1
|
Pippal PS, Kumar R, Kumar R, Singh A. Integrating satellite and model data to explore spatial-temporal changes in aerosol optical properties and their meteorological relationships in northwest India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:170835. [PMID: 38354813 DOI: 10.1016/j.scitotenv.2024.170835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
This study aims to analyze the temporal and spatial distribution of Aerosol Optical Properties across Northwest India using aerosol data from MODIS (Moderate Resolution Imaging Spectroradiometer) and OMI (Ozone Monitoring Instrument) sensors from 2003 to 2022. Therefore, this study investigated the decadal, interannual, and seasonal changes in aerosol optical properties, vegetation index, and meteorological parameters in the northwest Indian region (8 boxes). Using GIOVANNI (Goddard Earth Sciences Data and Information Services Center (GES DISC) Online Visualization and Analysis Infrastructure), we retrieved daily and monthly Aqua and Terra MODIS products of aerosol optical depth (AOD), Angstrom exponent (AE), normalized difference vegetation index (NDVI), and OMI aerosol index (AI) to examine the spatiotemporal variations by using statistical approaches. The results demonstrated that the decadal averages of aerosol properties showed values of AOD 0.35 (Aqua) and 0.34 (Terra) and AE 1.20 (Aqua) and 1.10 (Terra) with the highest levels during the post-monsoon. Notably, the mean interannual concentrations of AOD and NDVI consistently surpass 0.3, and AE and AI exceed 1 in most locations, underscoring the persistence of high aerosol loading. Also, the study revealed a negative decadal change in AOD of about -8.24 %, while AE, AI, and NDVI showed positive decadal changes of about 9.24 %, 15.09 %, and 12.67 %, respectively. In addition, aerosol optical properties and local meteorology strongly correlated (-0.8 to +0.8). Principal Component Analysis (PCA) identifies meteorological parameters as significant drivers, with the first three components explaining over 70 % of the variation in aerosol optical properties. The NOAA HYSPLIT trajectory model suggests that the long-distance dust transport from the Arabian Peninsula frequently penetrates Gujarat province and then to northwest India. The results contributed to air quality management strategies and provided valuable insights into regional climate and air quality with the influence of meteorology.
Collapse
Affiliation(s)
- Prity S Pippal
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Rajesh Kumar
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India.
| | - Ramesh Kumar
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India; Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Atar Singh
- Centre for Cryosphere and Climate Change Studies, National Institute of Hydrology, Roorkee, India
| |
Collapse
|
2
|
Wang F, Xu Y, Patel PN, Gautam R, Gao M, Liu C, Ding Y, Chen H, Yang Y, Zhou Y, Carmichael GR, McElroy MB. Arctic amplification-induced decline in West and South Asia dust warrants stronger antidesertification toward carbon neutrality. Proc Natl Acad Sci U S A 2024; 121:e2317444121. [PMID: 38527208 PMCID: PMC10998603 DOI: 10.1073/pnas.2317444121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/12/2024] [Indexed: 03/27/2024] Open
Abstract
Dust loading in West and South Asia has been a major environmental issue due to its negative effects on air quality, food security, energy supply and public health, as well as on regional and global weather and climate. Yet a robust understanding of its recent changes and future projection remains unclear. On the basis of several high-quality remote sensing products, we detect a consistently decreasing trend of dust loading in West and South Asia over the last two decades. In contrast to previous studies emphasizing the role of local land use changes, here, we attribute the regional dust decline to the continuous intensification of Arctic amplification driven by anthropogenic global warming. Arctic amplification results in anomalous mid-latitude atmospheric circulation, particularly a deepened trough stretching from West Siberia to Northeast India, which inhibits both dust emissions and their downstream transports. Large ensemble climate model simulations further support the dominant role of greenhouse gases induced Arctic amplification in modulating dust loading over West and South Asia. Future projections under different emission scenarios imply potential adverse effects of carbon neutrality in leading to higher regional dust loading and thus highlight the importance of stronger anti-desertification counter-actions such as reforestation and irrigation management.
