1
|
Kar A, Bhati A, Lokanathan M, Bahadur V. Faster Nucleation of Ice at the Three-Phase Contact Line: Influence of Interfacial Chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12673-12680. [PMID: 34694119 DOI: 10.1021/acs.langmuir.1c02044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Controlling the nucleation of ice is important in many areas including atmospheric sciences, cryopreservation, food science, and infrastructure protection. Presently, we conduct controlled experiments and analysis to uncover the influence of surface chemistry at the three-phase line on ice nucleation. We show that ice nucleation is faster upon replacing the air at the water-air interface with oils like silicone oil and almond oil. We show via statistically meaningful and carefully designed experiments that ice nucleation occurs at a higher temperature at an aluminum-water-silicone oil (or almond oil) interface as compared to an aluminum-water-air interface. We show that the location of ice nucleation can be controlled (in situations with multiple locations for ice nucleation) by controlling the interfacial chemistry at the three-phase line. We develop a model (which utilizes classical nucleation theory) to study the combined influence of two interfaces on a seed crystal of ice originating at the three-phase contact line. This model can evaluate the thermodynamic competition between nucleation at the three -phase line and heterogeneous nucleation at an interface. The model shows that three-phase contact lines usually result in a higher driving force than heterogeneous nucleation, which speeds up nucleation kinetics. Overall, our experiments and modeling uncover several useful insights into the influence of three-phase lines on nucleation during contact freezing.
Collapse
Affiliation(s)
- Aritra Kar
- Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton Street, Austin, Texas 78712, United States
| | - Awan Bhati
- Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton Street, Austin, Texas 78712, United States
| | - Manojkumar Lokanathan
- Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton Street, Austin, Texas 78712, United States
| | - Vaibhav Bahadur
- Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton Street, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Xue H, Fu Y, Lu Y, Hao D, Li K, Bai G, Ou-Yang ZC, Wang J, Zhou X. Spontaneous Freezing of Water between 233 and 235 K Is Not Due to Homogeneous Nucleation. J Am Chem Soc 2021; 143:13548-13556. [PMID: 34406749 DOI: 10.1021/jacs.1c04055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The spontaneous freezing of microdroplets around 233 K has long been regarded as the occurrence of homogeneous ice nucleation. The corresponding temperature has been directly regarded as the homogeneous ice nucleation temperature, which is an intrinsic character of water. However, many recent investigations indicate that the spontaneous freezing may be still induced by surfaces of the water microdroplets or the residual impurities inside. Therefore, it is highly desired to reveal with solid evidence the exact origin of the spontaneous freezing. Here we show with no ambiguity that the spontaneous freezing between 233 and 235 K is actually triggered by the surface of microdroplets, as the nucleation rate is found to be proportional to the surface area of droplets, via systematically investigating the freezing of water droplets with varying sizes under various cooling rates followed by a new approach in data analysis. The conclusion is further consolidated by published experimental data from other groups when using our data analysis approach. This study is critical for understanding the sources of "no-man's land" and features of homogeneous nucleation, as well as studying the structure and properties of deeply supercooled liquid water.
Collapse
Affiliation(s)
- Han Xue
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yang Fu
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Youhua Lu
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Dezhao Hao
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Kaiyong Li
- School of Materials Science and Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, People's Republic of China
| | - Guoying Bai
- Research Institute for Energy Equipment Materials, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, People's Republic of China
| | - Zhong-Can Ou-Yang
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jianjun Wang
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xin Zhou
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, People's Republic of China
| |
Collapse
|
3
|
Hussain S, Haji-Akbari A. Role of Nanoscale Interfacial Proximity in Contact Freezing in Water. J Am Chem Soc 2021; 143:2272-2284. [PMID: 33507741 DOI: 10.1021/jacs.0c10663] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Contact freezing is a mode of atmospheric ice nucleation in which a collision between a dry ice nucleating particle (INP) and a water droplet results in considerably faster heterogeneous nucleation. The molecular mechanism of such an enhancement is, however, still a mystery. While earlier studies had attributed it to collision-induced transient perturbations, recent experiments point to the pivotal role of nanoscale proximity of the INP and the free interface. By simulating the heterogeneous nucleation of ice within INP-supported nanofilms of two model water-like tetrahedral liquids, we demonstrate that such nanoscale proximity is sufficient for inducing rate increases commensurate with those observed in contact freezing experiments, but only if the free interface has a tendency to enhance homogeneous nucleation. Water is suspected of possessing this latter property, known as surface freezing propensity. Our findings therefore establish a connection between the surface freezing propensity and kinetic enhancement during contact nucleation. We also observe that faster nucleation proceeds through a mechanism markedly distinct from classical heterogeneous nucleation, involving the formation of hourglass-shaped crystalline nuclei that conceive at either interface and that have a lower free energy of formation due to the nanoscale proximity of the interfaces and the modulation of the free interfacial structure by the INP. In addition to providing valuable insights into the physics of contact nucleation, our findings can assist in improving the accuracy of heterogeneous nucleation rate measurements in experiments and in advancing our understanding of ice nucleation on nonuniform surfaces such as organic, polymeric, and biological materials.
