1
|
Harris E, Davis JM, Grindrod PM, Fawdon P, Roberts AL. A Low Albedo, Thin, Resistant Unit in Oxia Planum, Mars: Evidence for an Airfall Deposit and Late-Stage Groundwater Activity at the ExoMars Rover Landing Site. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2024; 129:e2024JE008527. [PMID: 39583989 PMCID: PMC11583114 DOI: 10.1029/2024je008527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/25/2024] [Accepted: 11/03/2024] [Indexed: 11/26/2024]
Abstract
Oxia Planum, Mars, is the future landing site of the ExoMars Rosalind Franklin rover mission, which will search for preserved biosignatures in a phyllosilicate-bearing unit. Overlying the mission-important phyllosilicate-bearing rocks is a dark, capping unit-known here as the Low albedo, Thin, Resistant (LTR) unit-which may have protected the phyllosilicate-bearing unit over geologic time from solar insolation and radiation. However, little is known about the origin of the LTR unit. Here, we map the LTR unit and investigate its distribution and morphology across 50,000 km2 using a variety of orbital remote sensing data sets. The characteristics of the LTR unit include draping palaeo-topographic surfaces, deposition over a wide elevation range, and a consistent vertical thickness that can be best explained by airfall deposition including a primary or reworked volcanic palaeo-ashfall. Previous research suggests that the LTR unit was not significantly buried, and we find it to be preferentially preserved with a high mechanical strength in discrete deposits representing palaeo-topographic lows. We suggest this could be attributed to localized cementation via upwelling groundwater. This scenario suggests that most of the phyllosilicate-bearing exposures may not have been protected over geologic time, as the uncemented LTR sediment would have easily been removed by erosion. However, our observations indicate that the scarped margins of the LTR unit deposits probably exposed regions of the once protected phyllosilicate-bearing unit. These areas could be key science targets for the ExoMars Rosalind Franklin rover mission.
Collapse
Affiliation(s)
- E. Harris
- Department of ScienceNatural History MuseumLondonUK
- Department of Earth Science and EngineeringImperial College LondonLondonUK
| | - J. M. Davis
- Department of Earth Science and EngineeringImperial College LondonLondonUK
| | | | - P. Fawdon
- School of Physical SciencesThe Open UniversityMilton KeynesUK
| | - A. L. Roberts
- Department of Earth Science and EngineeringImperial College LondonLondonUK
| |
Collapse
|
2
|
Heydari E, Schroeder JF, Calef FJ, Parker TJ, Fairén AG. Lacustrine sedimentation by powerful storm waves in Gale crater and its implications for a warming episode on Mars. Sci Rep 2023; 13:18715. [PMID: 37907611 PMCID: PMC10618461 DOI: 10.1038/s41598-023-45068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 10/15/2023] [Indexed: 11/02/2023] Open
Abstract
This investigation documents that the Rugged Terrain Unit, the Stimson formation, and the Greenheugh sandstone were deposited in a 1200 m-deep lake that formed after the emergence of Mt. Sharp in Gale crater, Mars, nearly 4 billion years ago. In fact, the Curiosity rover traversed on a surface that once was the bottom of this lake and systematically examined the strata that were deposited in its deepest waters on the crater floor to layers that formed along its shoreline on Mt. Sharp. This provided a rare opportunity to document the evolution of one aqueous episode from its inception to its desiccation and to determine the warming mechanism that caused it. Deep water lacustrine siltstones directly overlie conglomerates that were deposited by mega floods on the crater floor. This indicates that the inception phase of the lake was sudden and took place when flood waters poured into the crater. The lake expanded quickly and its shoreline moved up the slope of Mt. Sharp during the lake-level rise phase and deposited a layer of sandstone with large cross beds under the influence of powerful storm waves. The lake-level highstand phase was dominated by strong bottom currents that transported sediments downhill and deposited one of the most distinctive sedimentological features in Gale crater: a layer of sandstone with a 3 km-long field of meter-high subaqueous antidunes (the Washboard) on Mt. Sharp. Bottom current continued downhill and deposited sandstone and siltstone on the foothills of Mt. Sharp and on the crater floor, respectively. The lake-level fall phase caused major erosion of lacustrine strata that resulted in their patchy distribution on Mt. Sharp. Eroded sediments were then transported to deep waters by gravity flows and were re-deposited as conglomerate and sandstone in subaqueous channels and in debris flow fans. The desiccation phase took place in calm waters of the lake. The aqueous episode we investigated was vigorous but short-lived. Its characteristics as determined by our sedimentological study matches those predicted by an asteroid impact. This suggests that the heat generated by an impact transformed Mars into a warm, wet, and turbulent planet. It resulted in planet-wide torrential rain, giant floods on land, powerful storms in the atmosphere, and strong waves in lakes. The absence of age dates prevents the determination of how long the lake existed. Speculative rates of lake-level change suggest that the lake could have lasted for a period ranging from 16 to 240 Ky.
