1
|
Duzdevich D, Nisler C, Petkowski JJ, Bains W, Kaminsky CK, Szostak JW, Seager S. Simple Lipids Form Stable Higher-Order Structures in Concentrated Sulfuric Acid. ASTROBIOLOGY 2025; 25:270-283. [PMID: 40138247 DOI: 10.1089/ast.2024.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Venus has become a target of astrobiological interest because it is physically accessible to direct exploration, unlike exoplanets. So far this interest has been motivated not by the explicit expectation of finding life but rather by a desire to understand the limits of biology. The venusian surface is sterilizing, but the cloud deck includes regions with temperatures and pressures conventionally considered compatible with life. However, the venusian clouds are thought to consist of concentrated sulfuric acid. To determine if any fundamental features of life as we understand them here on Earth could in principle exist in these extreme solvent conditions, we tested several simple lipids for resistance to solvolysis and their ability to form structures in concentrated sulfuric acid. We find that single-chain saturated lipids with sulfate, alcohol, trimethylamine, and phosphonate head groups are resistant to sulfuric acid degradation at room temperature. Furthermore, we find that they form stable higher-order structures typically associated with lipid membranes, micelles, and vesicles. Finally, results from molecular dynamics simulations suggest a molecular explanation for the observed robustness of the lipid structures formed in concentrated sulfuric acid. We conclude with implications for the study of Venus as a target of experimental astrobiology.
Collapse
Affiliation(s)
- Daniel Duzdevich
- Department of Chemistry, Searle Chemistry Laboratory, The University of Chicago, Chicago, Illinois, USA
- Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
| | - Collin Nisler
- Department of Chemistry, Searle Chemistry Laboratory, The University of Chicago, Chicago, Illinois, USA
| | - Janusz J Petkowski
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
- JJ Scientific, Mazowieckie, Warsaw, Poland
| | - William Bains
- School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Caroline K Kaminsky
- Department of Chemistry, Searle Chemistry Laboratory, The University of Chicago, Chicago, Illinois, USA
| | - Jack W Szostak
- Department of Chemistry, Searle Chemistry Laboratory, The University of Chicago, Chicago, Illinois, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois, USA
| | - Sara Seager
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Trabelsi T, Lipson J, Francisco JS. ClSO and ClSO2 photochemistry: Implications for the Venusian atmosphere. J Chem Phys 2024; 161:044303. [PMID: 39037139 DOI: 10.1063/5.0218751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024] Open
Abstract
The electronic structure and spectroscopy of ClSOx (x = 1 and 2) isomers were investigated using coupled cluster theory and multireference interaction methods. In this study, the equilibrium geometry and harmonic vibrational frequencies of these isomers in their ground electronic state were shown. Our analysis of the vertical excitation energy and potential energy surface showed the photochemical instability of ClSO for wavelengths below 280 nm. Furthermore, the photodissociation of ClSO was unlikely to cause the formation of diatomic ClS. At the same time, ClSO could form atomic chlorine and SO as a result of photodissociation through the repulsive states. In the case of ClSO2, a novel weakly bound Cl-SO2 isomer was identified, indicating the potential influences on the chlorine and SO2 reactions. The potential energy surface of the most stable ClSO2 isomer also indicated the potential production of SO2 in both its ground and excited states. In addition, the electronic spectrum of ClSO2 was predicted to be broad, with numerous significant peaks in the near-UV‒Vis range. Valuable new insights into the chemical role of chlorine and sulfur in Venus's atmosphere were provided, along with a discussion of a potential mechanism contributing to the H2O and SO2 depletion in Venus's atmosphere.
Collapse
Affiliation(s)
- Tarek Trabelsi
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6243, USA
| | - Juliette Lipson
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Joseph S Francisco
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6243, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| |
Collapse
|
3
|
Bains W, Petkowski JJ, Seager S. Venus' Atmospheric Chemistry and Cloud Characteristics Are Compatible with Venusian Life. ASTROBIOLOGY 2024; 24:371-385. [PMID: 37306952 DOI: 10.1089/ast.2022.0113] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Venus is Earth's sister planet, with similar mass and density but an uninhabitably hot surface, an atmosphere with a water activity 50-100 times lower than anywhere on Earths' surface, and clouds believed to be made of concentrated sulfuric acid. These features have been taken to imply that the chances of finding life on Venus are vanishingly small, with several authors describing Venus' clouds as "uninhabitable," and that apparent signs of life there must therefore be abiotic, or artefactual. In this article, we argue that although many features of Venus can rule out the possibility that Earth life could live there, none rule out the possibility of all life based on what we know of the physical principle of life on Earth. Specifically, there is abundant energy, the energy requirements for retaining water and capturing hydrogen atoms to build biomass are not excessive, defenses against sulfuric acid are conceivable and have terrestrial precedent, and the speculative possibility that life uses concentrated sulfuric acid as a solvent instead of water remains. Metals are likely to be available in limited supply, and the radiation environment is benign. The clouds can support a biomass that could readily be detectable by future astrobiology-focused space missions from its impact on the atmosphere. Although we consider the prospects for finding life on Venus to be speculative, they are not absent. The scientific reward from finding life in such an un-Earthlike environment justifies considering how observations and missions should be designed to be capable of detecting life if it is there.
