1
|
Xu X, Wang Z. Mendelian randomization analysis of environmental pollution factors and head and neck cancer risk: a causal inference study integrating autophagy-related genes. Discov Oncol 2025; 16:296. [PMID: 40067528 PMCID: PMC11896955 DOI: 10.1007/s12672-025-02009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/21/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSC) is a significant global health challenge. While traditional risk factors are well-established, the role of environmental pollutants in HNSC development remains unclear. OBJECTIVE To investigate the causal relationship between environmental pollution factors and HNSC risk using Mendelian Randomization (MR) analysis. METHODS Two-sample MR analysis was performed using genome-wide association study data from the IEU OpenGWAS project and HNSC RNA-seq data from TCGA. Environmental pollution-associated genes (MRGs) were identified and analyzed along with autophagy-related genes (ATGs) in HNSC samples. Cox proportional hazards models were used to develop a clinical prediction model. RESULTS MR analysis revealed significant causal relationships between nitrogen dioxide air pollution, nitrogen oxides air pollution, PM2.5, and increased HNSC risk. Nine MRGs were identified, with four (IRF4, LINGO1, PTHLH, RSRC1) differentially expressed in HNSC. A six-factor clinical prediction model (IRF4, LINGO1, PTHLH, RSRC1, Age, USP10) showed good predictive performance for HNSC survival (C-index = 0.63, 10-year AUC = 0.761). Tumor mutation burden and immune cell infiltration analyses provided further insights into HNSC biology. CONCLUSION This study provides evidence for causal relationships between specific air pollutants and HNSC risk, and identifies potential gene targets for further investigation. The developed clinical prediction model may aid in HNSC prognosis and personalized treatment strategies.
Collapse
Affiliation(s)
- Xuejin Xu
- Department of Stomatology, The Quzhou Affiliated Hospital of Wenzhou Medical University (Quzhou People's Hospital), Kecheng District, Minjiang Avenue No. 100, Quzhou, 332400, Zhejiang Province, China
| | - Zhen Wang
- Department of Stomatology, The Quzhou Affiliated Hospital of Wenzhou Medical University (Quzhou People's Hospital), Kecheng District, Minjiang Avenue No. 100, Quzhou, 332400, Zhejiang Province, China.
| |
Collapse
|
2
|
Chaney C, Mansilla L, Kubica M, Pinto-Pacheco B, Dunn K, Bertacchi V, Walker DI, Valeggia C. Contaminant Exposure Profiles Demonstrate Similar Physiological Effects Across Environments Despite Unique Profile Composition in Formosa, Argentina, and Connecticut, USA. Am J Hum Biol 2025; 37:e24178. [PMID: 39463098 DOI: 10.1002/ajhb.24178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/01/2024] [Accepted: 10/12/2024] [Indexed: 10/29/2024] Open
Abstract
OBJECTIVE Exposure to environmental contaminants is globally universal. However, communities vary in the specific combination of contaminants to which they are exposed, potentially contributing to variation in human health and creating "locally situated biologies." We investigated how environmental exposures differ across environments by comparing exposure profiles between two contexts that differ markedly across political, economic, and sociocultural factors-Namqom, Formosa, Argentina, and New Haven, Connecticut, United States. METHODS We collected infant urine, maternal urine, and human milk samples from mother-infant dyads in Formosa (n = 13) and New Haven (n = 21). We used untargeted liquid chromatography with high-resolution mass spectrometry (LC-HRMS) to annotate environmental contaminants and endogenous metabolites in these samples, and we analyzed the data using exposome-wide association studies (EWAS) followed by pathway enrichment. RESULTS We found statistically significant differences between the chemical exposure profiles of the Argentinian and US mothers, mostly involving pesticides; however, we observed similarities in the infant urine and human milk environmental contaminant profiles, suggesting that the maternal body may buffer infant exposure through human milk. We also found that infants and mothers were exposed to contaminants that were associated with alterations in amino acid and carbohydrate metabolism. Infants additionally showed alterations in vitamin metabolism, including vitamins B1, B3, and B6. CONCLUSIONS Differences in chemical exposure profiles may be related to structural factors. Despite variation in the composition of exposure profiles between the two study sites, environmental contaminant exposure was associated with similar patterns in human physiology when we considered contaminants comprehensively rather than individually, with implications for metabolic and cardiovascular disease risk as well as infant cognitive development.
Collapse
Affiliation(s)
- Carlye Chaney
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Anthropology, University of Missouri, Columbia, Missouri, USA
- Chaco Area Reproductive Ecology Program, Formosa, Argentina
| | | | - Marcelina Kubica
- The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brismar Pinto-Pacheco
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kathryn Dunn
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Victoria Bertacchi
- Department of Anthropology, Yale University, New Haven, Connecticut, USA
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Claudia Valeggia
- Chaco Area Reproductive Ecology Program, Formosa, Argentina
- Department of Anthropology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
3
|
Xu K, Motiwala Z, Corona-Avila I, Makhanasa D, Alkahalifeh L, Khan MW. The Gut Microbiome and Its Multifaceted Role in Cancer Metabolism, Initiation, and Progression: Insights and Therapeutic Implications. Technol Cancer Res Treat 2025; 24:15330338251331960. [PMID: 40208053 DOI: 10.1177/15330338251331960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
This review summarizes the intricate relationship between the microbiome and cancer initiation and development. Microbiome alterations impact metabolic pathways, immune responses, and gene expression, which can accelerate or mitigate cancer progression. We examine how dysbiosis affects tumor growth, metastasis, and treatment resistance. Additionally, we discuss the potential of microbiome-targeted therapies, such as probiotics and fecal microbiota transplants, to modulate cancer metabolism. These interventions offer the possibility of reversing or controlling cancer progression, enhancing the efficacy of traditional treatments like chemotherapy and immunotherapy. Despite promising developments, challenges remain in identifying key microbial species and pathways and validating microbiome-targeted therapies through large-scale clinical trials. Nonetheless, the intersection of microbiome research and cancer initiation and development presents an exciting frontier for innovative therapies. This review offers a fresh perspective on cancer initiation and development by integrating microbiome insights, highlighting the potential for interdisciplinary research to enhance our understanding of cancer progression and treatment strategies.
Collapse
Affiliation(s)
- Kai Xu
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Zainab Motiwala
- Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Irene Corona-Avila
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Dhruvi Makhanasa
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Md Wasim Khan
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
4
|
Maleki AS, Ghahremani MH, Shadboorestan A. Arsenic and Benzo[a]pyrene Co-exposure Effects on MDA-MB-231 Cell Viability and Migration. Biol Trace Elem Res 2025; 203:178-186. [PMID: 38602648 DOI: 10.1007/s12011-024-04170-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Although humans are frequently exposed to multiple pollutants simultaneously, research on their harmful effects on health has typically focused on studying each pollutant individually. Inorganic arsenic (As) and benzo[a]pyrene (BaP) are well-known pollutants with carcinogenic potential, but their co-exposure effects on breast cancer cell progression remain incompletely understood. This study aimed to assess the combined impact of BaP and As on the viability and migration of MDA-MB-231 cells. The results indicated that even at low levels, both inorganic As (0.01 μM, 0.1 μM, and 1 μM) and BaP (1 μM, 2.5 μM), individually or in combination, enhanced the viability and migration of the cells. However, the cell cycle analysis revealed no significant differences between the control group and the cells exposed to BaP and As. Specifically, exposure to BaP alone or in combination with As (As 0.01 μM + BaP 1 μM) for 24 h led to a significant increase in vimentin gene expression. Interestingly, short-term exposure to As not only did not induce EMT but also modulated the effects of BaP on vimentin gene expression. However, there were no observable changes in the expression of E-cadherin mRNA. Consequently, additional research is required to evaluate the prolonged effects of co-exposure to As and BaP on the initiation of EMT and the progression of breast cancer.