Collapse
Affiliation(s)
- Fan Wang
- Department of Geography, Hong Kong Baptist University, Hong Kong SAR 999077, China
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Yangyang Xu
- Department of Atmospheric Sciences, Texas A&M University, College Station, TX77843
- Environmental Defense Fund, Washington, DC20009
| | - Piyushkumar N. Patel
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
- Oak Ridge Associated Universities, Oak Ridge, TN37830
| | | | - Meng Gao
- Department of Geography, Hong Kong Baptist University, Hong Kong SAR 999077, China
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Cheng Liu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei230026, China
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei230031, China
| | - Yihui Ding
- National Climate Center, Chinese Meteorological Administration, Beijing100081, China
| | - Haishan Chen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing210044, China
| | - Yuanjian Yang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing210044, China
| | - Yuyu Zhou
- Department of Geography and Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong SAR999077, China
| | - Gregory R. Carmichael
- Department of Chemical and Biochemical Engineering, The University of Iowa, Iowa City, IA52242
| | - Michael B. McElroy
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| |
Collapse
|
3
|
Shi L, Zhang J, Yao F, Zhang D, Guo H. Drivers to dust emissions over dust belt from 1980 to 2018 and their variation in two global warming phases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144860. [PMID: 33434842 DOI: 10.1016/j.scitotenv.2020.144860] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/02/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Dust storms are one of the major disasters in arid and semi-arid regions. Understanding the impact factors is crucial for early warning and disaster mitigation. Many factors have been affecting the spatiotemporal patterns of dust storms. However, the relative importance of those factors to dust emissions in recent 40 years over the whole dust belt has not been well documented. This study explored the relative importance of those factors to the interannual variation in dust emissions over the whole dust belt. The difference in the primary contributors over two global warming phases was compared to investigate the association of dust emission trend with global warming. The results indicated that the wind regimes, such as the nocturnal low-level jet, were key factors to the wintertime dust emissions over the Sahel. The springtime dust storms related to cold air and cyclones primarily occurred in the southern coast of the Mediterranean and northwestern China. The cold high and heat low were typical mechanisms for the summertime dust emissions, which frequently formed in western North Africa, the Middle East, and northwestern Indian subcontinent. Whereas the land cover and drought conditions play significant roles in the relatively wetter regions, i.e., the southern coast of the Mediterranean, the Ustyurt Plateau, the northwest coast of Indian Ocean, the Thar desert and the Taklimakan desert. The wintertime global warming coincided well with the decreasing trend of dust emissions over the dust sources inland with a more significant effect seen in Asia. The positive anomalies of summertime dust emissions were primarily found over the dust sources in the low-lying coastal areas on the foot of high mountains. Understanding the relative importance of those drivers to dust emission trends and their variation under different warming periods can improve the prediction of dust storm evolutions and mitigate their impacts under future climate change.
Collapse
Affiliation(s)
- Lamei Shi
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 101407, China
| | - Jiahua Zhang
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 101407, China.
| | - Fengmei Yao
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 101407, China
| | - Da Zhang
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 101407, China
| | - Huadong Guo
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| |
Collapse
|
4
|
Usmani M, Kondal A, Wang J, Jutla A. Environmental Association of Burning Agricultural Biomass in the Indus River Basin. GEOHEALTH 2020; 4:e2020GH000281. [PMID: 33163827 PMCID: PMC7597142 DOI: 10.1029/2020gh000281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/31/2020] [Accepted: 09/27/2020] [Indexed: 05/30/2023]
Abstract
Intensification of smog episodes, following harvesting of paddy crops in agricultural plains of the Indus basin in the Indian subcontinent, are often attributed to farming practice of burning standing stubble during late autumn (October, November) months. Biomass burning (paddy stubble residual) is a preferred technique to clear farmlands for centuries by farmers in that basin. However, despite stable agricultural landholding and yield, smog is being increasingly associated with burning agricultural biomass, thus creating a paradox. Here, we show that the concentration of smog (NOx, PM2.5, SO2) in the ambient air exceeds the safe threshold limits throughout the entire year in the region. This study argues that agricultural biomass burning is an ephemeral event in the basin that may act as a catalyst to a deteriorated air quality in the entire region. Results further demonstrate that simultaneous saturation of air pollutants along with high ambient moisture content and low wind speeds following the monsoon season are strongly related to aggravated smog events. Findings from this study should help make holistic mitigation and intervention policies to monitor air quality for sustainability of public health in agricultural regions where farming activities are a dominant economic driver for society.