Collapse
Affiliation(s)
- William Bains
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Janusz J Petkowski
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- JJ Scientific, Warsaw, Poland
| | - Sara Seager
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
4
|
Mráziková K, Knížek A, Saeidfirozeh H, Petera L, Civiš S, Saija F, Cassone G, Rimmer PB, Ferus M. A Novel Abiotic Pathway for Phosphine Synthesis over Acidic Dust in Venus' Atmosphere. ASTROBIOLOGY 2024; 24:407-422. [PMID: 38603526 DOI: 10.1089/ast.2023.0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Recent ground-based observations of Venus have detected a single spectral feature consistent with phosphine (PH3) in the middle atmosphere, a gas which has been suggested as a biosignature on rocky planets. The presence of PH3 in the oxidized atmosphere of Venus has not yet been explained by any abiotic process. However, state-of-the-art experimental and theoretical research published in previous works demonstrated a photochemical origin of another potential biosignature-the hydride methane-from carbon dioxide over acidic mineral surfaces on Mars. The production of methane includes formation of the HC · O radical. Our density functional theory (DFT) calculations predict an energetically plausible reaction network leading to PH3, involving either HC · O or H· radicals. We suggest that, similarly to the photochemical formation of methane over acidic minerals already discussed for Mars, the origin of PH3 in Venus' atmosphere could be explained by radical chemistry starting with the reaction of ·PO with HC·O, the latter being produced by reduction of CO2 over acidic dust in upper atmospheric layers of Venus by ultraviolet radiation. HPO, H2P·O, and H3P·OH have been identified as key intermediate species in our model pathway for phosphine synthesis.
Collapse
Affiliation(s)
- Klaudia Mráziková
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Antonín Knížek
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czechia
| | - Homa Saeidfirozeh
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Lukáš Petera
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Prague, Czechia
| | - Svatopluk Civiš
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Franz Saija
- Institute for Physical-Chemical Processes, National Research Council of Italy (IPCF-CNR), Messina, Italy
| | - Giuseppe Cassone
- Institute for Physical-Chemical Processes, National Research Council of Italy (IPCF-CNR), Messina, Italy
| | - Paul B Rimmer
- University of Cambridge, Cavendish Astrophysics, Cambridge, United Kingdom
| | - Martin Ferus
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
5
|
Petkowski JJ, Seager S, Grinspoon DH, Bains W, Ranjan S, Rimmer PB, Buchanan WP, Agrawal R, Mogul R, Carr CE. Astrobiological Potential of Venus Atmosphere Chemical Anomalies and Other Unexplained Cloud Properties. ASTROBIOLOGY 2024; 24:343-370. [PMID: 38452176 DOI: 10.1089/ast.2022.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Long-standing unexplained Venus atmosphere observations and chemical anomalies point to unknown chemistry but also leave room for the possibility of life. The unexplained observations include several gases out of thermodynamic equilibrium (e.g., tens of ppm O2, the possible presence of PH3 and NH3, SO2 and H2O vertical abundance profiles), an unknown composition of large, lower cloud particles, and the "unknown absorber(s)." Here we first review relevant properties of the venusian atmosphere and then describe the atmospheric chemical anomalies and how they motivate future astrobiology missions to Venus.
Collapse
Affiliation(s)
- Janusz J Petkowski
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
- JJ Scientific, Mazowieckie, Warsaw, Poland
| | - Sara Seager
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - William Bains
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- School of Physics and Astronomy, Cardiff University, Cardiff, UK
| | - Sukrit Ranjan
- Lunar and Planetary Laboratory, Department of Planetary Sciences, University of Arizona, Tucson, Arizona, USA
| | - Paul B Rimmer
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Weston P Buchanan
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- School of Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana, USA
| | - Rachana Agrawal
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Rakesh Mogul
- California Polytechnic University, Pomona, California, USA
| | - Christopher E Carr
- School of Aerospace Engineering and School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Kotsyurbenko OR, Kompanichenko VN, Brouchkov AV, Khrunyk YY, Karlov SP, Sorokin VV, Skladnev DA. Different Scenarios for the Origin and the Subsequent Succession of a Hypothetical Microbial Community in the Cloud Layer of Venus. ASTROBIOLOGY 2024; 24:423-441. [PMID: 38563825 DOI: 10.1089/ast.2022.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The possible existence of a microbial community in the venusian clouds is one of the most intriguing hypotheses in modern astrobiology. Such a community must be characterized by a high survivability potential under severe environmental conditions, the most extreme of which are very low pH levels and water activity. Considering different scenarios for the origin of life and geological history of our planet, a few of these scenarios are discussed in the context of the origin of hypothetical microbial life within the venusian cloud layer. The existence of liquid water on the surface of ancient Venus is one of the key outstanding questions influencing this possibility. We link the inherent attributes of microbial life as we know it that favor the persistence of life in such an environment and review the possible scenarios of life's origin and its evolution under a strong greenhouse effect and loss of water on Venus. We also propose a roadmap and describe a novel methodological approach for astrobiological research in the framework of future missions to Venus with the intent to reveal whether life exists today on the planet.