Collapse
Affiliation(s)
- Ezat Heydari
- Department of Physics, Atmospheric Sciences, and Geoscience, Jackson State University, 1400 Lynch Street, Jackson, MS, 39217, USA.
| | - Jeffrey F Schroeder
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - Fred J Calef
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - Timothy J Parker
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - Alberto G Fairén
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Department of Astronomy, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
3
|
Bennett KA, Fox VK, Bryk A, Dietrich W, Fedo C, Edgar L, Thorpe MT, Williams AJ, Wong GM, Dehouck E, McAdam A, Sutter B, Millan M, Banham SG, Bedford CC, Bristow T, Fraeman A, Vasavada AR, Grotzinger J, Thompson L, O’Connell‐Cooper C, Gasda P, Rudolph A, Sullivan R, Arvidson R, Cousin A, Horgan B, Stack KM, Treiman A, Eigenbrode J, Caravaca G. The Curiosity Rover's Exploration of Glen Torridon, Gale Crater, Mars: An Overview of the Campaign and Scientific Results. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2023; 128:e2022JE007185. [PMID: 37034460 PMCID: PMC10078523 DOI: 10.1029/2022je007185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 06/16/2023]
Abstract
The Mars Science Laboratory rover, Curiosity, explored the clay mineral-bearing Glen Torridon region for 1 Martian year between January 2019 and January 2021, including a short campaign onto the Greenheugh pediment. The Glen Torridon campaign sought to characterize the geology of the area, seek evidence of habitable environments, and document the onset of a potentially global climatic transition during the Hesperian era. Curiosity roved 5 km in total throughout Glen Torridon, from the Vera Rubin ridge to the northern margin of the Greenheugh pediment. Curiosity acquired samples from 11 drill holes during this campaign and conducted the first Martian thermochemolytic-based organics detection experiment with the Sample Analysis at Mars instrument suite. The lowest elevations within Glen Torridon represent a continuation of lacustrine Murray formation deposits, but overlying widespread cross bedded sandstones indicate an interval of more energetic fluvial environments and prompted the definition of a new stratigraphic formation in the Mount Sharp group called the Carolyn Shoemaker formation. Glen Torridon hosts abundant phyllosilicates yet remains compositionally and mineralogically comparable to the rest of the Mount Sharp group. Glen Torridon samples have a great diversity and abundance of sulfur-bearing organic molecules, which are consistent with the presence of ancient refractory organic matter. The Glen Torridon region experienced heterogeneous diagenesis, with the most striking alteration occurring just below the Siccar Point unconformity at the Greenheugh pediment. Results from the pediment campaign show that the capping sandstone formed within the Stimson Hesperian aeolian sand sea that experienced seasonal variations in wind direction.
Collapse
Affiliation(s)
| | - Valerie K. Fox
- Department of Earth and Environmental SciencesUniversity of MinnesotaMinneapolisMNUSA
- Division of Geologic and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Alex Bryk
- Department of Earth and Planetary ScienceUniversity of California, BerkeleyBerkeleyCAUSA
| | - William Dietrich
- Department of Earth and Planetary ScienceUniversity of California, BerkeleyBerkeleyCAUSA
| | - Christopher Fedo
- Department of Earth and Planetary SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Lauren Edgar
- Astrogeology Science CenterU.S. Geological SurveyFlagstaffAZUSA
| | | | - Amy J. Williams
- Department of Geological SciencesUniversity of FloridaGainesvilleFLUSA
| | - Gregory M. Wong
- Department of GeosciencesThe Pennsylvania State UniversityUniversity ParkPAUSA
| | - Erwin Dehouck
- Université de LyonUCBLENSLUJMCNRSLGL‐TPEVilleurbanneFrance
| | - Amy McAdam
- NASA Goddard Space Flight CenterGreenbeltMDUSA
| | - Brad Sutter
- Jacobs TechnologyHoustonTXUSA
- NASA Johnson Space CenterHoustonTXUSA
| | - Maëva Millan
- NASA Goddard Space Flight CenterGreenbeltMDUSA
- Department of BiologyGeorgetown UniversityWashingtonDCUSA
- Laboratoire Atmosphère, Observations Spatiales (LATMOS), LATMOS/IPSLUVSQ Université Paris‐Saclay, Sorbonne Université, CNRSGuyancourtFrance
| | - Steven G. Banham
- Department of Earth Sciences and EngineeringImperial College LondonLondonUK
| | - Candice C. Bedford
- NASA Johnson Space CenterHoustonTXUSA
- Lunar and Planetary InstituteHoustonTXUSA
| | | | - Abigail Fraeman