Collapse
Affiliation(s)
- Moiz Usmani
- Geohealth and Hydrology Laboratory (GeoHLab), Department of Environmental Engineering SciencesUniversity of FloridaGainesvilleFloridaUSA
| | - Ashish Kondal
- Department of Civil and Environmental EngineeringWashington State UniversityPullmanWashingtonUSA
| | - Jun Wang
- Department of Chemical and Biochemical EngineeringThe University of IowaIowa CityIAUSA
| | - Antarpreet Jutla
- Geohealth and Hydrology Laboratory (GeoHLab), Department of Environmental Engineering SciencesUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
5
|
Tyagi G, Babu KN, Solanki HA. Monitoring bio-optical response of coastal waters surrounding the Indian subcontinent to atmospheric dust deposition using satellite data. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5523-5535. [PMID: 31853851 DOI: 10.1007/s11356-019-07134-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
The paper investigates the impact of atmospheric dust deposition on ocean biological productivity in association with oceanic supply of nutrients over specific regions of the Arabian Sea (20°N, 69°E) and the Bay of Bengal (20°N, 87°E) during wintertime (November-March) from the year 2012 to 2017 using satellite-based observations. During winter, selected regions are characterized by higher Chlorophyll-a (Chl-a) and major oceanic vertical supply of nutrients. Moderate Resolution Imaging Spectroradiometer onboard Aqua space-platform is used to obtain Chl-a and aerosol optical depth (AOD) data. Blended Chl-a daily product from various satellite sensors is also used. There are a total of nine cases (seven cases of the Arabian Sea region and two cases of the Bay of Bengal region) where episodic Chl-a enhancements following high AOD values are observed. Chl-a maxima lag behind AOD maxima by 1 to 4 days. Modern-Era Retrospective analysis for Research and Applications (Version-2) is used for AOD and dust deposition flux estimation. Estimated dust deposition flux ranges between 0.44 and 27.68 mg m-2 day-1.
Collapse
Affiliation(s)
- Geetika Tyagi
- Space Applications Centre, ISRO, Ahmedabad, Gujarat, 380015, India.
- Gujarat University, Ahmedabad, Gujarat, 380009, India.
| | - K N Babu
- Space Applications Centre, ISRO, Ahmedabad, Gujarat, 380015, India
| | | |
Collapse
|
6
|
Long-term trend of ventilation coefficient over Delhi and its potential impacts on air quality. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.rsase.2019.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Sarkar S, Chauhan A, Kumar R, Singh RP. Impact of Deadly Dust Storms (May 2018) on Air Quality, Meteorological, and Atmospheric Parameters Over the Northern Parts of India. GEOHEALTH 2019; 3:67-80. [PMID: 32159032 PMCID: PMC7007138 DOI: 10.1029/2018gh000170] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/20/2019] [Accepted: 02/22/2019] [Indexed: 05/20/2023]
Abstract
The northern part of India, adjoining the Himalaya, is considered as one of the global hot spots of pollution because of various natural and anthropogenic factors. Throughout the year, the region is affected by pollution from various sources like dust, biomass burning, industrial and vehicular pollution, and myriad other anthropogenic emissions. These sources affect the air quality and health of millions of people who live in the Indo-Gangetic Plains. The dust storms that occur during the premonsoon months of March-June every year are one of the principal sources of pollution and originate from the source region of Arabian Peninsula and the Thar desert located in north-western India. In the year 2018, month of May, three back-to-back major dust storms occurred that caused massive damage, loss of human lives, and loss to property and had an impact on air quality and human health. In this paper, we combine observations from ground stations, satellites, and radiosonde networks to assess the impact of dust events in the month of May 2018, on meteorological parameters, aerosol properties, and air quality. We observed widespread changes associated with aerosol loadings, humidity, and vertical advection patterns with displacements of major trace and greenhouse gasses. We also notice drastic changes in suspended particulate matter concentrations, all of which can have significant ramifications in terms of human health and changes in weather pattern.