Collapse
Affiliation(s)
- Sarwar Hussain
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
4
|
Tarn MD, Sikora SNF, Porter GCE, Wyld BV, Alayof M, Reicher N, Harrison AD, Rudich Y, Shim JU, Murray BJ. On-chip analysis of atmospheric ice-nucleating particles in continuous flow. LAB ON A CHIP 2020; 20:2889-2910. [PMID: 32661539 DOI: 10.1039/d0lc00251h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ice-nucleating particles (INPs) are of atmospheric importance because they catalyse the freezing of supercooled cloud droplets, strongly affecting the lifetime and radiative properties of clouds. There is a need to improve our knowledge of the global distribution of INPs, their seasonal cycles and long-term trends, but our capability to make these measurements is limited. Atmospheric INP concentrations are often determined using assays involving arrays of droplets on a cold stage, but such assays are frequently limited by the number of droplets that can be analysed per experiment, often involve manual processing (e.g. pipetting of droplets), and can be susceptible to contamination. Here, we present a microfluidic platform, the LOC-NIPI (Lab-on-a-Chip Nucleation by Immersed Particle Instrument), for the generation of water-in-oil droplets and their freezing in continuous flow as they pass over a cold plate for atmospheric INP analysis. LOC-NIPI allows the user to define the number of droplets analysed by simply running the platform for as long as required. The use of small (∼100 μm diameter) droplets minimises the probability of contamination in any one droplet and therefore allows supercooling all the way down to homogeneous freezing (around -36 °C), while a temperature probe in a proxy channel provides an accurate measure of temperature without the need for temperature modelling. The platform was validated using samples of pollen extract and Snomax®, with hundreds of droplets analysed per temperature step and thousands of droplets being measured per experiment. Homogeneous freezing of purified water was studied using >10 000 droplets with temperature increments of 0.1 °C. The results were reproducible, independent of flow rate in the ranges tested, and the data compared well to conventional instrumentation and literature data. The LOC-NIPI was further benchmarked in a field campaign in the Eastern Mediterranean against other well-characterised instrumentation. The continuous flow nature of the system provides a route, with future development, to the automated monitoring of atmospheric INP at field sites around the globe.
Collapse
Affiliation(s)
- Mark D Tarn
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK. and School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
| | | | - Grace C E Porter
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK. and School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
| | - Bethany V Wyld
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK.
| | - Matan Alayof
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naama Reicher
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jung-Uk Shim
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
| | - Benjamin J Murray
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
5
|
Tarn MD, Sikora SNF, Porter GCE, O’Sullivan D, Adams M, Whale TF, Harrison AD, Vergara-Temprado J, Wilson TW, Shim JU, Murray BJ. The study of atmospheric ice-nucleating particles via microfluidically generated droplets. MICROFLUIDICS AND NANOFLUIDICS 2018; 22:52. [PMID: 29720926 PMCID: PMC5915516 DOI: 10.1007/s10404-018-2069-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/05/2018] [Indexed: 05/10/2023]
Abstract
Ice-nucleating particles (INPs) play a significant role in the climate and hydrological cycle by triggering ice formation in supercooled clouds, thereby causing precipitation and affecting cloud lifetimes and their radiative properties. However, despite their importance, INP often comprise only 1 in 103-106 ambient particles, making it difficult to ascertain and predict their type, source, and concentration. The typical techniques for quantifying INP concentrations tend to be highly labour-intensive, suffer from poor time resolution, or are limited in sensitivity to low concentrations. Here, we present the application of microfluidic devices to the study of atmospheric INPs via the simple and rapid production of monodisperse droplets and their subsequent freezing on a cold stage. This device offers the potential for the testing of INP concentrations in aqueous samples with high sensitivity and high counting statistics. Various INPs were tested for validation of the platform, including mineral dust and biological species, with results compared to literature values. We also describe a methodology for sampling atmospheric aerosol in a manner that minimises sampling biases and which is compatible with the microfluidic device. We present results for INP concentrations in air sampled during two field campaigns: (1) from a rural location in the UK and (2) during the UK's annual Bonfire Night festival. These initial results will provide a route for deployment of the microfluidic platform for the study and quantification of INPs in upcoming field campaigns around the globe, while providing a benchmark for future lab-on-a-chip-based INP studies.