Collapse
Affiliation(s)
- Oleg R Kotsyurbenko
- Higher School of Ecology, Yugra State University, Khanty-Mansiysk, Russia
- Network of Researchers on the Chemical Evolution of Life, Leeds, United Kingdom
| | - Vladimir N Kompanichenko
- Network of Researchers on the Chemical Evolution of Life, Leeds, United Kingdom
- Institute for Complex Analysis of Regional Problems RAS, Birobidzhan, Russia
| | | | - Yuliya Y Khrunyk
- Department of Heat Treatment and Physics of Metal, Ural Federal University, Ekaterinburg, Russia
| | - Sergey P Karlov
- Faculty of Mechanical Engineering, Moscow Polytechnic University, Moscow, Russia
| | - Vladimir V Sorokin
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, Moscow, Russia
| | - Dmitry A Skladnev
- Network of Researchers on the Chemical Evolution of Life, Leeds, United Kingdom
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, Moscow, Russia
| |
Collapse
|
7
|
Seager MD, Seager S, Bains W, Petkowski JJ. Stability of 20 Biogenic Amino Acids in Concentrated Sulfuric Acid: Implications for the Habitability of Venus' Clouds. ASTROBIOLOGY 2024; 24:386-396. [PMID: 38498680 PMCID: PMC11035925 DOI: 10.1089/ast.2023.0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/01/2024] [Indexed: 03/20/2024]
Abstract
Scientists have long speculated about the potential habitability of Venus, not at the 700K surface, but in the cloud layers located at 48-60 km altitudes, where temperatures match those found on Earth's surface. However, the prevailing belief has been that Venus' clouds cannot support life due to the cloud chemical composition of concentrated sulfuric acid-a highly aggressive solvent. In this work, we study 20 biogenic amino acids at the range of Venus' cloud sulfuric acid concentrations (81% and 98% w/w, the rest water) and temperatures. We find 19 of the biogenic amino acids we tested are either unreactive (13 in 98% w/w and 12 in 81% w/w) or chemically modified in the side chain only, after 4 weeks. Our major finding, therefore, is that the amino acid backbone remains intact in concentrated sulfuric acid. These findings significantly broaden the range of biologically relevant molecules that could be components of a biochemistry based on a concentrated sulfuric acid solvent.
Collapse
Affiliation(s)
- Maxwell D. Seager
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
- Nanoplanet Consulting, Concord, Massachusetts, USA
| | - Sara Seager
- Nanoplanet Consulting, Concord, Massachusetts, USA
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - William Bains
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- School of Physics & Astronomy, Cardiff University, Cardiff, United Kingdom
- Rufus Scientific, Royston, United Kingdom
| | - Janusz J. Petkowski
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
- JJ Scientific, Warsaw, Poland
| |
Collapse
|
8
|
Jiang CZ, Rimmer PB, Lozano GG, Tosca NJ, Kufner CL, Sasselov DD, Thompson SJ. Iron-sulfur chemistry can explain the ultraviolet absorber in the clouds of Venus. SCIENCE ADVANCES 2024; 10:eadg8826. [PMID: 38170780 PMCID: PMC10776003 DOI: 10.1126/sciadv.adg8826] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
The clouds of Venus are believed to be composed of sulfuric acid (H2SO4) and minor constituents including iron-bearing compounds, and their respective concentrations vary with height in the thick Venusian atmosphere. This study experimentally investigates possible iron-bearing mineral phases that are stable under the unique conditions within Venusian clouds. Our results demonstrate that ferric iron can react with sulfuric acid to form two mineral phases: rhomboclase [(H5O2)Fe(SO4)2·3H2O] and acid ferric sulfate [(H3O)Fe(SO4)2]. A combination of these two mineral phases and dissolved Fe3+ in varying concentrations of sulfuric acid are shown to be good candidates for explaining the 200- to 300-nm and 300- to 500-nm features of the reported unknown UV absorber. We, therefore, hypothesize a rich and largely unexplored heterogeneous chemistry in the cloud droplets of Venus that has a large effect on the optical properties of the clouds and the behavior of trace gas species throughout Venus's atmosphere.
Collapse
Affiliation(s)
- Clancy Zhijian Jiang
- Department of Earth Sciences, University of Cambridge, Downing St., Cambridge CB2 3EQ, UK
| | - Paul B. Rimmer
- Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, UK
| | - Gabriella G. Lozano
- Harvard-Smithsonian Center for Astrophysics, Harvard University, 60 Garden Street, Cambridge, MA 02138, USA
| | - Nicholas J. Tosca
- Department of Earth Sciences, University of Cambridge, Downing St., Cambridge CB2 3EQ, UK
| | - Corinna L. Kufner
- Harvard-Smithsonian Center for Astrophysics, Harvard University, 60 Garden Street, Cambridge, MA 02138, USA
| | - Dimitar D. Sasselov
- Harvard-Smithsonian Center for Astrophysics, Harvard University, 60 Garden Street, Cambridge, MA 02138, USA
| | - Samantha J. Thompson
- Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, UK
| |
Collapse
|
9
|
Mogul R, Avice G, Limaye S, Way M. Deriving new mixing ratios for Venus atmospheric gases using data from the Pioneer Venus Large Probe Neutral Mass Spectrometer. MethodsX 2023; 11:102305. [PMID: 37577164 PMCID: PMC10415784 DOI: 10.1016/j.mex.2023.102305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023] Open
Abstract
We present the first published method to convert data obtained by the Pioneer Venus Large Probe Neutral Mass Spectrometer (LNMS) into units of mixing ratio (ppm) and volume percent (v%) against CO2 and N2, the dominant Venus atmospheric gases, including conversion to density (kg m-3). These unit conversions are key to unlocking the untapped potential of the data, which represents a significant challenge given the scant calibration data in the literature. Herein, we show that our data treatments and conversions yield mixing ratios and volume percent values for H2O, N2, and SO2 that are within error to those reported for the gas chromatograph (LGC) on the Pioneer Venus Large Probe (PVLP). For the noble gases, we developed strategies to correct for instrument biases by treating the data as a relative scale and using PVLP and Venera-based measurements as calibration points. Together, these methods, conversions, calibrations, and comparisons afford novel unit conversions for the LNMS data and yield unified measures for Venus' atmosphere from the LNMS and LGC on the PVLP.•Conversion into mixing ratio (ppm), volume percent (v%), and density (kg m-3).•Mixing ratios are expressed against CO2 and N2.•LNMS and LGC measurements on the PVLP are consistent.