Collapse
Affiliation(s)
- Sudipta Sarkar
- NASA Goddard Space Flight CenterGreenbeltMDUSA
- Science Systems and Applications Inc.LanhamMDUSA
| | - Akshansha Chauhan
- Department of Environment Science, School of Basic Sciences and ResearchSharda UniversityGreater NoidaIndia
| | - Rajesh Kumar
- Department of Environment Science, School of Basic Sciences and ResearchSharda UniversityGreater NoidaIndia
| | - Ramesh P. Singh
- School of Life and Environmental Sciences, Schmid College of Science and TechnologyChapman UniversityOrangeCAUSA
| |
Collapse
|
8
|
Tiwari S, Kaskaoutis D, Soni VK, Dev Attri S, Singh AK. Aerosol columnar characteristics and their heterogeneous nature over Varanasi, in the central Ganges valley. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:24726-24745. [PMID: 29923051 DOI: 10.1007/s11356-018-2502-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
The Indo-Gangetic Basin (IGB) experiences one of the highest aerosol loading over the globe with pronounced inter-/intra-seasonal variability. Four-year (January 2011-December 2014) continuous MICROTOPS-II sun-photometer measurements at Varanasi, central Ganges valley, provide an opportunity to investigate the aerosol physical and optical properties and their variability. A large variation in aerosol optical depth (AOD: from 0.23 to 1.89, mean of 0.82 ± 0.31) and Ångström exponent (AE: from 0.19 to 1.44, mean of 0.96 ± 0.27) is observed, indicating a highly turbid atmospheric environment with significant heterogeneity in aerosol sources, types and optical properties. The highest seasonal means of both AOD and AE are observed in the post-monsoon (October-November) season (0.95 ± 0.31 for AOD and 1.16 ± 0.14 for AE) followed by winter (December, January, February; 0.97 ± 0.34 for AOD and 1.09 ± 0.20 for AE) and are mainly attributed to the accumulation of aerosols from urban and biomass/crop residue burning emissions within a shallow boundary layer. In contrast, during the pre-monsoon and monsoon seasons, the aerosols are mostly coming from natural origin (desert and mineral dust) mixed with pollution in several cases. The spectral dependence of AE, the aerosol "curvature" effect and other graphical techniques are used for the identification of the aerosol types and their mixing processes in the atmosphere. Furthermore, the aerosol source-apportionment assessment using the weighted potential source contribution function (WPSCF) analysis reveals the different aerosol types, emission sources and transport pathways.
Collapse
Affiliation(s)
- Shani Tiwari
- Atmospheric Research Laboratory, Department of Physics, Banaras Hindu University, Varanasi, 221005, India
- Present Address: Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
| | - Dimitris Kaskaoutis
- Atmospheric Research Team, Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 11810, Athens, Greece
| | | | - Shiv Dev Attri
- India Meteorological Department, New Delhi, 110001, India
| | - Abhay Kumar Singh
- Atmospheric Research Laboratory, Department of Physics, Banaras Hindu University, Varanasi, 221005, India.
- DST-Mahamana Centre of Excellence in Climate Change Research, B.H.U, Varanasi, 221005, India.
| |
Collapse
|
9
|
Khalesifard HR, Bayat F. Calipso recordings and monitoring dust storms over the open seas in south of the iran plateau. EPJ WEB OF CONFERENCES 2018. [DOI: 10.1051/epjconf/201817605027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Open seas in the south of the Iran plateau are under the influence of heavy dust storms which are originating either from the Tigris and Euphrates basin, the Arabian Peninsula or Hamoun lake. We have used the recordings of the CALIPSO satellite to investigate the seasonal variations as well as the origins of the dust storms over the region. CALIPSO data set shows dust activities are frequent during May to September in the interested region and the Hamoun lake has considerable impacts on it.