Collapse
Affiliation(s)
- Mark D. Tarn
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT UK
| | | | - Grace C. E. Porter
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT UK
| | - Daniel O’Sullivan
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
| | - Mike Adams
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
| | - Thomas F. Whale
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
| | | | - Jesús Vergara-Temprado
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
- Present Address: Institute for Atmospheric and Climate Science, ETH Zürich, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Theodore W. Wilson
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
- Present Address: Owlstone Medical Ltd., 127 Science Park, Cambridge, CB4 0GD UK
| | - Jung-uk Shim
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT UK
| | | |
Collapse
|
6
|
Kanji ZA, Ladino LA, Wex H, Boose Y, Burkert-Kohn M, Cziczo DJ, Krämer M. Overview of Ice Nucleating Particles. ACTA ACUST UNITED AC 2017. [DOI: 10.1175/amsmonographs-d-16-0006.1] [Citation(s) in RCA: 337] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
Ice particle formation in tropospheric clouds significantly changes cloud radiative and microphysical properties. Ice nucleation in the troposphere via homogeneous freezing occurs at temperatures lower than −38°C and relative humidity with respect to ice above 140%. In the absence of these conditions, ice formation can proceed via heterogeneous nucleation aided by aerosol particles known as ice nucleating particles (INPs). In this chapter, new developments in identifying the heterogeneous freezing mechanisms, atmospheric relevance, uncertainties, and unknowns about INPs are described. The change in conventional wisdom regarding the requirements of INPs as new studies discover physical and chemical properties of these particles is explained. INP sources and known reasons for their ice nucleating properties are presented. The need for more studies to systematically identify particle properties that facilitate ice nucleation is highlighted. The atmospheric relevance of long-range transport, aerosol aging, and coating studies (in the laboratory) of INPs are also presented. Possible mechanisms for processes that change the ice nucleating potential of INPs and the corresponding challenges in understanding and applying these in models are discussed. How primary ice nucleation affects total ice crystal number concentrations in clouds and the discrepancy between INP concentrations and ice crystal number concentrations are presented. Finally, limitations of parameterizing INPs and of models in representing known and unknown processes related to heterogeneous ice nucleation processes are discussed.
Collapse
Affiliation(s)
- Zamin A. Kanji
- Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland
| | - Luis A. Ladino
- Cloud Physics and Severe Weather Research Section, Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Heike Wex
- Department of Experimental Aerosol and Cloud Microphysics, Leibniz Institute for Tropospheric Research, Leipzig, Germany
| | - Yvonne Boose
- Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland
| | - Monika Burkert-Kohn
- Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland
| | - Daniel J. Cziczo
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Martina Krämer
- f Institut für Energie- und Klimaforschung, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
7
|
Cziczo DJ, Ladino L, Boose Y, Kanji ZA, Kupiszewski P, Lance S, Mertes S, Wex H. Measurements of Ice Nucleating Particles and Ice Residuals. ACTA ACUST UNITED AC 2017. [DOI: 10.1175/amsmonographs-d-16-0008.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
It has been known that aerosol particles act as nuclei for ice formation for over a century and a half (see Dufour). Initial attempts to understand the nature of these ice nucleating particles were optical and electron microscope inspection of inclusions at the center of a crystal (see Isono; Kumai). Only within the last few decades has instrumentation to extract ice crystals from clouds and analyze the residual material after sublimation of condensed-phase water been available (see Cziczo and Froyd). Techniques to ascertain the ice nucleating potential of atmospheric aerosols have only been in place for a similar amount of time (see DeMott et al.). In this chapter the history of measurements of ice nucleating particles, both in the field and complementary studies in the laboratory, are reviewed. Remaining uncertainties and artifacts associated with measurements are described and suggestions for future areas of improvement are made.