Collapse
Affiliation(s)
- Ahmad Safari Maleki
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Shadboorestan
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
5
|
Khalil MI, Helal M, El-Sayed AF, El Hajj R, Holail J, Houssein M, Waraky A, Pardo OE. S6K2 in Focus: Signaling Pathways, Post-Translational Modifications, and Computational Analysis. Int J Mol Sci 2024; 26:176. [PMID: 39796034 PMCID: PMC11719502 DOI: 10.3390/ijms26010176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 01/13/2025] Open
Abstract
S6 Kinase 2 (S6K2) is a key regulator of cellular signaling and is crucial for cell growth, proliferation, and survival. This review is divided into two parts: the first focuses on the complex network of upstream effectors, downstream modulators, and post-translational modifications (PTMs) that regulate S6K2 activity. We emphasize the dynamic nature of S6K2 regulation, highlighting its critical role in cellular homeostasis and its potential as a therapeutic target in diseases like cancer. The second part utilizes in silico analyses, employing computational tools to model S6K2's three-dimensional structure and predict its interaction networks. Molecular dynamics simulations and docking studies reveal potential binding sites and interactions with novel known inhibitors. We also examine the effects of environmental contaminants that potentially disrupt S6K2 function and provide insights into the role of external factors that could impact its regulatory mechanisms. These computational findings provide a deeper understanding of the conformational dynamics of S6K2 and its interactions with its inhibitors. Together, this integrated biochemical and computational approach enhances our understanding of S6K2 regulation and identifies potential new therapeutic strategies targeting S6K2 in the oncology setting.
Collapse
Affiliation(s)
- Mahmoud I. Khalil
- Department of Biological Sciences, Faculty of Sciences, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon;
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21568, Egypt
| | - Mohamed Helal
- Department of Biology, University of Southern Denmark, 5230 Odense, Denmark;
- National Institute of Oceanography and Fisheries (NIOF), Cairo 11516, Egypt
| | - Ahmed F. El-Sayed
- Microbial Genetics Department, Biotechnology Research Institute, National Research Centre, Giza 12622, Egypt;
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo 11517, Egypt
| | - Rana El Hajj
- Department of Biological Sciences, Faculty of Sciences, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon;
| | - Jasmine Holail
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK
| | - Marwa Houssein
- Scientific Support, HVD Life Sciences, Riyadh 11411, Saudi Arabia;
| | - Ahmed Waraky
- Region Västra Götaland, Department of Clinical Chemistry, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden;
- Department of Haematology, Cambridge Stem Cell Institute, Cambridge University, Cambridge CB20AW, UK
- Department of Laboratory Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Olivier E. Pardo
- Division of Cancer, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| |
Collapse
|
6
|
Mousavi M, Emrani J, Teleha JC, Jiang G, Johnson BD, Shamshiripour A, Fini EH. Health Risks of Asphalt Emission: State-of-the-Art Advances and Research Gaps. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136048. [PMID: 39405707 DOI: 10.1016/j.jhazmat.2024.136048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/07/2024] [Accepted: 10/01/2024] [Indexed: 12/01/2024]
Abstract
Asphalt-related emissions pose significant health risks due to the release of volatile organic compounds (VOCs) that affect both workers in construction and the general public. Even at low concentrations, certain VOCs are highly toxic, with some of their metabolic byproducts, such as epoxides, known to cause DNA damage, oxidative stress, and other genetic alterations. The health implications are particularly concerning given that these emissions are persistent, and exposure can occur over prolonged periods, especially in urban areas where asphalt is prevalent. However, despite growing awareness, there remain significant gaps in our understanding of the long-term effects of chronic, low-level exposure to asphalt VOCs. Research to date has largely focused on acute exposure effects, particularly in occupational settings, leaving much unknown about the broader impact on the general public, especially vulnerable groups like children and the elderly. Moreover, the complex interactions between asphalt-derived VOCs and other environmental pollutants are not well understood, further complicating our understanding of their cumulative health impact. This paper provides a comprehensive overview of the current research landscape, starting with a discussion of the health risks associated with asphalt VOCs, supported by key findings from recent studies. It then explores the latest technological advancements in VOC detection, characterization, and monitoring, and identifies critical gaps in existing research.
Collapse
Affiliation(s)
- Masoumeh Mousavi
- School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ 85281, USA
| | - Jahangir Emrani
- North Carolina Agricultural & Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA
| | - John C Teleha
- North Carolina Agricultural & Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA
| | - Guangming Jiang
- School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Northfields Ave, Keiraville, NSW, Australia
| | - Bruce D Johnson
- Department of Cardiovascular Diseases, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ 85259, USA
| | - Ali Shamshiripour
- University of Arizona, 1209 E. Second St., Tucson, AZ 8572113400, USA
| | - Elham H Fini
- School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ 85281, USA.
| |
Collapse
|
7
|
Lang Q, Qin X, Yu X, Wei S, Wei J, Zhang M, Zhao C, Zhang J, Zeng D, Zhang X, Huang B. Association of joint exposure to organophosphorus flame retardants and phthalate acid esters with gestational diabetes mellitus: a nested case-control study. BMC Pregnancy Childbirth 2024; 24:736. [PMID: 39516746 PMCID: PMC11549849 DOI: 10.1186/s12884-024-06925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Organic phosphate flame retardants (OPFRs) and phthalate acid esters (PAEs) are common endocrine-disrupting chemicals that cause metabolic disorders. This study aimed to assess the association between joint exposure to OPFRs and PAEs during early pregnancy in women with gestational diabetes mellitus (GDM). METHODS Seven OPFRs and five PAEs were detected in the urine of 65 GDM patients and 100 controls using gas chromatography-tandem triple quadrupole mass spectrometry (GC-MS). The association of OPFRs and PAEs with GDM was assessed using logistic regression, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) models. RESULTS Levels of dibutyl phthalate (DBP), di-2-ethylhexyl phthalate (DEHP), diethyl phthalate (DEP), dimethyl phthalate (DMP), tris (2-butoxyethyl) phosphate (TBEP), tributyl phosphate (TBP), tris (2-chloroethyl) phosphate (TCEP), tris (1,3-dichloro-2-propyl) phosphate (TDCPP), tri-ortho-cresyl phosphate (TOCP), and triphenyl phosphate (TPHP) increased in the GDM group, and the OPFRs and PAEs, except for BBP and TMCP, were associated with GDM in the logistic regression analysis. In the WQS model, the mixture of OPFRs and PAEs was significantly positively associated with GDM (OR = 3.29, 95%CI = 1.27-8.51, P = 0.014), with TDCPP having the highest WQS index weight. BKMR analysis reinforced these results, showing that the overall association of joint exposure to the OPFRs and PAEs with GDM increased at exposure levels of the 55th to 75th percentiles. Independent exposure to TDCPP (OR = 1.42, 95%CI = 1.09-1.86, P = 0.011) and TBEP (OR = 1.29, 95%CI = 1.04-1.60, P = 0.023) were associated with an increased risk of GDM. CONCLUSIONS Environmental exposure to OPFRs and PAEs is significantly associated with GDM. These findings provide evidence for the adverse effects of exposure to OPFRs and PAEs on the health of pregnant women.