Collapse
|
10
|
Chen J, Li C, Ristovski Z, Milic A, Gu Y, Islam MS, Wang S, Hao J, Zhang H, He C, Guo H, Fu H, Miljevic B, Morawska L, Thai P, Lam YF, Pereira G, Ding A, Huang X, Dumka UC. A review of biomass burning: Emissions and impacts on air quality, health and climate in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:1000-1034. [PMID: 27908624 DOI: 10.1016/j.scitotenv.2016.11.025] [Citation(s) in RCA: 379] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/04/2016] [Accepted: 11/04/2016] [Indexed: 05/17/2023]
Abstract
Biomass burning (BB) is a significant air pollution source, with global, regional and local impacts on air quality, public health and climate. Worldwide an extensive range of studies has been conducted on almost all the aspects of BB, including its specific types, on quantification of emissions and on assessing its various impacts. China is one of the countries where the significance of BB has been recognized, and a lot of research efforts devoted to investigate it, however, so far no systematic reviews were conducted to synthesize the information which has been emerging. Therefore the aim of this work was to comprehensively review most of the studies published on this topic in China, including literature concerning field measurements, laboratory studies and the impacts of BB indoors and outdoors in China. In addition, this review provides insights into the role of wildfire and anthropogenic BB on air quality and health globally. Further, we attempted to provide a basis for formulation of policies and regulations by policy makers in China.
Collapse
Affiliation(s)
- Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, China; Collaborative Innovation Center of Climate Change, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China.
| | - Chunlin Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, China
| | - Zoran Ristovski
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Andelija Milic
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Yuantong Gu
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Mohammad S Islam
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Shuxiao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiming Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Hefeng Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Congrong He
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Hai Guo
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - Hongbo Fu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, China
| | - Branka Miljevic
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia.
| | - Phong Thai
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Yun Fat Lam
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Gavin Pereira
- School of Public Health, Curtin University, Perth, WA, 6000, Australia
| | - Aijun Ding
- Collaborative Innovation Center of Climate Change, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Xin Huang
- Collaborative Innovation Center of Climate Change, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Umesh C Dumka
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, China; Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital 263001, India
| |
Collapse
|
11
|
Patel PN, Dumka UC, Kaskaoutis DG, Babu KN, Mathur AK. Optical and radiative properties of aerosols over Desalpar, a remote site in western India: Source identification, modification processes and aerosol type discrimination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:612-627. [PMID: 27616711 DOI: 10.1016/j.scitotenv.2016.09.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/01/2016] [Accepted: 09/04/2016] [Indexed: 06/06/2023]
Abstract
Aerosol optical properties are analyzed for the first time over Desalpar (23.74°N, 70.69°E, 30m above mean sea level) a remote site in western India during October 2014 to August 2015. Spectral aerosol optical depth (AOD) measurements were performed using the CIMEL CE-318 automatic Sun/sky radiometer. The annual-averaged AOD500 and Ångström exponent (α440-870) values are found to be 0.43±0.26 and 0.69±0.39, respectively. On the seasonal basis, high AOD500 of 0.45±0.30 and 0.61±0.34 along with low α440-870 of 0.41±0.27 and 0.41±0.35 during spring (March-May) and summer (June-August), respectively, suggest the dominance of coarse-mode aerosols, while significant contribution from anthropogenic sources is observed in autumn (AOD500=0.47±0.26, α440-870=1.02±0.27). The volume size distribution and the spectral single-scattering albedo also confirm the presence of coarse-mode aerosols during March-August. An overall dominance of a mixed type of aerosols (~56%) mostly from October to February is found via the AOD500 vs α440-870 relationship, while marine aerosols contribute to ~18%. Spectral dependence of α and its second derivative (α') are also used for studying the aerosol modification processes. The average direct aerosol radiative forcing (DARF) computed via the SBDART model is estimated to range from -27.08Wm-2 to -10.74Wm-2 at the top of the atmosphere, from -52.21Wm-2 to -21.71Wm-2 at the surface and from 10.97Wm-2 to 26.54Wm-2 within the atmosphere. This atmospheric forcing translates into heating rates of 0.31-0.75Kday-1. The aerosol properties and DARF are also examined for different trajectory clusters in order to identify the sources and to assess the influence of long-range transported aerosols over Desalpar.
