 4525 Downs Drive, Agenstein-Remington Halls, St. Joseph, MO 64507, USA.
| | - Alexander M Duryee
- Department of Biology, Missouri Western State University, 4525 Downs Drive, Agenstein-Remington Halls, St. Joseph, MO 64507, USA.
| | - Danielle R Edelman
- Department of Biology, Missouri Western State University, 4525 Downs Drive, Agenstein-Remington Halls, St. Joseph, MO 64507, USA.
| | - Christina E Gray
- Department of Biology, Missouri Western State University, 4525 Downs Drive, Agenstein-Remington Halls, St. Joseph, MO 64507, USA.
| | - Chandler Gossett
- Department of Biology, Missouri Western State University, 4525 Downs Drive, Agenstein-Remington Halls, St. Joseph, MO 64507, USA.
| | - Amie G Haddock
- Department of Biology, Missouri Western State University, 4525 Downs Drive, Agenstein-Remington Halls, St. Joseph, MO 64507, USA.
| | - Mackenzie M Helsel
- Department of Biology, Missouri Western State University, 4525 Downs Drive, Agenstein-Remington Halls, St. Joseph, MO 64507, USA.
| | - Alyssa D Jones
- Department of Biology, Missouri Western State University, 4525 Downs Drive, Agenstein-Remington Halls, St. Joseph, MO 64507, USA.
| | - Marissa E Klingseis
- Department of Biology, Missouri Western State University, 4525 Downs Drive, Agenstein-Remington Halls, St. Joseph, MO 64507, USA.
| | - Kalif Leslie
- Department of Biology, Missouri Western State University, 4525 Downs Drive, Agenstein-Remington Halls, St. Joseph, MO 64507, USA.
| | - Edward W Miles
- Department of Biology, Missouri Western State University, 4525 Downs Drive, Agenstein-Remington Halls, St. Joseph, MO 64507, USA.
| | - Rachael A Prawitz
- Department of Biology, Missouri Western State University, 4525 Downs Drive, Agenstein-Remington Halls, St. Joseph, MO 64507, USA.
| |
Collapse
|
22
|
Hanley ME, Girling RD, Felix AE, Olliff ED, Newland PL, Poppy GM. Olfactory selection of Plantago lanceolata by snails declines with seedling age. ANNALS OF BOTANY 2013; 112:671-6. [PMID: 23380239 PMCID: PMC3736763 DOI: 10.1093/aob/mct003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/03/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS Despite recent recognition that (1) plant-herbivore interactions during the establishment phase, (2) ontogenetic shifts in resource allocation and (3) herbivore response to plant volatile release are each pivotal to a comprehensive understanding of plant defence, no study has examined how herbivore olfactory response varies during seedling ontogeny. METHODS Using a Y-tube olfactometer we examined snail (Helix aspersa) olfactory response to pellets derived from macerated Plantago lanceolata plants harvested at 1, 2, 3, 4, 5, 6 and 8 weeks of age to test the hypothesis that olfactory selection of plants by a generalist herbivore varies with plant age. Plant volatiles were collected for 10 min using solid-phase microextraction technique on 1- and 8-week-old P. lanceolata pellets and analysed by gas chromatography coupled with a mass spectrometer. KEY RESULTS Selection of P. lanceolata was strongly negatively correlated with increasing age; pellets derived from 1-week-old seedlings were three times more likely to be selected as those from 8-week-old plants. Comparison of plant selection experiments with plant volatile profiles from GC/MS suggests that patterns of olfactory selection may be linked to ontogenetic shifts in concentrations of green leaf volatiles and ethanol (and its hydrolysis derivatives). CONCLUSIONS Although confirmatory of predictions made by contemporary plant defence theory, this is the first study to elucidate a link between seedling age and olfactory selection by herbivores. As a consequence, this study provides a new perspective on the ontogenetic expression of seedling defence, and the role of seedling herbivores, particularly terrestrial molluscs, as selective agents in temperate plant communities.
Collapse
Affiliation(s)
- M E Hanley
- School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| | | | | | | | | | | |
Collapse
|
23
|
Biological and Chemical Diversity of Biogenic Volatile Organic Emissions into the Atmosphere. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/786290] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biogenic volatile organic compounds (BVOC) emitted by terrestrial ecosystems into the atmosphere play an important role in determining atmospheric constituents including the oxidants and aerosols that control air quality and climate. Accurate quantitative estimates of BVOC emissions are needed to understand the processes controlling the earth system and to develop effective air quality and climate management strategies. The large uncertainties associated with BVOC emission estimates must be reduced, but this is challenging due to the large number of compounds and biological sources. The information on the immense biological and chemical diversity of BVOC is reviewed with a focus on observations that have been incorporated into the MEGAN2.1 BVOC emission model. Strategies for improving current BVOC emission modeling approaches by better representations of this diversity are presented. The current gaps in the available data for parameterizing emission models and the priorities for future measurements are discussed.