Collapse
Affiliation(s)
- Qi Lang
- Clinical Laboratory Center, the First Affiliated Hospital of Guilin Medical University, 109 Ring City North Second Road, Guilin, 541004, Guangxi, China
| | - Xianfeng Qin
- Guangxi Key Laboratory of Environmental Exposomics and Life-Course Health, Health Commission Key Laboratory of Life-Course Health and Care, School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, Guangxi, Guangxi, China
| | - Xiangyuan Yu
- Guangxi Key Laboratory of Environmental Exposomics and Life-Course Health, Health Commission Key Laboratory of Life-Course Health and Care, School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, Guangxi, Guangxi, China
| | - Shudan Wei
- Guangxi Key Laboratory of Environmental Exposomics and Life-Course Health, Health Commission Key Laboratory of Life-Course Health and Care, School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, Guangxi, Guangxi, China
| | - Jinyan Wei
- Guangxi Key Laboratory of Environmental Exposomics and Life-Course Health, Health Commission Key Laboratory of Life-Course Health and Care, School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, Guangxi, Guangxi, China
| | - Min Zhang
- Guangxi Key Laboratory of Environmental Exposomics and Life-Course Health, Health Commission Key Laboratory of Life-Course Health and Care, School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, Guangxi, Guangxi, China
| | - Chaochao Zhao
- Guangxi Key Laboratory of Environmental Exposomics and Life-Course Health, Health Commission Key Laboratory of Life-Course Health and Care, School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, Guangxi, Guangxi, China
| | - Jun Zhang
- Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Ministry of Education, Shanghai JiaoTong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Dingyuan Zeng
- Guangxi Health Commission Key Laboratory of Birth Cohort Study in Pregnant Women with Advanced Age, Liuzhou Maternity and Child Healthcare Hospital, 50 Yingshan Street, Liuzhou, 545001, Guangxi, China
| | - Xiaoying Zhang
- Guangxi Key Laboratory of Environmental Exposomics and Life-Course Health, Health Commission Key Laboratory of Life-Course Health and Care, School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, Guangxi, Guangxi, China.
| | - Bo Huang
- Guangxi Key Laboratory of Environmental Exposomics and Life-Course Health, Health Commission Key Laboratory of Life-Course Health and Care, School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, Guangxi, Guangxi, China.
| |
Collapse
|
8
|
Krisanova N, Pozdnyakova N, Pastukhov A, Dudarenko M, Tarasenko A, Borysov A, Driuk M, Tolochko A, Bezkrovnyi O, Paliienko K, Sivko R, Gnatyuk O, Dovbeshko G, Borisova T. Synergistic neurological threat from Сu and wood smoke particulate matter. Food Chem Toxicol 2024; 193:115009. [PMID: 39304082 DOI: 10.1016/j.fct.2024.115009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Trace metal Cu and carbonaceous airborn particulate matter (PM) are dangerous neuropollutants. Here, the ability of Cu2+ to modulate the neurotoxicity caused by water-suspended wood smoke PM preparations (SPs) and vice versa was examined using presynaptic rat cortex nerve terminals. Interaction of Cu2+ and SPs, changes of particle size and surface properties were shown in the presence of Cu2+ using microscopy, DLS, and IR spectroscopy. In nerve terminals, Cu2+ and SPs per se elevated the ambient levels of excitatory and inhibitory neurotransmitters L-[14C]glutamate and [3H]GABA, respectively. During combined application, Cu2+ significantly enhanced a SPs-induced increase in the ambient levels of both neurotransmitters, thereby demonstrating a cumulative synergistic effect and significant interference in the neurotoxic threat associated with Cu2+and SPs. In fluorimetric measurements, Cu2+ and SPs also demonstrated cumulative synergistic effects on the membrane potential, mitochondrial potential, synaptic vesicle acidification and ROS generation. Therefore, synergistic effects of Cu2+ and SPs on the most crucial presynaptic characteristics and neurohazard of multiple pollutants through excitatory/inhibitory imbalance, disruption of the membrane and mitochondrial potential, vesicle acidification and ROS generation were revealed. Increased expansion and burden of neuropathology may result from underestimation of synergistic interference of the neurotoxic effects of Cu2+ and carbonaceous smoke PM.
Collapse
Affiliation(s)
- Nataliya Krisanova
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine; Optical Spectroscopy Division, Institute of Low Temperature and Structure Research Polish Academy of Sciences, Okólna 2, Wrocław, 50-422, Poland
| | - Natalia Pozdnyakova
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine
| | - Artem Pastukhov
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine
| | - Marina Dudarenko
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine
| | - Alla Tarasenko
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine
| | - Arsenii Borysov
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine
| | - Mykola Driuk
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine
| | - Anatoliy Tolochko
- Department of Physics of Biological Systems, Institute of Physics, National Academy of Sciences of Ukraine, 46 Nauky Ave, Kyiv, 03680, Ukraine
| | - Oleksii Bezkrovnyi
- Optical Spectroscopy Division, Institute of Low Temperature and Structure Research Polish Academy of Sciences, Okólna 2, Wrocław, 50-422, Poland
| | - Konstantin Paliienko
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine
| | - Roman Sivko
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine
| | - Olena Gnatyuk
- Department of Physics of Biological Systems, Institute of Physics, National Academy of Sciences of Ukraine, 46 Nauky Ave, Kyiv, 03680, Ukraine; Optical Spectroscopy Division, Institute of Low Temperature and Structure Research Polish Academy of Sciences, Okólna 2, Wrocław, 50-422, Poland
| | - Galyna Dovbeshko
- Department of Physics of Biological Systems, Institute of Physics, National Academy of Sciences of Ukraine, 46 Nauky Ave, Kyiv, 03680, Ukraine; Optical Spectroscopy Division, Institute of Low Temperature and Structure Research Polish Academy of Sciences, Okólna 2, Wrocław, 50-422, Poland
| | - Tatiana Borisova
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine; Optical Spectroscopy Division, Institute of Low Temperature and Structure Research Polish Academy of Sciences, Okólna 2, Wrocław, 50-422, Poland.
| |
Collapse
|
9
|
Kang YH, Jeong HJ, Park YJ. Hydramethylnon induces mitochondria-mediated apoptosis in BEAS-2B human bronchial epithelial cells. Toxicol Appl Pharmacol 2024; 492:117102. [PMID: 39270854 DOI: 10.1016/j.taap.2024.117102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Typically used household chemicals comprise numerous compounds. Determining mixture toxicity, as observed when using household chemicals containing multiple substances, is of considerable importance from a regulatory perspective. Upon examining the toxic effects of household chemical mixtures, we observed that hydramethylnon combined with tetramethrin resulted in synergistic toxicity. To determine the unknown toxicity mechanism of hydramethylnon, which carries the risk of inhalation exposure when using household chemicals, we conducted a further investigation using BEAS-2B cells, a human bronchial epithelial cell line. Hydramethylnon-induced cytotoxicity was determined following 24 and 48 h of exposure using the water-soluble tetrazolium 1 and lactate dehydrogenase assays. To elucidate the toxicity mechanism, we utilized flow cytometry and measured the levels of apoptosis-related proteins and caspase activities. Given that hydramethylnon, as an insecticide, disrupts the mitochondrial electron transfer chain, we analyzed the relevant mechanisms, including mitochondrial superoxide levels as well as the mitochondrial membrane potential (MMP). Hydramethylnon dose-dependently induced BEAS-2B cell apoptosis via the intrinsic pathway. Furthermore, it significantly increased mitochondrial superoxide levels and disrupted the MMP. Pre-treatment with a caspase inhibitor (Z-DEVD-FMK) confirmed that hydramethylnon induced caspase-dependent apoptosis. Apoptosis, a key event in the toxicological process of chemicals, can lead to lung diseases, including fibrosis and cancer. The results of the present study suggest a mechanism of toxicity of hydramethrylnon, an organofluorine biocide whose toxicity has been little studied, to the lung epithelium. Considering the potential risks associated with inhalation exposure, these results highlight the need for careful management and regulation of hydramethylnon.