Collapse
Affiliation(s)
- R. Mogul
- Chemistry & Biochemistry Department, California State Polytechnic University, Pomona, CA, USA
- Blue Marble Institute of Science, Seattle, WA USA
| | - G. Avice
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, Paris, F-75005, France
| | - S.S. Limaye
- Space Science and Engineering Center, University of Wisconsin, Madison, WI, USA
| | - M.J. Way
- NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY, USA
- GSFC Sellers Exoplanet Environments Collaboration, Greenbelt, MD, USA
- Theoretical Astrophysics, Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Lipson JE, Trabelsi T, Francisco JS. Spectroscopy and photochemistry of ClSSO. J Chem Phys 2023; 158:024302. [PMID: 36641416 DOI: 10.1063/5.0131665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Sulfur-chlorine cycles play a role in the atmosphere of Venus. It is thought that many sulfur-chlorine bearing molecules could be present in Venus's atmosphere and play an important role in its chemical processes. The goal of this work is to provide new insight into the electronic structure and spectroscopy of the [Cl, S, S, O] molecular system. Eight isomers could be formed, but only three were found to be thermodynamically stable relative to the first dissociation limit. We spectroscopically characterized the two lowest energy stable isomers, C1-ClSSO and trans-ClSSO, using the accurate CCSD(T)-F12/aug-cc-pVTZ method. The dipole moments of the two lowest energy stable isomers are predicted to be 1.90 and 1.60 debye, respectively. The C1-ClSSO isomer is suitable for laser induced fluorescence detection since the lowest excited electronic states absorb in the visible, ∼610 nm, and near UV region, 330 nm. We mapped the evolution of the low-lying excited electronic states along the ClS, SS, and SO bond lengths to find that the production of ClS, SO, or S2O is plausible, whereas the production of ClS2 is not allowed.
Collapse
Affiliation(s)
- Juliette E Lipson
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6243, USA
| | - Tarek Trabelsi
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6243, USA
| | - Joseph S Francisco
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6243, USA
| |
Collapse
|
11
|
Abstract
Finding evidence of extraterrestrial life would be one of the most profound scientific discoveries ever made, advancing humanity into a new epoch of cosmic awareness. The Venus Life Finder (VLF) missions feature a series of three direct atmospheric probes designed to assess the habitability of the Venusian clouds and search for signs of life and life itself. The VLF missions are an astrobiology-focused set of missions, and the first two out of three can be launched quickly and at a relatively low cost. The mission concepts come out of an 18-month study by an MIT-led worldwide consortium.
Collapse
|
12
|
Abstract
Mounting evidence of chemical disequilibria in the Venusian atmosphere has heightened interest in the search for life within the planet’s cloud decks. Balloon systems are currently considered to be the superior class of aerial platform for extended atmospheric sampling within the clouds, providing the highest ratio of science return to risk. Balloon-based aerial platform designs depend heavily on payload mass and target altitudes. We present options for constant- and variable-altitude balloon systems designed to carry out science operations inside the Venusian cloud decks. The Venus Life Finder (VLF) mission study proposes a series of missions that require extended in situ analysis of Venus cloud material. We provide an overview of a representative mission architecture, as well as gondola designs to accommodate a VLF instrument suite. Current architecture asserts a launch date of 30 July 2026, which would place an orbiter and entry vehicle at Venus as early as November 29 of that same year.
Collapse
|
13
|
Mission Architecture to Characterize Habitability of Venus Cloud Layers via an Aerial Platform. AEROSPACE 2022. [DOI: 10.3390/aerospace9070359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Venus is known for its extreme surface temperature and its sulfuric acid clouds. But the cloud layers on Venus have similar temperature and pressure conditions to those on the surface of Earth and are conjectured to be a possible habitat for microscopic life forms. We propose a mission concept to explore the clouds of Venus for up to 30 days to evaluate habitability and search for signs of life. The baseline mission targets a 2026 launch opportunity. A super-pressure variable float altitude balloon aerobot cycles between the altitudes of 48 and 60 km, i.e., primarily traversing the lower, middle, and part of the upper cloud layers. The instrument suite is carried by a gondola design derived from the Pioneer Venus Large Probe pressure vessel. The aerobot transmits data via an orbiter relay combined with a direct-to-Earth link. The orbiter is captured into a 6-h retrograde orbit with a low, roughly 170-degree, inclination. The total mass of the orbiter and entry probe is estimated to be 640 kg. An alternate concept for a constant float altitude balloon is also discussed as a lower complexity option compared to the variable float altitude version. The proposed mission would complement other planned missions and could help elucidate the limits of habitability and the role of unknown chemistry or possibly life itself in the Venus atmosphere.