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Ashwin R. Vasavada
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - John Grotzinger
- Division of Geologic and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Lucy Thompson
- Planetary and Space Science CentreUniversity of New BrunswickFrederictonNBCanada
| | | | | | - Amanda Rudolph
- Earth Atmosphere and Planetary SciencePurdue UniversityWest LafayetteINUSA
| | | | - Ray Arvidson
- Department of Earth and Planetary SciencesWashington University in St. LouisSt. LouisMOUSA
| | - Agnes Cousin
- IRAPUniversité de ToulouseCNRSCNESToulouseFrance
| | - Briony Horgan
- Earth Atmosphere and Planetary SciencePurdue UniversityWest LafayetteINUSA
| | - Kathryn M. Stack
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | | | | | | |
Collapse
|
4
|
Development of Chaos Terrain as Subaqueous Slide Blocks in Galilaei Crater, Mars. REMOTE SENSING 2022. [DOI: 10.3390/rs14091998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chaos terrain, expressed as enigmatic blocky landscapes on Mars, has poorly understood origins. Several hypotheses have been put forward to explain chaos terrain formation, but none fully account for the morphologies observed in Galilaei crater, the focus of this study. Previously inferred to be a paleolake, Galilaei crater hosts chaos terrain composed of kilometer-scale, disorganized blocks around the southern and southeastern margin of the crater. Blocks are concentrated near the base of the crater wall, with blocks of decreasing size extending into the crater interior. The crater wall slope in regions where these chaos blocks are present is notably lower than in regions where blocks are absent. Based on the observed morphologies, we propose the chaos terrain in Galilaei crater formed by gravity-driven slope failure and down-slope transport as subaqueous landslides and mass flows, initiated at a time when the paleolake level was still high. We propose and discuss Earth analogs for the observed terrain and use mapping-constrained spatiotemporal relationships to reconstruct the sequence of landform development. Subaqueous landslides represent an uncommonly invoked mechanism to explain chaos terrain on Mars, reinforcing the idea that one mechanism cannot explain the diversity of this enigmatic terrain.
Collapse
|
5
|
Vasavada AR. Mission Overview and Scientific Contributions from the Mars Science Laboratory Curiosity Rover After Eight Years of Surface Operations. SPACE SCIENCE REVIEWS 2022; 218:14. [PMID: 35399614 PMCID: PMC8981195 DOI: 10.1007/s11214-022-00882-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
UNLABELLED NASA's Mars Science Laboratory mission, with its Curiosity rover, has been exploring Gale crater (5.4° S, 137.8° E) since 2012 with the goal of assessing the potential of Mars to support life. The mission has compiled compelling evidence that the crater basin accumulated sediment transported by marginal rivers into lakes that likely persisted for millions of years approximately 3.6 Ga ago in the early Hesperian. Geochemical and mineralogical assessments indicate that environmental conditions within this timeframe would have been suitable for sustaining life, if it ever were present. Fluids simultaneously circulated in the subsurface and likely existed through the dry phases of lake bed exposure and aeolian deposition, conceivably creating a continuously habitable subsurface environment that persisted to less than 3 Ga in the early Amazonian. A diversity of organic molecules has been preserved, though degraded, with evidence for more complex precursors. Solid samples show highly variable isotopic abundances of sulfur, chlorine, and carbon. In situ studies of modern wind-driven sediment transport and multiple large and active aeolian deposits have led to advances in understanding bedform development and the initiation of saltation. Investigation of the modern atmosphere and environment has improved constraints on the timing and magnitude of atmospheric loss, revealed the presence of methane and the crater's influence on local meteorology, and provided measurements of high-energy radiation at Mars' surface in preparation for future crewed missions. Rover systems and science instruments remain capable of addressing all key scientific objectives. Emphases on advance planning, flexibility, operations support work, and team culture have allowed the mission team to maintain a high level of productivity in spite of declining rover power and funding. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11214-022-00882-7.