Collapse
Affiliation(s)
- Yeon-Ho Kang
- College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea
| | - Hye-Jin Jeong
- College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea
| | - Yong Joo Park
- College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea.
| |
Collapse
|
10
|
Lizano-Fallas V, Carrasco Del Amor A, Cristobal S. Predictive toxicology of chemical mixtures using proteome-wide thermal profiling and protein target properties. CHEMOSPHERE 2024; 364:143228. [PMID: 39233297 DOI: 10.1016/j.chemosphere.2024.143228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Our capability to predict the impact of exposure to chemical mixtures on environmental and human health is limited in comparison to the advances on the chemical characterization of the exposome. Current approaches, such as new approach methodologies, rely on the characterization of the chemicals and the available toxicological knowledge of individual compounds. In this study, we show a new methodological approach for the assessment of chemical mixtures based on a proteome-wide identification of the protein targets and revealing the relevance of new targets based on their role in the cellular function. We applied a proteome integral solubility alteration assay to identify 24 protein targets from a chemical mixture of 2,3,7,8-tetrachlorodibenzo-p-dioxin, alpha-endosulfan, and bisphenol A among the HepG2 soluble proteome, and validated the chemical mixture-target interaction orthogonally. To define the range of interactive capability of the new targets, the data from intrinsic properties of the targets were retrieved. Introducing the target properties as criteria for a multi-criteria decision-making analysis called the analytical hierarchy process, the prioritization of targets was based on their involvement in multiple pathways. This methodological approach that we present here opens a more realistic and achievable scenario to address the impact of complex and uncharacterized chemical mixtures in biological systems.
Collapse
Affiliation(s)
- Veronica Lizano-Fallas
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, Linköping, 581 85, Sweden
| | - Ana Carrasco Del Amor
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, Linköping, 581 85, Sweden
| | - Susana Cristobal
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, Linköping, 581 85, Sweden; Ikerbasque, Basque Foundation for Sciences, Department of Physiology, Faculty of Medicine, and Nursing, University of the Basque Country UPV/EHU, Leioa, 489 40, Spain.
| |
Collapse
|
11
|
Perrot-Applanat M, Pimpie C, Vacher S, Pocard M, Baud V. High Expression of AhR and Environmental Pollution as AhR-Linked Ligands Impact on Oncogenic Signaling Pathways in Western Patients with Gastric Cancer-A Pilot Study. Biomedicines 2024; 12:1905. [PMID: 39200369 PMCID: PMC11351739 DOI: 10.3390/biomedicines12081905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
The vast majority of gastric cancer (GC) cases are adenocarcinomas including intestinal and diffuse GC. The incidence of diffuse GC, often associated with poor overall survival, has constantly increased in Western countries. Epidemiological studies have reported increased mortality from GC after occupational exposure to pro-carcinogens that are metabolically activated by cytochrome P450 enzymes through aryl hydrocarbon receptor (AhR). However, little is known about the role of AhR and environmental AhR ligands in diffuse GC as compared to intestinal GC in Western patients. In a cohort of 29, we demonstrated a significant increase in AhR protein and mRNA expression levels in GCs independently of their subtypes and clinical parameters. AhR and RHOA mRNA expression were correlated in diffuse GC. Further, our study aimed to characterize in GC how AhR and the AhR-related genes cytochrome P450 1A1 (CYP1A1) and P450 1B1 (CYP1B1) affect the mRNA expression of a panel of genes involved in cancer development and progression. In diffuse GC, CYP1A1 expression correlated with genes involved in IGF signaling, epithelial-mesenchymal transition (Vimentin), and migration (MMP2). Using the poorly differentiated KATO III epithelial cell line, two well-known AhR pollutant ligands, namely 2-3-7-8 tetrachlorodibenzo-p-dioxin (TCDD) and benzo[a]pyrene (BaP), strongly increased the expression of CYP1A1 and Interleukin1β (IL1B), and to a lesser extend UGT1, NQO1, and AhR Repressor (AhRR). Moreover, the increased expression of CYP1B1 was seen in diffuse GC, and IHC staining indicated that CYP1B1 is mainly expressed in stromal cells. TCDD treatment increased CYP1B1 expression in KATO III cells, although at lower levels as compared to CYP1A1. In intestinal GC, CYP1B1 expression is inversely correlated with several cancer-related genes such as IDO1, a gene involved in the early steps of tryptophan metabolism that contributes to the endogenous AhR ligand kynurenine expression. Altogether, our data provide evidence for a major role of AhR in GC, as an environmental xenobiotic receptor, through different mechanisms and pathways in diffuse and intestinal GC. Our results support the continued efforts to clarify the identity of exogenous AhR ligands in diffuse GC in order to define new therapeutic strategies.
Collapse
Affiliation(s)
- Martine Perrot-Applanat
- INSERM U1275, Peritoneal Carcimomatosis Paris-Technologies, Hôpital Lariboisiere, Université Paris Cité, 75010 Paris, France; (C.P.); (M.P.)
| | - Cynthia Pimpie
- INSERM U1275, Peritoneal Carcimomatosis Paris-Technologies, Hôpital Lariboisiere, Université Paris Cité, 75010 Paris, France; (C.P.); (M.P.)
| | - Sophie Vacher
- Department of Genetics, Curie Institute, PSL Research University, 75005 Paris, France;
| | - Marc Pocard
- INSERM U1275, Peritoneal Carcimomatosis Paris-Technologies, Hôpital Lariboisiere, Université Paris Cité, 75010 Paris, France; (C.P.); (M.P.)
- Department of Digestive and Oncology Surgery, Hôpital Lariboisiere, Université Paris Cité, 75010 Paris, France
| | - Véronique Baud
- NF-kappaB, Differentiation and Cancer, Faculty of Pharmacy, Université Paris Cité, 75006 Paris, France
| |
Collapse
|
12
|
Healy DR, Zarei I, Mikkonen S, Soininen S, Viitasalo A, Haapala EA, Auriola S, Hanhineva K, Kolehmainen M, Lakka TA. Longitudinal associations of an exposome score with serum metabolites from childhood to adolescence. Commun Biol 2024; 7:890. [PMID: 39039257 PMCID: PMC11263428 DOI: 10.1038/s42003-024-06146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 04/05/2024] [Indexed: 07/24/2024] Open
Abstract
Environmental and lifestyle factors, including air pollution, impaired diet, and low physical activity, have been associated with cardiometabolic risk factors in childhood and adolescence. However, environmental and lifestyle exposures do not exert their physiological effects in isolation. This study investigated associations between an exposome score to measure the impact of multiple exposures, including diet, physical activity, sleep duration, air pollution, and socioeconomic status, and serum metabolites measured using LC-MS and NMR, compared to the individual components of the score. A general population of 504 children aged 6-9 years at baseline was followed up for eight years. Data were analysed with linear mixed-effects models using the R software. The exposome score was associated with 31 metabolites, of which 12 metabolites were not associated with any individual exposure category. These findings highlight the value of a composite score to predict metabolic changes associated with multiple environmental and lifestyle exposures since childhood.