Collapse
|
14
|
Jordan S, Shorttle O, Rimmer PB. Proposed energy-metabolisms cannot explain the atmospheric chemistry of Venus. Nat Commun 2022; 13:3274. [PMID: 35701394 PMCID: PMC9198073 DOI: 10.1038/s41467-022-30804-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/18/2022] [Indexed: 11/14/2022] Open
Abstract
Life in the clouds of Venus, if present in sufficiently high abundance, must be affecting the atmospheric chemistry. It has been proposed that abundant Venusian life could obtain energy from its environment using three possible sulfur energy-metabolisms. These metabolisms raise the possibility of Venus’s enigmatic cloud-layer SO2-depletion being caused by life. We here couple each proposed energy-metabolism to a photochemical-kinetics code and self-consistently predict the composition of Venus’s atmosphere under the scenario that life produces the observed SO2-depletion. Using this photo-bio-chemical kinetics code, we show that all three metabolisms can produce SO2-depletions, but do so by violating other observational constraints on Venus’s atmospheric chemistry. We calculate the maximum possible biomass density of sulfur-metabolising life in the clouds, before violating observational constraints, to be ~10−5 − 10−3 mg m−3. The methods employed are equally applicable to aerial biospheres on Venus-like exoplanets, planets that are optimally poised for atmospheric characterisation in the near future. The metabolisms proposed for hypothetical life in the clouds of Venus cannot explain the planet’s atmospheric chemistry and thus a limit can be placed on the maximum allowed biomass.
Collapse
Affiliation(s)
- Sean Jordan
- Institute of Astronomy, University of Cambridge, Cambridge, UK.
| | - Oliver Shorttle
- Institute of Astronomy, University of Cambridge, Cambridge, UK.,Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Paul B Rimmer
- Department of Earth Sciences, University of Cambridge, Cambridge, UK.,Cavendish Laboratory, University of Cambridge, Cambridge, UK.,MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
15
|
Bains W, Petkowski JJ, Seager S, Ranjan S, Sousa-Silva C, Rimmer PB, Zhan Z, Greaves JS, Richards AMS. Venusian phosphine: a ‘wow!’ signal in chemistry? PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2021.1998051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- William Bains
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- School of Physics and Astronomy, Cardiff University, Cardiff, UK
| | - Janusz J. Petkowski
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sara Seager
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sukrit Ranjan
- Center for Interdisciplinary Exploration and Research in Astrophysics, Northwestern University, Evanston, USA
- Department of Astronomy and Astrophysics, Northwestern University, Evanston, USA
- Blue Marble Space Institute of Science, Seattle, USA
| | | | - Paul B. Rimmer
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Zhuchang Zhan
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jane S. Greaves
- School of Physics and Astronomy, Cardiff University, Cardiff, UK
| | - Anita M. S. Richards
- Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, The University of Manchester, Manchester, UK
| |
Collapse
|
16
|
Abstract
The initial reports of the presence of phosphine in the cloud decks of Venus have led to the suggestion that volcanism is the source of phosphine, through volcanic phosphides ejected into the clouds. Here, we examine the idea that mantle plume volcanism, bringing material from the deep mantle to the surface, could generate observed amounts of phosphine through the interaction of explosively erupted phosphide with sulfuric acid clouds. The direct eruption of deep mantle phosphide is unphysical, but a shallower material could contain traces of phosphide, and could be erupted to the surface. The explosive eruption that efficiently transports material to the clouds would require ocean:magma interactions or the subduction of a hydrated oceanic crust, neither of which occur on modern Venus. The transport of the erupted material to altitudes coinciding with the observations of phosphine is consequently very inefficient. Using the model proposed by Truong and Lunine as a base case, we estimate that an eruption volume of at least 21,600 km3/year would be required to explain the presence of 1 ppb phosphine in the clouds. This is greater than any historical terrestrial eruption rate, and would have several detectable consequences for remote and in situ observations to confirm. More realistic lithospheric mineralogy, volcano mechanics or atmospheric photochemistry require even more volcanism.