Collapse
Affiliation(s)
- Ashwin R. Vasavada
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| |
Collapse
|
6
|
Merging Perspectives on Secondary Minerals on Mars: A Review of Ancient Water-Rock Interactions in Gale Crater Inferred from Orbital and In-Situ Observations. MINERALS 2021. [DOI: 10.3390/min11090986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Phyllosilicates, sulfates, and Fe oxides are the most prevalent secondary minerals detected on Mars from orbit and the surface, including in the Mars Science Laboratory Curiosity rover’s field site at Gale crater. These records of aqueous activity have been investigated in detail in Gale crater, where Curiosity’s X-ray diffractometer allows for direct observation and detailed characterization of mineral structure and abundance. This capability provides critical ground truthing to better understand how to interpret Martian mineralogy inferred from orbital datasets. Curiosity is about to leave behind phyllosilicate-rich strata for more sulfate-rich terrains, while the Mars 2020 Perseverance rover is in its early exploration of ancient sedimentary strata in Jezero crater. It is thus an appropriate time to review Gale crater’s mineral distribution from multiple perspectives, utilizing the range of chemical, mineralogical, and spectral measurements provided by orbital and in situ observations. This review compares orbital predictions of composition in Gale crater with higher fidelity (but more spatially restricted) in situ measurements by Curiosity, and we synthesize how this information contributes to our understanding of water-rock interaction in Gale crater. In the context of combining these disparate spatial scales, we also discuss implications for the larger understanding of martian surface evolution and the need for a wide range of data types and scales to properly reconstruct ancient geologic processes using remote methods.
Collapse
|
7
|
Fraeman AA, Edgar LA, Rampe EB, Thompson LM, Frydenvang J, Fedo CM, Catalano JG, Dietrich WE, Gabriel TSJ, Vasavada AR, Grotzinger JP, L'Haridon J, Mangold N, Sun VZ, House CH, Bryk AB, Hardgrove C, Czarnecki S, Stack KM, Morris RV, Arvidson RE, Banham SG, Bennett KA, Bridges JC, Edwards CS, Fischer WW, Fox VK, Gupta S, Horgan BHN, Jacob SR, Johnson JR, Johnson SS, Rubin DM, Salvatore MR, Schwenzer SP, Siebach KL, Stein NT, Turner SMR, Wellington DF, Wiens RC, Williams AJ, David G, Wong GM. Evidence for a Diagenetic Origin of Vera Rubin Ridge, Gale Crater, Mars: Summary and Synthesis of Curiosity's Exploration Campaign. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2020; 125:e2020JE006527. [PMID: 33520561 PMCID: PMC7818385 DOI: 10.1029/2020je006527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 05/13/2023]
Abstract
This paper provides an overview of the Curiosity rover's exploration at Vera Rubin ridge (VRR) and summarizes the science results. VRR is a distinct geomorphic feature on lower Aeolis Mons (informally known as Mount Sharp) that was identified in orbital data based on its distinct texture, topographic expression, and association with a hematite spectral signature. Curiosity conducted extensive remote sensing observations, acquired data on dozens of contact science targets, and drilled three outcrop samples from the ridge, as well as one outcrop sample immediately below the ridge. Our observations indicate that strata composing VRR were deposited in a predominantly lacustrine setting and are part of the Murray formation. The rocks within the ridge are chemically in family with underlying Murray formation strata. Red hematite is dispersed throughout much of the VRR bedrock, and this is the source of the orbital spectral detection. Gray hematite is also present in isolated, gray-colored patches concentrated toward the upper elevations of VRR, and these gray patches also contain small, dark Fe-rich nodules. We propose that VRR formed when diagenetic event(s) preferentially hardened rocks, which were subsequently eroded into a ridge by wind. Diagenesis also led to enhanced crystallization and/or cementation that deepened the ferric-related spectral absorptions on the ridge, which helped make them readily distinguishable from orbit. Results add to existing evidence of protracted aqueous environments at Gale crater and give new insight into how diagenesis shaped Mars' rock record.