Collapse
Affiliation(s)
- Darren R Healy
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio Campus, Finland.
| | - Iman Zarei
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio Campus, Finland
| | - Santtu Mikkonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, Finland
- Department of Technical Physics, University of Eastern Finland, Kuopio Campus, Finland
| | - Sonja Soininen
- Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Finland
- Physician and Nursing Services, Health and Social Services Centre, Wellbeing Services County of North Savo, Varkaus, Finland
| | - Anna Viitasalo
- Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Finland
| | - Eero A Haapala
- Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Seppo Auriola
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio Campus, Finland
- LC-MS Metabolomics Center, Biocenter Kuopio, Kuopio, Finland
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio Campus, Finland
- Food Sciences Unit, Department of Life Technologies, University of Turku, Turku, Finland
| | - Marjukka Kolehmainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio Campus, Finland
| | - Timo A Lakka
- Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| |
Collapse
|
13
|
Rafeletou A, Niemi JVL, Lagunas-Rangel FA, Liu W, Kudłak B, Schiöth HB. The exposure to UV filters: Prevalence, effects, possible molecular mechanisms of action and interactions within mixtures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:170999. [PMID: 38458461 DOI: 10.1016/j.scitotenv.2024.170999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 03/10/2024]
Abstract
Substances that can absorb sunlight and harmful UV radiation such as organic UV filters are widely used in cosmetics and other personal care products. Since humans use a wide variety of chemicals for multiple purposes it is common for UV filters to co-occur with other substances either in human originating specimens or in the environment. There is increasing interest in understanding such co-occurrence in form of potential synergy, antagonist, or additive effects of biological systems. This review focuses on the collection of data about the simultaneous occurrence of UV filters oxybenzone (OXYB), ethylexyl-methoxycinnamate (EMC) and 4-methylbenzylidene camphor (4-MBC) as well as other classes of chemicals (such as pesticides, bisphenols, and parabens) to understand better any such interactions considering synergy, additive effect and antagonism. Our analysis identified >20 different confirmed synergies in 11 papers involving 16 compounds. We also highlight pathways (such as transcriptional activation of estrogen receptor, promotion of estradiol synthesis, hypothalamic-pituitary-gonadal (HPG) axis, and upregulation of thyroid-hormone synthesis) and proteins (such as Membrane Associated Progesterone Receptor (MAPR), cytochrome P450, and heat shock protein 70 (Hsp70)) that can act as important key nodes for such potential interactions. This article aims to provide insight into the molecular mechanisms on how commonly used UV filters act and may interact with other chemicals.
Collapse
Affiliation(s)
- Alexandra Rafeletou
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Jenni Viivi Linnea Niemi
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | | | - Wen Liu
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Błażej Kudłak
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
14
|
Fiorini S, Rubini E, Perugini M, Altieri F, Chichiarelli S, Meschiari G, Arrighetti G, Vijgen J, Natali PG, Minacori M, Eufemi M. STAT3 Pathways Contribute to β-HCH Interference with Anticancer Tyrosine Kinase Inhibitors. Int J Mol Sci 2024; 25:6181. [PMID: 38892372 PMCID: PMC11173063 DOI: 10.3390/ijms25116181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Organochlorine pesticides (OCPs) are a class of environmentally persistent and bioaccumulative pollutants. Among these, β-hexachlorocyclohexane (β-HCH) is a byproduct of lindane synthesis, one of the most worldwide widespread pesticides. β-HCH cellular mechanisms inducing chemical carcinogenesis correspond to many of those inducing chemoresistance, in particular, by the activation of signal transducer and activator of transcription 3 (STAT3) signaling pathways. For this purpose, four cell lines, representative of breast, lung, prostate, and hepatocellular cancers, were treated with β-HCH, specific tyrosine kinase inhibitors (TKIs), and a STAT3 inhibitor. All cell samples were analyzed by a viability assay, immunoblotting analysis, a wound-healing assay, and a colony formation assay. The results show that β-HCH reduces the efficacy of TKIs. The STAT3 protein, in this context, plays a central role. In fact, by inhibiting its activity, the efficacy of the anticancer drug is restored. Furthermore, this manuscript aimed to draw the attention of the scientific and socio-healthcare community to the issue of prolonged exposure to contaminants and their impact on drug efficacy.
Collapse
Affiliation(s)
- Sara Fiorini
- Department of Biochemical Science “A. Rossi Fanelli”, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.F.); (F.A.); (S.C.); (G.M.); (M.M.); (M.E.)
| | - Elisabetta Rubini
- Institute of Molecular Biology and Pathology, CNR National Research Council, Via degli Apuli, 4, 00185 Rome, Italy;
| | - Monia Perugini
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Campus “Aurelio Saliceti”, Via R. Balzarini 1, 64100 Teramo, Italy;
| | - Fabio Altieri
- Department of Biochemical Science “A. Rossi Fanelli”, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.F.); (F.A.); (S.C.); (G.M.); (M.M.); (M.E.)
| | - Silvia Chichiarelli
- Department of Biochemical Science “A. Rossi Fanelli”, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.F.); (F.A.); (S.C.); (G.M.); (M.M.); (M.E.)
| | - Giorgia Meschiari
- Department of Biochemical Science “A. Rossi Fanelli”, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.F.); (F.A.); (S.C.); (G.M.); (M.M.); (M.E.)
| | - Giulia Arrighetti
- Department of Cultures, Politics and Society, University of Turin, Via Verdi, 8, 10124 Turin, Italy;
| | - John Vijgen
- International HCH and Pesticides Association (IHPA), Elmevej 14, 2840 Holte, Denmark;
| | - Pier Giorgio Natali
- Collegium Ramazzini, Castello di Bentivoglio, Via Saliceto, 3, 40010 Bologna, Italy
- Lega Italiana per la Lotta contro i Tumori (LILT), Associazione Metropolitana di Roma, Via Nomentana, 303, 00162 Rome, Italy
| | - Marco Minacori
- Department of Biochemical Science “A. Rossi Fanelli”, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.F.); (F.A.); (S.C.); (G.M.); (M.M.); (M.E.)
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Campus “Aurelio Saliceti”, Via R. Balzarini 1, 64100 Teramo, Italy;
| | - Margherita Eufemi
- Department of Biochemical Science “A. Rossi Fanelli”, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.F.); (F.A.); (S.C.); (G.M.); (M.M.); (M.E.)
| |
Collapse
|
15
|
Ricardo TGO, Eduardo FSM, Rafael TMA, Moisés SHI, Verónica CH, Cesar SF, Sofía GGA, Eduardo PC. The leachate from the Urban Solid Waste Transfer Station produces neurotoxicity in Wistar rats. Toxicol Rep 2024; 12:318-324. [PMID: 38510067 PMCID: PMC10950561 DOI: 10.1016/j.toxrep.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
Leachate from municipal solid waste is a mixture of xenobiotics capable of contaminating bodies of water and causing damage to the health of living beings that inhabit or consume contaminated water. A previous study revealed the presence of heavy metals in Urban Solid Waste Transfer Station (USWTS) leachate above the permissible national and international limits. In the present study, we demonstrate that subchronic oral administration (5 and 25 % v/v) of leachate to male Wistar rats caused changes in the immunoreactivity of the glial markers: GFAP and Iba-1, accompanied by an increase in the expression of caspase-3, and a decrease in the expression of the NeuN protein. Results indicate that the heavy metals present in the leachate induced neuronal loss in the prefrontal cortex, suggesting that these contaminants can cause neurological problems in mammals that consume surface water with xenobiotics, since the leachate could contaminate water bodies and underground water.