Collapse
|
17
|
Production of ammonia makes Venusian clouds habitable and explains observed cloud-level chemical anomalies. Proc Natl Acad Sci U S A 2021; 118:2110889118. [PMID: 34930842 PMCID: PMC8719887 DOI: 10.1073/pnas.2110889118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 11/18/2022] Open
Abstract
This research provides a transformative hypothesis for the chemistry of the atmospheric cloud layers of Venus while reconciling decades-long atmosphere anomalies. Our model predicts that the clouds are not entirely made of sulfuric acid, but are partially composed of ammonium salt slurries, which may be the result of biological production of ammonia in cloud droplets. As a result, the clouds are no more acidic than some extreme terrestrial environments that harbor life. Life could be making its own environment on Venus. The model’s predictions for the abundance of gases in Venus’ atmosphere match observation better than any previous model, and are readily testable. The atmosphere of Venus remains mysterious, with many outstanding chemical connundra. These include the unexpected presence of ∼10 ppm O2 in the cloud layers, an unknown composition of large particles in the lower cloud layers, and hard to explain measured vertical abundance profiles of SO2 and H2O. We propose a hypothesis for the chemistry in the clouds that largely addresses all of the above anomalies. We include ammonia (NH3), a key component that has been tentatively detected both by the Venera 8 and Pioneer Venus probes. NH3 dissolves in some of the sulfuric acid cloud droplets, effectively neutralizing the acid and trapping dissolved SO2 as ammonium sulfite salts. This trapping of SO2 in the clouds, together with the release of SO2 below the clouds as the droplets settle out to higher temperatures, explains the vertical SO2 abundance anomaly. A consequence of the presence of NH3 is that some Venus cloud droplets must be semisolid ammonium salt slurries, with a pH of ∼1, which matches Earth acidophile environments, rather than concentrated sulfuric acid. The source of NH3 is unknown but could involve biological production; if so, then the most energy-efficient NH3-producing reaction also creates O2, explaining the detection of O2 in the cloud layers. Our model therefore predicts that the clouds are more habitable than previously thought, and may be inhabited. Unlike prior atmospheric models, ours does not require forced chemical constraints to match the data. Our hypothesis, guided by existing observations, can be tested by new Venus in situ measurements.
Collapse
|
18
|
Limaye SS, Zelenyi L, Zasova L. Introducing the Venus Collection-Papers from the First Workshop on Habitability of the Cloud Layer. ASTROBIOLOGY 2021; 21:1157-1162. [PMID: 34582698 DOI: 10.1089/ast.2021.0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We introduce the collection of papers from the first workshop on the habitability of the venusian cloud layer organized by the Roscosmos/IKI-NASA Joint Science Definition Team (JSDT) for Russia's Venera-D mission and hosted by the Space Research Institute in Moscow, Russia, during October 2-5, 2019. The collection also includes three papers that were developed independently of the workshop but are relevant to venusian cloud habitability.
Collapse
Affiliation(s)
- Sanjay S Limaye
- Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lev Zelenyi
- Space Research Institute, Russian Academy of Sciences, Moscow, Russian Federation
| | - Ludmilla Zasova
- Space Research Institute, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
19
|
Kotsyurbenko OR, Cordova JA, Belov AA, Cheptsov VS, Kölbl D, Khrunyk YY, Kryuchkova MO, Milojevic T, Mogul R, Sasaki S, Słowik GP, Snytnikov V, Vorobyova EA. Exobiology of the Venusian Clouds: New Insights into Habitability through Terrestrial Models and Methods of Detection. ASTROBIOLOGY 2021; 21:1186-1205. [PMID: 34255549 PMCID: PMC9545807 DOI: 10.1089/ast.2020.2296] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 04/16/2021] [Indexed: 06/13/2023]
Abstract
The search for life beyond Earth has focused on Mars and the icy moons Europa and Enceladus, all of which are considered a safe haven for life due to evidence of current or past water. The surface of Venus, on the other hand, has extreme conditions that make it a nonhabitable environment to life as we know it. This is in contrast, however, to its cloud layer, which, while still an extreme environment, may prove to be a safe haven for some extreme forms of life similar to extremophiles on Earth. We consider the venusian clouds a habitable environment based on the presence of (1) a solvent for biochemical reactions, (2) appropriate physicochemical conditions, (3) available energy, and (4) biologically relevant elements. The diversity of extreme microbial ecosystems on Earth has allowed us to identify terrestrial chemolithoautotrophic microorganisms that may be analogs to putative venusian organisms. Here, we hypothesize and describe biological processes that may be performed by such organisms in the venusian clouds. To detect putative venusian organisms, we describe potential biosignature detection methods, which include metal-microbial interactions and optical methods. Finally, we describe currently available technology that can potentially be used for modeling and simulation experiments.