Collapse
Affiliation(s)
- A. A. Fraeman
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - L. A. Edgar
- U.S. Geological Survey Astrogeology Science CenterFlagstaffAZUSA
| | | | - L. M. Thompson
- Planetary and Space Science CentreUniversity of New BrunswickFrederictonNew BrunswickCanada
| | - J. Frydenvang
- Global InstituteUniversity of CopenhagenCopenhagenDenmark
| | - C. M. Fedo
- Department of Earth and Planetary SciencesUniversity of Tennessee, KnoxvilleKnoxvilleTNUSA
| | - J. G. Catalano
- Department of Earth and Planetary SciencesWashington University in St. LouisSt. LouisMOUSA
| | - W. E. Dietrich
- Department of Earth and Planetary ScienceUniversity of CaliforniaBerkeleyCAUSA
| | - T. S. J. Gabriel
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | - A. R. Vasavada
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - J. P. Grotzinger
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - J. L'Haridon
- Laboratoire de Planétologie et Géodynamique de Nantes, UMR6112 CNRSUniversité de Nantes, Université d'AngersNantesFrance
| | - N. Mangold
- Laboratoire de Planétologie et Géodynamique de Nantes, UMR6112 CNRSUniversité de Nantes, Université d'AngersNantesFrance
| | - V. Z. Sun
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - C. H. House
- Department of GeosciencesPennsylvania State UniversityUniversity ParkPAUSA
| | - A. B. Bryk
- Department of Earth and Planetary ScienceUniversity of CaliforniaBerkeleyCAUSA
| | - C. Hardgrove
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | - S. Czarnecki
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | - K. M. Stack
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | | | - R. E. Arvidson
- Department of Earth and Planetary SciencesWashington University in St. LouisSt. LouisMOUSA
| | - S. G. Banham
- Department of Earth Science and EngineeringImperial College LondonLondonUK
| | - K. A. Bennett
- U.S. Geological Survey Astrogeology Science CenterFlagstaffAZUSA
| | - J. C. Bridges
- Space Research Centre, School of Physics and AstronomyUniversity of LeicesterLeicesterUK
| | - C. S. Edwards
- Department of Astronomy and Planetary ScienceNorthern Arizona UniversityFlagstaffAZUSA
| | - W. W. Fischer
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - V. K. Fox
- Department of Earth SciencesUniversity of Minnesota, Twin CitiesMinneapolisMNUSA
| | - S. Gupta
- Department of Earth Science and EngineeringImperial College LondonLondonUK
| | - B. H. N. Horgan
- Department of Earth, Atmospheric, and Planetary SciencesPurdue UniversityWest LafayetteINUSA
| | - S. R. Jacob
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | - J. R. Johnson
- Johns Hopkins University Applied Physics LaboratoryLaurelMDUSA
| | - S. S. Johnson
- Department of Biology, Science, Technology, and International Affairs ProgramGeorgetown UniversityWashingtonDCUSA
| | - D. M. Rubin
- Department of Earth and Planetary SciencesUniversity of CaliforniaSanta CruzCAUSA
| | - M. R. Salvatore
- Department of Astronomy and Planetary ScienceNorthern Arizona UniversityFlagstaffAZUSA
| | | | - K. L. Siebach
- Department of Earth, Environmental, and Planetary SciencesRice UniversityHoustonTXUSA
| | - N. T. Stein
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | | | - D. F. Wellington
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | - R. C. Wiens
- Los Alamos National LaboratoryLos AlamosNMUSA
| | - A. J. Williams
- Department of Geological SciencesUniversity of FloridaGainesvilleFLUSA
| | - G. David
- L'Institut de Recherche en Astrophysique et PlanétologieToulouseFrance
| | - G. M. Wong
- Department of GeosciencesPennsylvania State UniversityUniversity ParkPAUSA
| |
Collapse
|
8
|
Jacob SR, Wellington DF, Bell JF, Achilles C, Fraeman AA, Horgan B, Johnson JR, Maurice S, Peters GH, Rampe EB, Thompson LM, Wiens RC. Spectral, Compositional, and Physical Properties of the Upper Murray Formation and Vera Rubin Ridge, Gale Crater, Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2020; 125:e2019JE006290. [PMID: 33282613 PMCID: PMC7685153 DOI: 10.1029/2019je006290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 05/20/2023]
Abstract
During 2018 and 2019, the Mars Science Laboratory Curiosity rover investigated the chemistry, morphology, and stratigraphy of Vera Rubin ridge (VRR). Using orbital data from the Compact Reconnaissance Imaging Spectrometer for Mars, scientists attributed the strong 860 nm signal associated with VRR to the presence of red crystalline hematite. However, Mastcam multispectral data and CheMin X-ray diffraction (XRD) measurements show that the depth of the 860 nm absorption is negatively correlated with the abundance of red crystalline hematite, suggesting that other mineralogical or physical parameters are also controlling the 860 nm absorption. Here, we examine Mastcam and ChemCam passive reflectance spectra from VRR and other locations to link the depth, position, and presence or absence of iron-related mineralogic absorption features to the XRD-derived rock mineralogy. Correlating CheMin mineralogy to spectral parameters showed that the ~860 nm absorption has a strong positive correlation with the abundance of ferric phyllosilicates. New laboratory reflectance measurements of powdered mineral mixtures can reproduce trends found in Gale crater. We hypothesize that variations in the 860 nm absorption feature in Mastcam and ChemCam observations of VRR materials are a result of three factors: (1) variations in ferric phyllosilicate abundance due to its ~800-1,000 nm absorption; (2) variations in clinopyroxene abundance because of its band maximum at ~860 nm; and (3) the presence of red crystalline hematite because of its absorption centered at 860 nm. We also show that relatively small changes in Ca-sulfate abundance is one potential cause of the erosional resistance and geomorphic expression of VRR.