Collapse
Affiliation(s)
- Torres-González Omar Ricardo
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Mexico
| | | | | | - Sánchez-Hernández Iván Moisés
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Mexico
| | | | - Soria-Fregozo Cesar
- Departamento de Ciencias de la Tierra y de la Vida, Centro Universitario de los Lagos, Universidad de Guadalajara, Mexico
| | - González-Garibay Angélica Sofía
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Mexico
| | - Padilla-Camberos Eduardo
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Mexico
| |
Collapse
|
16
|
Haruna I, Obeng-Gyasi E. Association of Combined Per- and Polyfluoroalkyl Substances and Metals with Chronic Kidney Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:468. [PMID: 38673379 PMCID: PMC11050583 DOI: 10.3390/ijerph21040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Background: Exposure to environmental pollutants such as metals and Per- and Polyfluoroalkyl Substances (PFAS) has become common and increasingly associated with a decrease in the estimated Glomerular Filtration Rate (eGFR), which is a marker often used to measure chronic kidney disease (CKD). However, there are limited studies involving the use of both eGFR and the urine albumin creatinine ratio (uACR), which are more comprehensive markers to determine the presence of CKD and the complexity of pollutant exposures and response interactions, especially for combined metals and PFAS, which has not been comprehensively elucidated. Objective: This study aims to assess the individual and combined effects of perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), Cadmium (Cd), Mercury (Hg), and Lead (Pb) exposure on CKD using data from the National Health and Nutritional Examination Survey (NHANES) 2017-2018. Methods: We employed the use of bivariate logistic regression and Bayesian Kernel Machine Regression (BKMR) in our analysis of the data. Results: Logistic regression results revealed a positive association between PFOA and CKD. Our BKMR analysis revealed a non-linear and bi-phasic relationship between the metal exposures and CKD. In our univariate exposure-response function plot, Cd and Hg exhibited a U and N-shaped interaction, which indicated a non-linear and non-additive relationship with both low and high exposures associated with CKD. In addition, the bivariate exposure-response function between two exposures in a mixture revealed that Cd had a U-shaped relationship with CKD at different quantiles of Pb, Hg, PFOA, and PFOS, indicating that both low and high levels of Cd is associated with CKD, implying a non-linear and complex biological interaction. Hg's interaction plot demonstrated a N-shaped association across all quantiles of Cd, with the 75th quantile of Pb and the 50th and 75th quantiles of PFOA and PFOS. Furthermore, the PIP results underscored Cd's consistent association with CKD (PIP = 1.000) followed by Hg's (PIP = 0.9984), then PFOA and PFOS with a closely related PIP of 0.7880 and 0.7604, respectively, and finally Pb (PIP = 0.6940), contributing the least among the five environmental pollutants on CKD, though significant. Conclusions: Our findings revealed that exposure to environmental pollutants, particularly Hg and Cd, are associated with CKD. These findings highlight the need for public health interventions and strategies to mitigate the cumulative effect of PFAS and metal exposure and elucidate the significance of utilizing advanced statistical methods and tools to understand the impact of environmental pollutants on human health. Further research is needed to understand the mechanistic pathways of PFAS and metal-induced kidney injury and CKD, and longitudinal studies are required to ascertain the long-term impact of these environmental exposures.
Collapse
Affiliation(s)
- Issah Haruna
- Department of Built Environment, North Carolina A&T State University, Greensboro, NC 27411, USA
- Environmental Health and Disease Laboratory, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Emmanuel Obeng-Gyasi
- Department of Built Environment, North Carolina A&T State University, Greensboro, NC 27411, USA
- Environmental Health and Disease Laboratory, North Carolina A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
17
|
Fernández-Martínez NF, Rodríguez-Barranco M, Huerta JM, Gil F, Olmedo P, Molina-Montes E, Guevara M, Zamora-Ros R, Jiménez-Zabala A, Colorado-Yohar SM, Ardanaz E, Bonet C, Amiano P, Chirlaque MD, Pérez-Gómez B, Jiménez-Moleón JJ, Martín-Jiménez M, de Santiago E, Sánchez MJ. Breast cancer risk for the joint exposure to metals and metalloids in women: Results from the EPIC-Spain cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168816. [PMID: 38036124 DOI: 10.1016/j.scitotenv.2023.168816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
Environmental factors play a role in breast cancer development. While metals and metalloids (MMs) include some carcinogens, their association with breast cancer depends on the element studied. Most studies focus on individual MMs, but the combined effects of metal mixtures remain unclear. The aim of this study was to analyze the relationship between the joint exposure to MMs and the risk of developing female breast cancer. We conducted a case-control study within the multicenter prospective EPIC-Spain cohort. Study population comprised 292 incident cases and 286 controls. Plasma concentrations of 16 MMs were quantified at recruitment. Potential confounders were collected using a questionnaire and anthropometric measurements. Mixed-effects logistic regression models were built to explore the effect of individual MMs. Quantile-based g computation models were applied to identify the main mixture components and to estimate the joint effect of the metal mixture. The geometric means were highest for Cu (845.6 ng/ml) and Zn (604.8 ng/ml). Cases had significantly higher Cu concentrations (p = 0.010) and significantly lower Zn concentrations (p < 0.001). Cu (+0.42) and Mn (+0.13) showed the highest positive weights, whereas Zn (-0.61) and W (-0.16) showed the highest negative weights. The joint effect of the metal mixture was estimated at an OR = 4.51 (95%CI = 2.32-8.79), suggesting a dose-response relationship. No evidence of non-linearity or non-additivity was found. An unfavorable exposure profile, primarily characterized by high Cu and low Zn levels, could lead to a significant increase in the risk of developing female breast cancer. Further studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Nicolás Francisco Fernández-Martínez
- Instituto de Investigación Biosanitaria ibs, GRANADA, 18012 Granada, Spain; Escuela Andaluza de Salud Pública (EASP), 18011 Granada, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Miguel Rodríguez-Barranco
- Instituto de Investigación Biosanitaria ibs, GRANADA, 18012 Granada, Spain; Escuela Andaluza de Salud Pública (EASP), 18011 Granada, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain.
| | - José María Huerta
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, 30008 Murcia, Spain
| | - Fernando Gil
- Department of Preventive Medicine and Public Health, University of Granada, 18071 Granada, Spain
| | - Pablo Olmedo
- Department of Preventive Medicine and Public Health, University of Granada, 18071 Granada, Spain
| | - Esther Molina-Montes
- Instituto de Investigación Biosanitaria ibs, GRANADA, 18012 Granada, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; Department of Nutrition and Food Science, University of Granada, 18011 Granada, Spain; Institute of Nutrition and Food Technology (INYTA) 'Jose Mataix', Biomedical Research Center, University of Granada, 18071 Granada, Spain
| | - Marcela Guevara
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; Instituto de Salud Pública y Laboral de Navarra, 31003 Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Raúl Zamora-Ros
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), 08908 Bellvitge, Spain; Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
| | - Ana Jiménez-Zabala
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, 20013 San Sebastian, Spain; BioGipuzkoa Health Research Institute, Epidemiology of Chronic and Communicable Diseases Group, 20014 San Sebastián, Spain
| | - Sandra Milena Colorado-Yohar
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, 30008 Murcia, Spain; Research Group on Demography and Health, National Faculty of Public Health, University of Antioquia, Medellín, Colombia
| | - Eva Ardanaz
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; Instituto de Salud Pública y Laboral de Navarra, 31003 Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Catalina Bonet
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), 08908 Bellvitge, Spain; Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
| | - Pilar Amiano
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, 20013 San Sebastian, Spain; BioGipuzkoa Health Research Institute, Epidemiology of Chronic and Communicable Diseases Group, 20014 San Sebastián, Spain
| | - María Dolores Chirlaque
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, 30008 Murcia, Spain
| | - Beatriz Pérez-Gómez
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; Department of Epidemiology for Chronic Diseases, National Center of Epidemiology, Instituto de Salud Carlos III, Madrid, Spain
| | - José Juan Jiménez-Moleón
- Instituto de Investigación Biosanitaria ibs, GRANADA, 18012 Granada, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; Department of Legal Medicine and Toxicology, University of Granada, 18016 Granada, Spain
| | - Miguel Martín-Jiménez
- Hospital Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense, 28007 Madrid, Spain; GEICAM, Spanish Breast Cancer Group, 28703 Madrid, Spain; Consorcio de Investigación Biomédica en Red de Oncología (CIBERONC), 28029 Madrid, Spain