Collapse
Affiliation(s)
- Oleg R. Kotsyurbenko
- Yugra State University, The Institute of Oil and Gas, School of Ecology, Khanty-Mansiysk, Russian Federation
- Network of Researchers on the Chemical Evolution of Life, Leeds, UK
| | - Jaime A. Cordova
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin, USA
| | - Andrey A. Belov
- Network of Researchers on the Chemical Evolution of Life, Leeds, UK
- Moscow State University, Faculty of Soil Science, Moscow, Russian Federation
| | - Vladimir S. Cheptsov
- Network of Researchers on the Chemical Evolution of Life, Leeds, UK
- Moscow State University, Faculty of Soil Science, Moscow, Russian Federation
- Space Research Institute, Russian Academy of Sciences, Moscow, Russian Federation
| | - Denise Kölbl
- Space Biochemistry Group, Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
| | - Yuliya Y. Khrunyk
- Department of Heat Treatment and Physics of Metal, Ural Federal University, Ekaterinburg, Russian Federation
- M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russian Federation
| | - Margarita O. Kryuchkova
- Network of Researchers on the Chemical Evolution of Life, Leeds, UK
- Moscow State University, Faculty of Soil Science, Moscow, Russian Federation
| | - Tetyana Milojevic
- Space Biochemistry Group, Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
| | - Rakesh Mogul
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, California, USA
| | - Satoshi Sasaki
- School of Biosciences and Biotechnology/School of Health Sciences, Tokyo University of Technology, Hachioji, Tokyo, Japan
| | - Grzegorz P. Słowik
- Institute of Materials and Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Góra, Zielona Góra, Poland
| | - Valery Snytnikov
- Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Elena A. Vorobyova
- Network of Researchers on the Chemical Evolution of Life, Leeds, UK
- Moscow State University, Faculty of Soil Science, Moscow, Russian Federation
| |
Collapse
|
20
|
Omran A, Oze C, Jackson B, Mehta C, Barge LM, Bada J, Pasek MA. Phosphine Generation Pathways on Rocky Planets. ASTROBIOLOGY 2021; 21:1264-1276. [PMID: 34551269 DOI: 10.1089/ast.2021.0034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The possibility of life in the venusian clouds was proposed in the 1960s, and recently this hypothesis has been revived with the potential detection of phosphine (PH3) in Venus' atmosphere. These observations may have detected ∼5-20 ppb phosphine on Venus (Greaves et al., 2020), which raises questions about venusian atmospheric/geochemical processes and suggests that this phosphine could possibly be generated by biological processes. In such a claim, it is essential to understand the abiotic phosphorus chemistry that may occur under Venus-relevant conditions, particularly those processes that may result in phosphine generation. Here, we discuss two related abiotic routes for phosphine generation within the atmosphere of Venus. Based on our assessment, corrosion of large impactors as they ablate near Venus' cloud layer, and the presence of reduced phosphorus compounds in the subcloud layer could result in production of phosphine and may explain the phosphine detected in Venus' atmosphere or on other rocky planets. We end on a cautionary note: although there may be life in the clouds of Venus, the detection of a simple, single gas, phosphine, is likely not a decisive indicator.
Collapse
Affiliation(s)
- Arthur Omran
- Department of Geosciences, University of South Florida, Tampa, Florida, USA
| | - Christopher Oze
- Geology Department, Occidental College, Los Angeles, California, USA
| | - Brian Jackson
- Department of Physics, Boise State University, Boise, Idaho, USA
| | - Chris Mehta
- Department of Geosciences, University of South Florida, Tampa, Florida, USA
| | - Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Jeffrey Bada
- Scripps Institution of Oceanography Department, University of California at San Diego, La Jolla, California, USA
| | - Matthew A Pasek
- Department of Geosciences, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
21
|
Mogul R, Limaye SS, Lee YJ, Pasillas M. Potential for Phototrophy in Venus' Clouds. ASTROBIOLOGY 2021; 21:1237-1249. [PMID: 34569810 DOI: 10.1089/ast.2021.0032] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We show that solar irradiances calculated across Venus' clouds support the potential for Earth-like phototrophy and that treatment of Venus' aerosols containing neutralized sulfuric acid favor a habitable zone. The phototrophic potential of Venus' atmosphere was assessed by calculating irradiances (200-2000 nm, 15° solar zenith angle, local noon) using a radiative transfer model that accounted for absorption and scattering by the major and minor atmospheric constituents. Comparisons to Earth's surface (46 W m-2, 280-400 nm) suggest that Venus' middle and lower clouds receive ∼87% less normalized UV flux (6-7 W m-2) across 200-400 nm, yet similar normalized photon flux densities (∼4400-6200 μmol m-2 s-1) across 350-1200 nm. Further, Venus' signature phototrophic windows and subwindows overlap with the absorption profiles of several photosynthetic pigments, especially bacteriochlorophyll b from intact cells and phycocyanin. Therefore, Venus' light, with limited UV flux in the middle and lower clouds, is likely quite favorable for phototrophy. We additionally present interpretations to refractive index and radio occultation measures for Venus' aerosols that suggest the presence of lower sulfuric abundances and/or neutralized forms of sulfuric acid, such as ammonium bisulfate. Under these considerations, the aerosols in Venus' middle clouds could harbor water activities (≥0.6) and buffered acidities (Hammett acidity factor, H0 -0.1 to -1.5) that lie within the limits of acidic cultivation (≥H0 -0.4) and are tantalizingly close to the limits of oxygenic photosynthesis (≥H0 0.1). Together, these photophysical and chemical considerations support a potential for phototrophy in Venus' clouds.