Collapse
Affiliation(s)
- S. R. Jacob
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | - D. F. Wellington
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | - J. F. Bell
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | - C. Achilles
- NASA Goddard Space Flight CenterGreenbeltMDUSA
| | - A. A. Fraeman
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - B. Horgan
- Department of Earth, Atmospheric, and Planetary SciencesPurdue UniversityWest LafayetteINUSA
| | - J. R. Johnson
- Johns Hopkins University Applied Physics LaboratoryLaurelMDUSA
| | - S. Maurice
- Institut de Recherche en Astrophysique et PlanetologieToulouseFrance
| | - G. H. Peters
- NASA Neil A. Armstrong Flight Research CenterEdwardsCAUSA
| | | | - L. M. Thompson
- Planetary and Space Science CentreUniversity of New BrunswickCanada
| | - R. C. Wiens
- Los Alamos National LaboratoryLos AlamosNMUSA
| |
Collapse
|
9
|
Horgan BHN, Johnson JR, Fraeman AA, Rice MS, Seeger C, Bell JF, Bennett KA, Cloutis EA, Edgar LA, Frydenvang J, Grotzinger JP, L'Haridon J, Jacob SR, Mangold N, Rampe EB, Rivera‐Hernandez F, Sun VZ, Thompson LM, Wellington D. Diagenesis of Vera Rubin Ridge, Gale Crater, Mars, From Mastcam Multispectral Images. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2020; 125:e2019JE006322. [PMID: 33282614 PMCID: PMC7685111 DOI: 10.1029/2019je006322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 09/03/2020] [Accepted: 09/19/2020] [Indexed: 05/13/2023]
Abstract
Images from the Mars Science Laboratory (MSL) mission of lacustrine sedimentary rocks of Vera Rubin ridge on "Mt. Sharp" in Gale crater, Mars, have shown stark color variations from red to purple to gray. These color differences crosscut stratigraphy and are likely due to diagenetic alteration of the sediments after deposition. However, the chemistry and timing of these fluid interactions is unclear. Determining how diagenetic processes may have modified chemical and mineralogical signatures of ancient Martian environments is critical for understanding the past habitability of Mars and achieving the goals of the MSL mission. Here we use visible/near-infrared spectra from Mastcam and ChemCam to determine the mineralogical origins of color variations in the ridge. Color variations are consistent with changes in spectral properties related to the crystallinity, grain size, and texture of hematite. Coarse-grained gray hematite spectrally dominates in the gray patches and is present in the purple areas, while nanophase and fine-grained red crystalline hematite are present and spectrally dominate in the red and purple areas. We hypothesize that these differences were caused by grain-size coarsening of hematite by diagenetic fluids, as observed in terrestrial analogs. In this model, early primary reddening by oxidizing fluids near the surface was followed during or after burial by bleaching to form the gray patches, possibly with limited secondary reddening after exhumation. Diagenetic alteration may have diminished the preservation of biosignatures and changed the composition of the sediments, making it more difficult to interpret how conditions evolved in the paleolake over time.