| | - Esperanza de Santiago
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - María-José Sánchez
- Instituto de Investigación Biosanitaria ibs, GRANADA, 18012 Granada, Spain; Escuela Andaluza de Salud Pública (EASP), 18011 Granada, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; Department of Legal Medicine and Toxicology, University of Granada, 18016 Granada, Spain
| |
Collapse
|
18
|
Rosellini M, Omer EA, Schulze A, Ali NT, Boulos JC, Marini F, Küpper JH, Efferth T. Impact of plastic-related compounds on the gene expression signature of HepG2 cells transfected with CYP3A4. Arch Toxicol 2024; 98:525-536. [PMID: 38160208 PMCID: PMC10794370 DOI: 10.1007/s00204-023-03648-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2024]
Abstract
The presence of plastic and microplastic within the oceans as well as in marine flora and fauna have caused a multitude of problems that have been the topic of numerous investigations for many years. However, their impact on human health remains largely unknown. Such plastic and microplastic particles have been detected in blood and placenta, underlining their ability to enter the human body. Plastics also contain other compounds, such as plasticizers, antioxidants, or dyes, whose impact on human health is currently being studied. Critical enzymes within the metabolism of endogenous molecules, especially of xenobiotics, are the cytochrome P450 monooxygenases (CYPs). Although their importance in maintaining cellular balance has been confirmed, their interactions with plastics and related products are poorly understood. In this study, the possible relationship between different plastic-related compounds and CYP3A4 as one of the most important CYPs was analyzed using hepatic cells overexpressing this enzyme. Beginning with virtual compound screening and molecular docking of more than 1000 plastic-related compounds, several candidates were identified to interact with CYP3A4. In a second step, RNA-sequencing was used to study in detail the transcriptome-wide gene expression levels affected by the selected compounds. Three candidate molecules ((2,2'-methylenebis(6-tert-butyl-4-methylphenol), 1,1-bis(3,5-di-tert-butyl-2-hydroxyphenyl)ethane, and 2,2'-methylenebis(6-cyclohexyl-4-methylphenol)) had an excellent binding affinity to CYP3A4 in-silico as well as cytotoxic effects and interactions with several metabolic pathways in-vitro. We identified common pathways influenced by all three selected plastic-related compounds. In particular, the suppression of pathways related to mitosis and 'DNA-templated DNA replication' which were confirmed by cell cycle analysis and single-cell gel electrophoresis. Furthermore, several mis-regulated metabolic and inflammation-related pathways were identified, suggesting the induction of hepatotoxicity at different levels. These findings imply that these compounds may cause liver problems subsequently affecting the entire organism.
Collapse
Affiliation(s)
- Matteo Rosellini
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Ejlal A Omer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Alicia Schulze
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), Medical Center of the Johannes Gutenberg University, 55122, Mainz, Germany
| | - Nadeen T Ali
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Joelle C Boulos
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), Medical Center of the Johannes Gutenberg University, 55122, Mainz, Germany
- Research Center for Immunotherapy (FZI), Langenbeckstraße 1, 55131, Mainz, Germany
| | - Jan-Heiner Küpper
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, 03046, Senftenberg, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany.
| |
Collapse
|
19
|
Madani NA, Jones LE, Carpenter DO. Different volatile organic compounds in local point source air pollution pose distinctive elevated risks for respiratory disease-associated emergency room visits. CHEMOSPHERE 2023; 344:140403. [PMID: 37832881 DOI: 10.1016/j.chemosphere.2023.140403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
Air pollution increases risk of respiratory disease but prior research has focused on particulate matter and criteria air pollutants, and there are few studies on respiratory effects of volatile organic compounds (VOC). We examined zip code level relationships between emergency room (ER) visits for respiratory illness and VOC pollution in New York State from 2010 to 2018. Detailed information on VOC pollution was derived from the National Emissions Inventory, which provides point source information on VOC emissions at the zip code level. We considered four respiratory diseases: asthma, acute upper respiratory infections, chronic obstructive pulmonary disease (COPD), and lower respiratory disease, using mixed effects regression with a random intercept to account for county level variability in single pollutant models, and Random Forest Regression (RFR) to assess relative importance of VOC exposures when considered together in multipollutant models. Single pollutant models show associations between respiratory-related ER visits with all pollutants of interest across all study years, even after adjusting for poverty and smoking by zip code. The largest relative single pollutant effect sizes considered included benzene, ethylbenzene, and total (summed) VOCs. Results from RFR including all VOC exposures indicate that ethylbenzene has the greatest variable importance for asthma, acute upper respiratory infections, and COPD, with toluene and benzene most important for lower respiratory ailments. RFR results also demonstrate presence of pairwise interactive effects between VOC pollutants. Our findings show that local VOC pollution may offer a significant contribution to the risk of respiratory disease-related ER visits, and that effects vary by illness and by VOC compound. ER visit rates for respiratory illness were elevated in high poverty zip codes, although this may be attributable to the fact that the poor lack basic access to health care and use ERs more frequently for routine care.
Collapse
Affiliation(s)
- Najm Alsadat Madani
- Institute for Health and the Environment, University at Albany, Rensselaer, NY, 12144, USA; Department of Environmental Health Science, School of Public Health, University at Albany, Rensselaer, NY, 12144, USA.
| | - Laura E Jones
- Institute for Health and the Environment, University at Albany, Rensselaer, NY, 12144, USA; Department of Biostatistics and Epidemiology, School of Public Health, University at Albany, Rensselaer, NY, 12144, USA; Center for Biostatistics, Bassett Research Institute, Bassett Health, Cooperstown, NY, 13326, USA
| | - David O Carpenter
- Institute for Health and the Environment, University at Albany, Rensselaer, NY, 12144, USA; Department of Environmental Health Science, School of Public Health, University at Albany, Rensselaer, NY, 12144, USA
| |
Collapse
|
20
|
Sullivan J, Sorensen C. Protecting populations from the health harms of air pollution. BMJ 2023; 383:2020. [PMID: 37793680 DOI: 10.1136/bmj.p2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Affiliation(s)
- James Sullivan
- Global Consortium on Climate and Health Education, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Cecilia Sorensen
- Global Consortium on Climate and Health Education, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
21
|
Yang YT, Ni HG. Predictive in silico models for aquatic toxicity of cosmetic and personal care additive mixtures. WATER RESEARCH 2023; 236:119981. [PMID: 37084578 DOI: 10.1016/j.watres.2023.119981] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
As emerging environmental contaminants, cosmetic and personal care additives (CPCAs) may have less oversight than other consumer products. Their continuous release and pseudopersistence could cause long-term harm to the aquatic environment. Since CPCAs generally exist in the form of mixtures in the environment, prediction and analysis of their mixture toxicity are crucial for ecological risk assessment. In this study, the acute toxicity of five typical CPCA mixtures to Daphnia magna was tested. The combined toxicity of binary mixtures was examined with the traditional concentration addition (CA) and independent action (IA) model. Overall, the synergistic effect of the five CPCAs may be caused mainly by methylparaben. In addition, reliable approaches for quantitative structure-activity relationship (QSAR) model development were explored. Specifically, 18 QSAR models were developed by three dataset partitioning techniques (Kennard-Stone's algorithm division, Euclidean distance based division, and sorted activity based division), two descriptor filtering methods (genetic algorithm and stepwise multiple linear regression) and three regression methods (multiple linear regression, partial least squares and support vector machine). Sixteen equations were applied for the calculation of the mixture descriptors to screen the functional expression of the mixture descriptors with the largest contribution to the mixture toxicity. A new comprehensive parameter that integrates internal and external validation was proposed for QSAR models evaluation. The mixture toxicity is mainly related the 3D distribution of atomic masses and the spatial distribution of the molecule electronic properties. Rigorously validated and externally predictive QSAR models were developed for predicting the toxicity of binary CPCAs mixtures with any ratio, in the applicability domain. The best possible work frame for construction and validation of QSAR models to provide reliable predictions on the mixture toxicity was proposed.