Collapse
|
24
|
Bracho-Nunez A, Knothe NM, Costa WR, Maria Astrid LR, Kleiss B, Rottenberger S, Piedade MTF, Kesselmeier J. Root anoxia effects on physiology and emissions of volatile organic compounds (VOC) under short- and long-term inundation of trees from Amazonian floodplains. SPRINGERPLUS 2012; 1:9. [PMID: 23961340 PMCID: PMC3725850 DOI: 10.1186/2193-1801-1-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 07/27/2012] [Indexed: 11/15/2022]
Abstract
Volatile organic compound (VOC) emissions are affected by a variety of biotic and abiotic factors such as light intensity, temperature, CO2 and drought. Another stress factor, usually overlooked but very important for the Amazon region, is flooding. We studied the exchange of VOCs in relation to CO2 exchange and transpiration of 8 common tree species from the Amazonian floodplain forest grown up from seeds using a dynamic enclosure system. Analysis of volatile organics was performed by PTR-MS fast online measurements. Our study confirmed emissions of ethanol and acetaldehyde at the beginning of root anoxia after inundation, especially in less anoxia adapted species such as Vatairea guianensis, but not for Hevea spruceana probably due to a better adapted metabolism. In contrast to short-term inundation, long-term flooding of the root system did not result in any emission of ethanol or/and acetaldehyde. Emission of other VOCs, such as isoprenoids, acetone, and methanol exhibited distinct behavior related to the origin (igapó or várzea type of floodplain) of the tree species. Also physiological activities exhibited different response patterns for trees from igapó or várzea. In general, isoprenoid emissions increased within the course of some days of short-term flooding. After a long period of waterlogging, VOC emissions decreased considerably, along with photosynthesis, transpiration and stomatal conductance. However, even under long-term testing conditions, two tree species did not show any significant decrease or increase in photosynthesis. In order to understand ecophysiological advantages of the different responses we need field investigations with adult tree species.
Collapse
|
25
|
Wells KC, Millet DB, Hu L, Cady-Pereira KE, Xiao Y, Shephard M, Clerbaux CL, Clarisse L, Coheur PF, Apel EC, de Gouw J, Warneke C, Singh HB, Goldstein AH, Sive BC. Tropospheric methanol observations from space: retrieval evaluation and constraints on the seasonality of biogenic emissions. ATMOSPHERIC CHEMISTRY AND PHYSICS 2012; 12:5897-5912. [PMID: 33719354 PMCID: PMC7954041 DOI: 10.5194/acp-12-5897-2012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Methanol retrievals from nadir-viewing space-based sensors offer powerful new information for quantifying methanol emissions on a global scale. Here we apply an ensemble of aircraft observations over North America to evaluate new methanol measurements from the Tropospheric Emission Spectrometer (TES) on the Aura satellite, and combine the TES data with observations from the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp-A satellite to investigate the seasonality of methanol emissions from northern midlatitude ecosystems. Using the GEOS-Chem chemical transport model as an intercomparison platform, we find that the TES retrieval performs well when the degrees of freedom for signal (DOFS) are above 0.5, in which case the model:TES regressions are generally consistent with the model:aircraft comparisons. Including retrievals with DOFS below 0.5 degrades the comparisons, as these are excessively influenced by the a priori. The comparisons suggest DOFS >0.5 as a minimum threshold for interpreting retrievals of trace gases with a weak tropospheric signal. We analyze one full year of satellite observations and find that GEOS-Chem, driven with MEGANv2.1 biogenic emissions, underestimates observed methanol concentrations throughout the midlatitudes in springtime, with the timing of the seasonal peak in model emissions 1-2 months too late. We attribute this discrepancy to an underestimate of emissions from new leaves in MEGAN, and apply the satellite data to better quantify the seasonal change in methanol emissions for midlatitude ecosystems. The derived parameters (relative emission factors of 11.0, 0.26, 0.12 and 3.0 for new, growing, mature, and old leaves, respectively, plus a leaf area index activity factor of 0.5 for expanding canopies with leaf area index <1.2) provide a more realistic simulation of seasonal methanol concentrations in midlatitudes on the basis of both the IASI and TES measurements.
Collapse
Affiliation(s)
- K. C. Wells
- Department of Soil, Water and Climate, University of Minnesota, St. Paul, Minnesota, USA
| | - D. B. Millet
- Department of Soil, Water and Climate, University of Minnesota, St. Paul, Minnesota, USA
| | - L. Hu
- Department of Soil, Water and Climate, University of Minnesota, St. Paul, Minnesota, USA
| | - K. E. Cady-Pereira
- Atmospheric and Environmental Research, Inc., Lexington, Massachusetts, USA
| | - Y. Xiao
- Atmospheric and Environmental Research, Inc., Lexington, Massachusetts, USA
| | | | - C. L. Clerbaux
- UMPC Univ. Paris 06, Université Versailles St-Quentin, CNRS/INSU, LATMOS-IPSL, Paris, France
- Spectroscopie de l’Atmosphère, Service de Chimie Quantique et Photophysique, Universitè Libre de Bruxelles, Brussels, Belgium
| | - L. Clarisse
- Spectroscopie de l’Atmosphère, Service de Chimie Quantique et Photophysique, Universitè Libre de Bruxelles, Brussels, Belgium
| | - P.-F. Coheur
- Spectroscopie de l’Atmosphère, Service de Chimie Quantique et Photophysique, Universitè Libre de Bruxelles, Brussels, Belgium
| | - E. C. Apel
- Atmospheric Chemistry Division, NCAR, Boulder, Colorado, USA
| | - J. de Gouw
- Earth System Research Laboratory, NOAA, Boulder, Colorado, USA
- CIRES, University of Colorado, Boulder, Colorado, USA
| | - C. Warneke
- Earth System Research Laboratory, NOAA, Boulder, Colorado, USA
- CIRES, University of Colorado, Boulder, Colorado, USA
| | - H. B. Singh
- NASA Ames Research Center, Moffett Field, California, USA
| | - A. H. Goldstein
- Departments of Environmental Science, Policy, and Management and of Civil and Environmental Engineering, UC Berkeley, Berkeley, California, USA
| | - B. C. Sive
- Department of Chemistry, Appalachian State University, Boone, North Carolina, USA
| |
Collapse
|