Collapse
Affiliation(s)
- Briony H. N. Horgan
- Department of Earth, Atmospheric, and Planetary SciencesPurdue UniversityWest LafayetteINUSA
| | | | - Abigail A. Fraeman
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Melissa S. Rice
- Geology Department, Physics and Astronomy DepartmentWestern Washington UniversityBellinghamWAUSA
| | - Christina Seeger
- Geology Department, Physics and Astronomy DepartmentWestern Washington UniversityBellinghamWAUSA
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - James F. Bell
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | | | | | - Lauren A. Edgar
- U.S. Geological SurveyAstrogeology Science CenterFlagstaffAZ
| | | | - John P. Grotzinger
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Jonas L'Haridon
- Laboratoire de Planétologie et GéodynamiqueCNRS, Univ Nantes, Univ AngersNantesFrance
| | - Samantha R. Jacob
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | - Nicolas Mangold
- Laboratoire de Planétologie et GéodynamiqueCNRS, Univ Nantes, Univ AngersNantesFrance
| | | | | | - Vivian Z. Sun
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Lucy M. Thompson
- Planetary and Space Science CentreUniversity of New BrunswickFrederictonNew BrunswickCanada
| | - Danika Wellington
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| |
Collapse
|
10
|
Thomas NH, Ehlmann BL, Rapin W, Rivera‐Hernández F, Stein NT, Frydenvang J, Gabriel T, Meslin P, Maurice S, Wiens RC. Hydrogen Variability in the Murray Formation, Gale Crater, Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2020; 125:e2019JE006289. [PMID: 32999802 PMCID: PMC7507757 DOI: 10.1029/2019je006289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 05/16/2023]
Abstract
The Mars Science Laboratory (MSL) Curiosity rover is exploring the Murray formation, a sequence of heterolithic mudstones and sandstones recording fluvial deltaic and lake deposits that comprise over 350 m of sedimentary strata within Gale crater. We examine >4,500 Murray formation bedrock points, employing recent laboratory calibrations for ChemCam laser-induced breakdown spectroscopy H measurements at millimeter scale. Bedrock in the Murray formation has an interquartile range of 2.3-3.1 wt.% H2O, similar to measurements using the Dynamic Albedo of Neutrons and Sample Analysis at Mars instruments. However, specific stratigraphic intervals include high H targets (6-18 wt.% H2O) correlated with Si, Mg, Ca, Mn, or Fe, indicating units with opal, hydrated Mg sulfates, hydrated Ca sulfates, Mn-enriched units, and akageneite or other iron oxyhydroxides, respectively. One stratigraphic interval with higher hydrogen is the Sutton Island unit and Blunts Point unit contact, where higher hydrogen is associated with Fe-rich, Ca-rich, and Mg-rich points. A second interval with higher hydrogen occurs in the Vera Rubin ridge portion of the Murray formation, where higher hydrogen is associated with Fe-rich, Ca-rich, and Si-rich points. We also observe trends in the H signal with grain size, separate from chemical variation, whereby coarser-grained rocks have higher hydrogen. Variability in the hydrogen content of rocks points to a history of water-rock interaction at Gale crater that included changes in lake water chemistry during Murray formation deposition and multiple subsequent groundwater episodes.
Collapse
Affiliation(s)
- N. H. Thomas
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - B. L. Ehlmann
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - W. Rapin
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | | | - N. T. Stein
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - J. Frydenvang
- Natural History MuseumUniversity of CopenhagenCopenhagenDenmark
| | - T. Gabriel
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | - P.‐Y. Meslin
- Institut de Recherche en Astrophysique et PlanétologieUniversité de Toulouse, CNRS, UPS, CNESToulouseFrance
| | - S. Maurice
- Institut de Recherche en Astrophysique et PlanétologieUniversité de Toulouse, CNRS, UPS, CNESToulouseFrance
| | - R. C. Wiens
- Los Alamos National LaboratoryLos AlamosNMUSA
| |
Collapse
|
11
|
Fraeman AA, Johnson JR, Arvidson RE, Rice MS, Wellington DF, Morris RV, Fox VK, Horgan BHN, Jacob SR, Salvatore MR, Sun VZ, Pinet P, Bell JF, Wiens RC, Vasavada AR. Synergistic Ground and Orbital Observations of Iron Oxides on Mt. Sharp and Vera Rubin Ridge. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2020; 125:e2019JE006294. [PMID: 33042722 PMCID: PMC7539960 DOI: 10.1029/2019je006294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 05/04/2023]
Abstract
Visible/short-wave infrared spectral data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) show absorptions attributed to hematite at Vera Rubin ridge (VRR), a topographic feature on northwest Mt. Sharp. The goals of this study are to determine why absorptions caused by ferric iron are strongly visible from orbit at VRR and to improve interpretation of CRISM data throughout lower Mt. Sharp. These goals are achieved by analyzing coordinated CRISM and in situ spectral data along the Curiosity Mars rover's traverse. VRR bedrock within areas that have the deepest ferric absorptions in CRISM data also has the deepest ferric absorptions measured in situ. This suggests strong ferric absorptions are visible from orbit at VRR because of the unique spectral properties of VRR bedrock. Dust and mixing with basaltic sand additionally inhibit the ability to measure ferric absorptions in bedrock stratigraphically below VRR from orbit. There are two implications of these findings: (1) Ferric absorptions in CRISM data initially dismissed as noise could be real, and ferric phases are more widespread in lower Mt. Sharp than previously reported. (2) Patches with the deepest ferric absorptions in CRISM data are, like VRR, reflective of deeper absorptions in the bedrock. One model to explain this spectral variability is late-stage diagenetic fluids that changed the grain size of ferric phases, deepening absorptions. Curiosity's experience highlights the strengths of using CRISM data for spectral absorptions and associated mineral detections and the caveats in using these data for geologic interpretations and strategic path planning tools.