Collapse
Affiliation(s)
- Yu-Ting Yang
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Hong-Gang Ni
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
22
|
Lagunas-Rangel FA, Liu W, Schiöth HB. Interaction between environmental pollutants and cancer drug efficacy: Bisphenol A, Bisphenol A diglycidyl ether and Perfluorooctanoic acid reduce vincristine cytotoxicity in acute lymphoblastic leukemia cells. J Appl Toxicol 2023; 43:458-469. [PMID: 36181250 DOI: 10.1002/jat.4398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022]
Abstract
Every day, we are exposed to many environmental pollutants that can enter our body through different routes and cause adverse effects on our health. Epidemiological studies suggest that these pollutants are responsible for approximately nine million deaths per year. Acute lymphoblastic leukemia (ALL) represents one of the major cancers affecting children, and although substantial progress has been made in its treatment, relapses are frequent after initial treatment and are now one of the leading causes of cancer-related death in pediatric patients. Currently, relatively little attention is paid to pollutant exposure during drug treatment and this is not taken into account for dose setting or regulatory purposes. In this work, we investigated how bisphenol A (BPA), its derivative bisphenol A diglycidyl ether (BADGE), and perfluorooctanoic acid (PFOA) alter vincristine treatment in ALL when administered before or together with the drug. We found that these three pollutants at nanomolar concentrations, lower than those established by current regulations, can reduce the cytotoxic effects of vincristine on ALL cells. Interestingly, we found that this is only achieved when exposure to pollutants occurs prior to administration of the chemotherapeutic drug. Moreover, we found that this effect could be mediated by activation of the PI3K/AKT pathway and stabilization of microtubules. This work strengthens the idea of starting to take into account exposure to pollutants to improve the efficacy of chemotherapy treatments.
Collapse
Affiliation(s)
| | - Wen Liu
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
23
|
Lagunas-Rangel FA. DNA damage accumulation and repair defects in FLT3-ITD acute myeloid leukemia: Implications for clonal evolution and disease progression. Hematol Oncol 2023; 41:26-38. [PMID: 36131612 PMCID: PMC10087755 DOI: 10.1002/hon.3076] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/15/2022] [Accepted: 09/17/2022] [Indexed: 02/03/2023]
Abstract
Acute myeloid leukemia is a group of hematological diseases that have a high mortality rate. During the development of this pathology, hematopoietic cells acquire chromosomal rearrangements and multiple genetic mutations, including FLT3-ITD. FLT3-ITD is a marker associated with a poor clinical prognosis and involves the activation of pathways such as PI3K/AKT, MAPK/ERK, and JAK/STAT that favor the survival and proliferation of leukemic cells. In addition, FLT3-ITD leads to overproduction of reactive oxygen species and defective DNA damage repair, both implicated in the appearance of new mutations and leukemic clones. Thus, the purpose of this review is to illustrate the molecular mechanisms through which FLT3-ITD generates genetic instability and how it facilitates clonal evolution with the generation of more resistant and aggressive cells. Likewise, this article discusses the feasibility of combined therapies with FLT3 inhibitors and inhibitors of DNA repair pathways.
Collapse
|
24
|
Liu B, Lee FF. Utilizing Residential History to Examine Heterogeneous Exposure Trajectories: A Latent Class Mixed Modeling Approach Applied to Mesothelioma Patients. JOURNAL OF REGISTRY MANAGEMENT 2023; 50:144-154. [PMID: 38504699 PMCID: PMC10945925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Background Life-course exposure assessment, as opposed to a one-time snapshot assessment based on the address at cancer diagnosis, has become increasingly possible with available cancer patients' residential history data. To demonstrate a novel application of residential history data, we examined the heterogeneous trajectories of the nonasbestos air toxic exposures among mesothelioma patients, and compared the patients' residential locations with the spatiotemporal clusters estimated from the National Air Toxic Assessment (NATA) data. Methods Patients' residential histories were obtained by linking mesothelioma cases diagnosed during 2011-2015 in the New York State (NYS) Cancer Registry to LexisNexis administrative data and inpatient claims data. To compare cancer risks over time, yearly relative exposure (RE) was calculated by dividing the NATA cancer risk at individual census tracts by the NYS average and subtracting 1. We used a latent class mixed model to identify distinct exposure trajectories among patients with a 15-year residential history prior to cancer diagnosis (n = 909). We further examined patient characteristics by the latent trajectory groups using bivariate comparisons and a logistic regression model. The spatiotemporal clusters of RE were generated based on all NATA data (n = 72,079) across the contiguous United States and using the SaTScan software. Results The median number of addresses lived was 2 (IQR, 1-4), with a median residential duration of 8 years (IQR, 4.7-13.2 years). We identified 3 distinct exposure trajectories: persistent low exposure (27%), decreased low exposure (41%), and increased high exposure (32%). Patient characteristics did not differ across trajectory groups, except for race and Hispanic ethnicity (P < .0001) and residential duration (P = .03). Compared to their counterparts, non-Hispanic White patients had a significantly lower odds of belonging to the increased high exposure group (adjusted odds ratio, 0.14; 95% CI, 0.09-0.23) than the persistent low exposure and decreased low exposure groups. Patients in the increased high exposure group tended to reside in New York City (NYC), which was covered by one of the high-RE clusters. On the other hand, patients in the persistent low exposure group tended to reside outside of NYC within NYS, which was largely covered by 2 low-RE clusters. Conclusion Using mesothelioma as an example, we quantified the heterogeneous trajectories of nonasbestos air toxic exposure based on patients' residential histories. We found that patients' race and ethnicity differed across the latent groups, likely reflecting the differences in patients' residential mobility before their cancer diagnoses. Our method can be used to study cancer types that do not have a clear etiology and may have a higher attributable risk due to environmental exposures as well as socioeconomic conditions.
Collapse
Affiliation(s)
- Bian Liu
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Furrina F. Lee
- Bureau of Cancer Epidemiology, Division of Chronic Disease Prevention, New York State Department of Health, Menands, New York
| |
Collapse
|
25
|
Joseph N, Libunao T, Herrmann E, Bartelt‐Hunt S, Propper CR, Bell J, Kolok AS. Chemical Toxicants in Water: A GeoHealth Perspective in the Context of Climate Change. GEOHEALTH 2022; 6:e2022GH000675. [PMID: 35949255 PMCID: PMC9357885 DOI: 10.1029/2022gh000675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
The editorial focuses on four major themes contextualized in a virtual GeoHealth workshop that occurred from June 14 to 16, 2021. Topics in that workshop included drinking water and chronic chemical exposure, environmental injustice, public health and drinking water policy, and the fate, transport, and human impact of aqueous contaminants in the context of climate change. The intent of the workshop was to further define the field of GeoHealth. This workshop emphasized on chemical toxicants that drive human health. The major calls for action emerged from the workshop include enhancing community engagement, advocating for equity and justice, and training the next generation.
Collapse
Affiliation(s)
- Naveen Joseph
- Idaho Water Resources Research InstituteUniversity of IdahoMoscowIDUSA
| | - Tate Libunao
- Idaho Water Resources Research InstituteUniversity of IdahoMoscowIDUSA
| | | | | | | | - Jesse Bell
- Department of Environmental, Agricultural and Occupational HealthCollege of Public HealthUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Alan S. Kolok
- Idaho Water Resources Research InstituteUniversity of IdahoMoscowIDUSA
| |
Collapse
|