Collapse
Affiliation(s)
- Daniel J. Cziczo
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Luis Ladino
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Yvonne Boose
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Zamin A. Kanji
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | | | - Sara Lance
- University at Albany, State University of New York, Albany, New York
| | - Stephan Mertes
- Leibniz Institute for Tropospheric Research, Leipzig, Germany
| | - Heike Wex
- Leibniz Institute for Tropospheric Research, Leipzig, Germany
| |
Collapse
|
8
|
Koop T, Murray BJ. A physically constrained classical description of the homogeneous nucleation of ice in water. J Chem Phys 2016; 145:211915. [DOI: 10.1063/1.4962355] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Thomas Koop
- Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Benjamin J. Murray
- Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
9
|
Atkinson JD, Murray BJ, O’Sullivan D. Rate of Homogenous Nucleation of Ice in Supercooled Water. J Phys Chem A 2016; 120:6513-20. [DOI: 10.1021/acs.jpca.6b03843] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James D. Atkinson
- Institute of Atmospheric and Climate Science, ETH Zurich, Universitätstrasse
16, 8092 Zurich, Switzerland
- Institute for Climate and Atmospheric Science,
School of Earth and Environment, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Benjamin J. Murray
- Institute for Climate and Atmospheric Science,
School of Earth and Environment, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Daniel O’Sullivan
- Institute for Climate and Atmospheric Science,
School of Earth and Environment, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
10
|
Herbert RJ, Murray BJ, Dobbie SJ, Koop T. Sensitivity of liquid clouds to homogenous freezing parameterizations. GEOPHYSICAL RESEARCH LETTERS 2015; 42:1599-1605. [PMID: 26074652 PMCID: PMC4459198 DOI: 10.1002/2014gl062729] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/01/2015] [Indexed: 05/25/2023]
Abstract
UNLABELLED Water droplets in some clouds can supercool to temperatures where homogeneous ice nucleation becomes the dominant freezing mechanism. In many cloud resolving and mesoscale models, it is assumed that homogeneous ice nucleation in water droplets only occurs below some threshold temperature typically set at -40°C. However, laboratory measurements show that there is a finite rate of nucleation at warmer temperatures. In this study we use a parcel model with detailed microphysics to show that cloud properties can be sensitive to homogeneous ice nucleation as warm as -30°C. Thus, homogeneous ice nucleation may be more important for cloud development, precipitation rates, and key cloud radiative parameters than is often assumed. Furthermore, we show that cloud development is particularly sensitive to the temperature dependence of the nucleation rate. In order to better constrain the parameterization of homogeneous ice nucleation laboratory measurements are needed at both high (>-35°C) and low (<-38°C) temperatures. KEY POINTS Homogeneous freezing may be significant as warm as -30°CHomogeneous freezing should not be represented by a threshold approximationThere is a need for an improved parameterization of homogeneous ice nucleation.
Collapse
Affiliation(s)
- Ross J Herbert
- School of Earth and Environment, University of Leeds Leeds, UK
| | | | - Steven J Dobbie
- School of Earth and Environment, University of Leeds Leeds, UK
| | - Thomas Koop
- Faculty of Chemistry, Bielefeld University Bielefeld, Germany
| |
Collapse
|
11
|
Brooks SD, Suter K, Olivarez L. Effects of Chemical Aging on the Ice Nucleation Activity of Soot and Polycyclic Aromatic Hydrocarbon Aerosols. J Phys Chem A 2014; 118:10036-47. [DOI: 10.1021/jp508809y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sarah D. Brooks
- Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Katie Suter
- Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Laura Olivarez
- Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
12
|
Riechers B, Wittbracht F, Hütten A, Koop T. The homogeneous ice nucleation rate of water droplets produced in a microfluidic device and the role of temperature uncertainty. Phys Chem Chem Phys 2013; 15:5873-87. [DOI: 10.1039/c3cp42437e] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|