Collapse
Affiliation(s)
- A. A. Fraeman
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - J. R. Johnson
- Johns Hopkins University Applied Physics LaboratoryLaurelMDUSA
| | - R. E. Arvidson
- Department of Earth and Planetary SciencesWashington UniversitySt. LouisMOUSA
| | - M. S. Rice
- Geology Department, Physics and Astronomy DepartmentWestern Washington UniversityBellinghamWAUSA
| | - D. F. Wellington
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | | | - V. K. Fox
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - B. H. N. Horgan
- Department of Earth, Atmospheric, and Planetary SciencesPurdue UniversityWest LafayetteINUSA
| | - S. R. Jacob
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | - M. R. Salvatore
- Department of Astronomy and Planetary ScienceNorthern Arizona UniversityFlagstaffAZUSA
| | - V. Z. Sun
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - P. Pinet
- Institut de Recherche en Astrophysique et PlanétologieUniversité de Toulouse, CNRS, UPS, CNESToulouseFrance
| | - J. F. Bell
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | - R. C. Wiens
- Los Alamos National LaboratoryLos AlamosNMUSA
| | - A. R. Vasavada
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| |
Collapse
|
12
|
Achilles CN, Rampe EB, Downs RT, Bristow TF, Ming DW, Morris RV, Vaniman DT, Blake DF, Yen AS, McAdam AC, Sutter B, Fedo CM, Gwizd S, Thompson LM, Gellert R, Morrison SM, Treiman AH, Crisp JA, Gabriel TSJ, Chipera SJ, Hazen RM, Craig PI, Thorpe MT, Des Marais DJ, Grotzinger JP, Tu VM, Castle N, Downs GW, Peretyazhko TS, Walroth RC, Sarrazin P, Morookian JM. Evidence for Multiple Diagenetic Episodes in Ancient Fluvial-Lacustrine Sedimentary Rocks in Gale Crater, Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2020; 125:e2019JE006295. [PMID: 32999799 PMCID: PMC7507756 DOI: 10.1029/2019je006295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 05/13/2023]
Abstract
The Curiosity rover's exploration of rocks and soils in Gale crater has provided diverse geochemical and mineralogical data sets, underscoring the complex geological history of the region. We report the crystalline, clay mineral, and amorphous phase distributions of four Gale crater rocks from an 80-m stratigraphic interval. The mineralogy of the four samples is strongly influenced by aqueous alteration processes, including variations in water chemistries, redox, pH, and temperature. Localized hydrothermal events are evidenced by gray hematite and maturation of amorphous SiO2 to opal-CT. Low-temperature diagenetic events are associated with fluctuating lake levels, evaporative events, and groundwater infiltration. Among all mudstones analyzed in Gale crater, the diversity in diagenetic processes is primarily captured by the mineralogy and X-ray amorphous chemistry of the drilled rocks. Variations indicate a transition from magnetite to hematite and an increase in matrix-associated sulfates suggesting intensifying influence from oxic, diagenetic fluids upsection. Furthermore, diagenetic fluid pathways are shown to be strongly affected by unconformities and sedimentary transitions, as evidenced by the intensity of alteration inferred from the mineralogy of sediments sampled adjacent to stratigraphic contacts.
Collapse
Affiliation(s)
| | | | - R. T. Downs
- Department of GeosciencesUniversity of ArizonaTucsonAZUSA
| | | | | | | | | | | | - A. S. Yen
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | | | - B. Sutter
- Jacobs at NASA Johnson Space CenterHoustonTXUSA
| | - C. M. Fedo
- Department of Earth and Planetary SciencesUniversity of Tennessee, KnoxvilleKnoxvilleTNUSA
| | - S. Gwizd
- Department of Earth and Planetary SciencesUniversity of Tennessee, KnoxvilleKnoxvilleTNUSA
| | - L. M. Thompson
- Department of Earth SciencesUniversity of New BrunswickFrederictonNew BrunswickCanada
| | - R. Gellert
- Department of PhysicsUniversity of GuelphGuelphOntarioCanada
| | | | | | - J. A. Crisp
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - T. S. J. Gabriel
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | | | - R. M. Hazen
- Carnegie Institute for ScienceWashingtonDCUSA
| | | | | | | | - J. P. Grotzinger
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - V. M. Tu
- Jacobs at NASA Johnson Space CenterHoustonTXUSA
| | - N. Castle
- Planetary Science InstituteTucsonAZUSA
| | - G. W. Downs
- Department of GeosciencesUniversity of ArizonaTucsonAZUSA
| | | | | | | | - J. M. Morookian
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| |
Collapse
|