Collapse
Affiliation(s)
- Rakesh Mogul
- Chemistry & Biochemistry Department, California State Polytechnic University, Pomona, California, USA
| | - Sanjay S Limaye
- Space Science and Engineering Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Yeon Joo Lee
- Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, Berlin, Germany
| | - Michael Pasillas
- Chemistry & Biochemistry Department, California State Polytechnic University, Pomona, California, USA
| |
Collapse
|
22
|
Milojevic T, Treiman AH, Limaye SS. Phosphorus in the Clouds of Venus: Potential for Bioavailability. ASTROBIOLOGY 2021; 21:1250-1263. [PMID: 34342520 DOI: 10.1089/ast.2020.2267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aerosol phase elements such as phosphorus (P), sulfur (S), and metals including iron (Fe) are essential nutrients that could help sustain potential biodiversity in the cloud deck of Venus. While the presence of S and Fe in the venusian cloud deck has been broadly discussed (Zasova et al., 1981; Krasnopolsky, 2012, 2013, 2016, 2017; Markiewicz et al., 2014), less attention has been given to the presence of P in the aerosols and its involvement in the multiphase chemistry of venusian clouds and potential sources of P deposition in the venusian atmosphere. A detailed characterization of phosphorus atmospheric chemistry in the cloud deck of Venus is crucial for understanding its solubility and bioavailability for potential venusian cloud microbiota (Schulze-Makuch et al., 2004; Grinspoon and Bullock, 2007; Limaye et al., 2018). We summarize our current understanding of the presence of P in the clouds of Venus and its role in a hypothetical atmospheric (bio)chemical cycle. The results of the VeGa lander measurements are put into perspective with regard to nutrient limitation for a potential biosphere in venusian clouds. Our work combines the results of the VeGa measurements and focuses on P as an inorganic nutrient component and its potential sources and chemical behavior as part of multiple transformations of atmospheric chemistry. The VeGa data indicate that a plentiful phosphorus layer exists within a layer that reaches into the lower venusian clouds and exceeds minimum P abundances for terrestrial microbial life. Extreme acidification of airborne phases in the atmosphere of Venus may facilitate P solubilization and its bioavailability for a potential ecosystem in venusian clouds. Further sampling and P abundance measurements in the atmosphere of Venus would improve our knowledge of P speciation and facilitate determination of a bioavailable fraction of P detected in venusian clouds. The previous results deserve further experimental and modeling analyses to diminish uncertainties and understand the rates of atmospheric deposition of P and its role in a potential venusian cloud ecosystem.
Collapse
Affiliation(s)
- Tetyana Milojevic
- Space Biochemistry Group, Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
| | | | - Sanjay S Limaye
- Space Science and Engineering Center, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
23
|
Truong N, Lunine JI. Volcanically extruded phosphides as an abiotic source of Venusian phosphine. Proc Natl Acad Sci U S A 2021; 118:e2021689118. [PMID: 34253608 PMCID: PMC8307446 DOI: 10.1073/pnas.2021689118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We hypothesize that trace amounts of phosphides formed in the mantle are a plausible abiotic source of the Venusian phosphine observed by Greaves et al. [Nat. Astron., https://doi.org/10.1038/s41550-020-1174-4 (2020)]. In this hypothesis, small amounts of phosphides (P3- bound in metals such as iron), sourced from a deep mantle, are brought to the surface by volcanism. They are then ejected into the atmosphere in the form of volcanic dust by explosive volcanic eruptions, which were invoked by others to explain the episodic changes of sulfur dioxide seen in the atmosphere [Esposito, Science 223, 1072-1074 (1984)]. There they react with sulfuric acid in the aerosol layer to form phosphine (2 P3- + 3H2SO4 = 2PH3 + 3SO42-). We take issue with the conclusion of Bains et al. [arXiv:2009.06499 (2020)] that the volcanic rates for such a mechanism would have to be implausibly high. We consider a mantle with the redox state similar to the Earth, magma originating deep in the mantle-a likely scenario for the origin of plume volcanism on Venus-and episodically high but plausible rates of volcanism on a Venus bereft of plate tectonics. We conclude that volcanism could supply an adequate amount of phosphide to produce phosphine. Our conclusion is supported by remote sensing observations of the Venusian atmosphere and surface that have been interpreted as indicative of currently active volcanism.
Collapse
Affiliation(s)
- N Truong
- Department of Earth and Atmospheric Science, Cornell University, Ithaca, NY 14853;
- Carl Sagan Institute, Cornell University, Ithaca, NY 14853
| | - J I Lunine
- Carl Sagan Institute, Cornell University, Ithaca, NY 14853;
- Department of Astronomy, Cornell University, Ithaca, NY 14853
| |
Collapse
|
24
|
Schulze-Makuch D. The Case (or Not) for Life in the Venusian Clouds. Life (Basel) 2021; 11:255. [PMID: 33804625 PMCID: PMC8003671 DOI: 10.3390/life11030255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/04/2023] Open
Abstract
The possible detection of the biomarker of phosphine as reported by Greaves et al. in the Venusian atmosphere stirred much excitement in the astrobiology community. While many in the community are adamant that the environmental conditions in the Venusian atmosphere are too extreme for life to exist, others point to the claimed detection of a convincing biomarker, the conjecture that early Venus was doubtlessly habitable, and any Venusian life might have adapted by natural selection to the harsh conditions in the Venusian clouds after the surface became uninhabitable. Here, I first briefly characterize the environmental conditions in the lower Venusian atmosphere and outline what challenges a biosphere would face to thrive there, and how some of these obstacles for life could possibly have been overcome. Then, I discuss the significance of the possible detection of phosphine and what it means (and does not mean) and provide an assessment on whether life may exist in the temperate cloud layer of the Venusian atmosphere or not.
Collapse
Affiliation(s)
- Dirk Schulze-Makuch
- Astrobiology Research Group, Center for Astronomy and Astrophysics (ZAA), Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany; ; Tel.: +49-30-314-23736
- German Research Centre for Geosciences (GFZ), Section Geomicrobiology, 14473 Potsdam, Germany
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, (IGB), 12587 Stechlin, Germany
- School of the Environment, Washington State University, Pullman, WA 99163, USA
| |
Collapse
|