Collapse
Affiliation(s)
- Piyushkumar N Patel
- Calibration & Validation Division, Space Applications Centre, ISRO, Ahmedabad 380 015, India
| | - U C Dumka
- Aryabhatta Research Institute of Observational Sciences, Nainital 263 001, India.
| | - D G Kaskaoutis
- Atmospheric Research Team, Institute for Environmental Research and Sustainable Development, National Observatory of Athens, GR, 11810 Athens, Greece
| | - K N Babu
- Calibration & Validation Division, Space Applications Centre, ISRO, Ahmedabad 380 015, India
| | - Alok K Mathur
- Calibration & Validation Division, Space Applications Centre, ISRO, Ahmedabad 380 015, India
| |
Collapse
|
12
|
Zhao S, Yu Y, Xia D, Yin D, He J, Liu N, Li F. Urban particle size distributions during two contrasting dust events originating from Taklimakan and Gobi Deserts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 207:107-122. [PMID: 26367704 DOI: 10.1016/j.envpol.2015.08.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/24/2015] [Accepted: 08/30/2015] [Indexed: 06/05/2023]
Abstract
The dust origins of the two events were identified using HYSPLIT trajectory model and MODIS and CALIPSO satellite data to understand the particle size distribution during two contrasting dust events originated from Taklimakan and Gobi deserts. The supermicron particles significantly increased during the dust events. The dust event from Gobi desert affected significantly on the particles larger than 2.5 μm, while that from Taklimakan desert impacted obviously on the particles in 1.0-2.5 μm. It is found that the particle size distributions and their modal parameters such as VMD (volume median diameter) have significant difference for varying dust origins. The dust from Taklimakan desert was finer than that from Gobi desert also probably due to other influencing factors such as mixing between dust and urban emissions. Our findings illustrated the capacity of combining in situ, satellite data and trajectory model to characterize large-scale dust plumes with a variety of aerosol parameters.
Collapse
Affiliation(s)
- Suping Zhao
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Cold & Arid Regions Environmental & Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ye Yu
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Cold & Arid Regions Environmental & Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Dunsheng Xia
- MOE Key Laboratory of Western China's Environmental Systems & Research School of Arid Environment and Climate Change, Lanzhou University, Lanzhou, 730000, China
| | - Daiying Yin
- Key Laboratory of Desert and Desertification, Cold & Arid Regions Environmental & Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China; Dunhuang Gobi and Desert Ecological and Environmental Research Station, Cold & Arid Regions Environmental & Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jianjun He
- The College of Environmental Science & Engineering, Nankai University, Tianjin 300071, China
| | - Na Liu
- Weather Modification Office, Qinghai Provincial Meteorological Bureau, Xining 810001, China
| | - Fang Li
- Key Laboratory of Desert and Desertification, Cold & Arid Regions Environmental & Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
13
|
Rashki A, Kaskaoutis DG, Goudie AS, Kahn RA. Dryness of ephemeral lakes and consequences for dust activity: the case of the Hamoun drainage basin, southeastern Iran. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 463-464:552-564. [PMID: 23831801 DOI: 10.1016/j.scitotenv.2013.06.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/25/2013] [Accepted: 06/10/2013] [Indexed: 06/02/2023]
Abstract
This study examines the influence of changes in the water coverage in the Hamoun dry-bed lakes on visibility, dust outbreaks, aerosol loading and land-atmospheric fluxes over the region covering the period 1985-2005. The Hamoun basin, located on the southeastern Iran and western Afghanistan borders, has been recognized as one of the major dust source regions in south Asia and is covered by shallow, marshy lakes that are fed by the Helmand and Farahrood rivers. When the water in watersheds that support the lakes is drawn down for natural or human-induced reasons, the end result is a decrease in the water coverage in the basin, or even complete dryness as occurred in 2001. Then, strong seasonal winds, mainly in summer, blow fine sand and silt off the exposed lakebed, enhancing dust activity and aerosol loading over the region. Satellite (Landsat) and meteorological observations reveal that the water levels in the Hamoun lakes exhibit considerable inter-annual variability during the period 1985-2005 strongly related to anomalies in precipitation. This is the trigger for concurrent changes in the frequency of the dusty days, aerosol loading and deterioration of visibility over the region, as satellite (TOMS, MODIS, MISR) observations reveal. On the other hand, soil moisture and latent heat, obtained via model (GLDAS_noah-10) simulations are directly linked with water levels and precipitation over the region. The desiccation of the Hamoun lakes in certain years and the consequent increase in frequency and intensity of dust storms are serious concerns for the regional climate, ecosystems and human health.
Collapse
Affiliation(s)
- A Rashki
- Natural Resources and Environment College, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | | | | |
Collapse
|